導航:首頁 > 解決方法 > 檢測白蛋白的常規方法是

檢測白蛋白的常規方法是

發布時間:2022-07-23 15:12:42

『壹』 常用的血清蛋白質含量測定方法有哪些

四種血清總蛋白質的測定的方法:

1.基於蛋白分子中含有酪氨酸和色氨酸而使用的酚試劑比色法 由於各種蛋白質分子中上述兩種氨基酸的組成比例不同,特別是白蛋白含色氨酸為0.2%,而γ-球蛋白中含量達2%-3%,導致較大的差異。Lowry的改良法在酚試劑中加入Cu2+,集中原法和雙縮脲反應兩者的作用,使呈色靈敏度提高。其中75%的呈色依賴於Cu2+.反應產物最佳吸收峰在650-750nm,方法靈敏度為雙縮脲方法的100倍左右。有利於檢測較微量的蛋白質。但試劑反應仍易受多種化合物的干擾。

2.紫外測定法 採用280nm和215/225紫外吸收值,計算蛋白質含量280nm 是由於蛋白質分子中存在芳香族氨基酸所致。方法的特異性和准確性受蛋白分子中該種氨基酸的含量比例影響甚大。尿酸和肝紅素在280nm附近有干擾。紫外區200-225nm是肽健的強吸收峰。在此區域其吸收值為280nm的10-30倍,將血清稀釋1000-2000倍可以消除干擾物質的影響。

3.採用沉澱反應進行散射比濁法 用磺柳酸、三氯醋酸等配方,此方法甚為簡便,不需特殊儀器,技術關鍵在於:①選擇最佳試劑濃度及溫度;②混勻技術;③選用的標准;④待測標本中的蛋白濃度。

4.染料結合法 蛋白質可與某些染料特異結合,如氨基黑(amino black)與考馬亮藍(comassive brilliant blue )。這一性質除了可以用於電泳後的蛋白質區帶染色,亦可用於總蛋白質的定量。缺點是多種蛋白質與染料的結合力不一致。考馬亮藍在與蛋白質結合後的吸收峰從465nm移向595nm,這一性質可用分光光度法來定量檢測。

『貳』 尿微量白蛋白怎麼檢測

以前比較規范的做法是每半年檢查一次24小時尿微量白蛋白,最近半年深圳人民醫院的醫生好像說現在認為查隨機或者晨尿微量白蛋白就可以了?

『叄』 蛋白的常用蛋白鑒定方法

傳統的蛋白鑒定方法,如免疫印跡法、內肽的化學測序、已知或未知蛋白comigration分析,或者在一個有機體中有意義的基因的過表達通常耗時、耗力,不適合高流通量的篩選。目前,所選用的技術包括對於蛋白鑒定的圖象分析、微量測序、進一步對肽片段進行鑒定的氨基酸組分分析和與質譜相關的技術。 「滿天星」式的2-DE圖譜分析不能依靠本能的直覺,每一個圖象上斑點的上調、下調及出現、消失,都可能在生理和病理狀態下產生,必須依靠計算機為基礎的數據處理,進行定量分析。在一系列高質量的2-DE凝膠產生(低背景染色,高度的重復性)的前提下,圖象分析包括斑點檢測、背景消減、斑點配比和資料庫構建。
首先,採集圖象通常所用的系統是電荷耦合CCD(charge coupled device)照相機;激光密度儀(laser densitometers)和Phospho或Fluoro imagers,對圖象進行數字化。並成為以象素(pixels)為基礎的空間和網格。
其次,在圖象灰度水平上過濾和變形,進行圖象加工,以進行斑點檢測。利用Laplacian,Gaussian,DOG(difference of Gaussians) opreator使有意義的區域與背景分離,精確限定斑點的強度、面積、周長和方向。
圖象分析檢測的斑點須與肉眼觀測的斑點一致。在這一原則下,多數系統以控制斑點的重心或最高峰來分析,邊緣檢測的軟體可精確描述斑點外觀,並進行邊緣檢測和鄰近分析,以增加精確度。通過閾值分析、邊緣檢測、銷蝕和擴大斑點檢測的基本工具還可恢復共遷移的斑點邊界。以PC機為基礎的軟體Phoretix-2D正挑戰古老的Unix為基礎的2-D分析軟體包。
第三,一旦2-DE圖象上的斑點被檢測,許多圖象需要分析比較、增加、消減或均值化。由於在2-DE中出現100%的重復性是很困難的,由此凝膠間的蛋白質的配比對於圖象分析系統是一個挑戰。IPG技術的出現已使斑點配比變得容易。因此,較大程度的相似性可通過斑點配比向量演算法在長度和平行度觀測。用來配比的著名軟體系統包括Quest,Lips,Hermes,Gemini等,計算機方法如相似性、聚類分析、等級分類和主要因素分析已被採用,而神經網路、子波變換和實用分析在未來可被採用。配比通常由一個人操作,其手工設定大約50個突出的斑點作為「路標」,進行交叉配比。之後,擴展至整個膠。
例如:精確的PI和MW(分子量)的估計通過參考圖上20個或更多的已知蛋白所組成的標准曲線來計算未知蛋白的PI和MW。 在凝膠圖象分析系統依據已知蛋白質的pI值產生PI網路,使得凝膠上其它蛋白的PI按此分配。所估計的精確度大大依賴於所建網格的結構及標本的類型。已知的未被修飾的大蛋白應該作為標志,變性的修飾的蛋白的PI估計約在±0。25個單位。 同理,已知蛋白的理論分子量可以從資料庫中計算,利用產生的表觀分子量的網格來估計蛋白的分子量。 未被修飾的小蛋白的錯誤率大約30%,而翻譯後蛋白的出入更大。 故需聯合其他的技術完成鑒定。 蛋白質的微量測序已成為蛋白質分析和鑒定的基石,可以提供足夠的信息。盡管氨基酸組分分析和肽質指紋譜(PMF)可鑒定由2-DE分離的蛋白,但最普通的N-末端Edman降解仍然是進行鑒定的主要技術。目前已實現蛋白質微量測序的自動化。 首先使經凝膠分離的蛋白質直接印跡在PVDF膜或玻璃纖維膜上,染色、切割,然後直接置於測序儀中,可用於subpicomole水平的蛋白質的鑒定。 但有幾點需注意:Edman降解很緩慢,序列以每40 min 1個氨基酸的速率產生;與質譜相比,Edman降解消耗大;試劑昂貴,每個氨基酸花費3~4$。 這都說明泛化的Edman降解蛋白質不適合分析成百上千的蛋白質。然而,如果在一個凝膠上僅有幾個有意義的蛋白質,或者如果其他技術無法測定而克隆其基因是必需的,則需要進行泛化的Edman降解測序。
近來,應用自動化的Edman降解可產生短的N-末端序列標簽,這是將質譜的序列標簽概念用於Edman降解,業已成為一種強有力的蛋白質鑒定。當對Edman的硬體進行簡單改進,以迅速產生N-末端序列標簽達10~20個/d,序列檢簽將適於在較小的蛋白質組中進行鑒定。若聯合其他的蛋白質屬性,如氨基酸組分分析、肽質質量、表現蛋白質分子量、等電點,可以更加可信地鑒定蛋白質。選擇BLAST程序,可與資料庫相配比。目前,採用一種Tagldent的檢索程序,還可以進行種間比較鑒定,又提高了其在蛋白質組研究中的作用。 質譜已成為連接蛋白質與基因的重要技術,開啟了大規模自動化的蛋白質鑒定之門。用來分析蛋白質或多肽的質譜有兩個主要的部分,(1)樣品入機的離子源,(2)測量被介入離子的分子量的裝置。
首先是基質輔助激光解吸附電離飛行時間質譜(MALDI-TOF)為一脈沖式的離子化技術。它從固相標本中產生離子,並在飛行管中測其分子量。
其次是電噴霧質譜(ESI-MS),是一連續離子化的方法,從液相中產生離子,聯合四極質譜或在飛行時間檢測器中測其分子量。
在MALDI-TOF中,最重要的進步是離子反射器(ion reflectron)和延遲提取(delayed ion extraction),可達相當精確的分子量。在ESI-MS中,納米級電霧源(nano-electrospray source)的出現使得微升級的樣品在30~40 min內分析成為可能。
將反相液相色譜和串聯質譜(tandem MS)聯用,可在數十個picomole的水平檢測;若利用毛細管色譜與串聯質譜聯用,則可在低picomole到高femtomole水平檢測;當利用毛細管電泳與串聯質譜連用時,可在小於femtomole的水平檢測。甚至可在attomole水平進行。目前多為酶解、液相色譜分離、串聯質譜及計算機演算法的聯合應用鑒定蛋白質。下面以肽質指紋術和肽片段的測序來說明怎樣通過質譜來鑒定蛋白質。
(1)肽質指紋術
由Henzel等人於1993年提出。用酶(最常用的是胰酶)對由2-DE分離的蛋白在膠上或在膜上於精氨酸或賴氨酸的C-末端處進行斷裂,斷裂所產生的精確的分子量通過質譜來測量(MALDI-TOF-MS,或為ESI-MS),這一技術能夠完成的肽質量可精確到0。1個分子量單位。所有的肽質量最後與資料庫中理論肽質量相配比(理論肽是由實驗所用的酶來「斷裂」蛋白所產生的)。配比的結果是按照資料庫中肽片段與未知蛋白共有的肽片段數目作一排行榜,「冠軍」肽片段可能代表一個未知蛋白。若冠亞軍之間的肽片段存在較大差異,且這個蛋白可與實驗所示的肽片段覆蓋良好,則說明正確鑒定的可能性較大。
(2)肽片段的部分測序
肽質指紋術對其自身而言,不能揭示所衍生的肽片段或蛋白質。為進一步鑒定蛋白質,出現了一系列的質譜方法用來描述肽片段。用酶或化學方法從N-或C-末端按順序除去氨基酸,形成梯形肽片段(ladder peptide)。
首先以一種可控制的化學模式從N-末端降解,可產生大小不同的一系列的梯形肽片段,所得一定數目的肽質量由MALDI-TOF-MS測量。另一種方法涉及羧基肽酶的應用,從C-末端除去不同數目的氨基酸形成肽片段。化學法和酶法可產生相對較長的序列,其分子量精確至以區別賴氨酸和谷氨醯胺。或者,在質譜儀內應用源後衰變(post-source decay,PSD)和碰撞誘導解離(collision-inced dissociation,CID),目的是產生包含有僅異於一個氨基酸殘基質量的一系列肽峰的質譜。因此,允許推斷肽片段序列。 肽片段PSD的分析在MALDI反應器上能產生部分序列信息。首先進行肽質指紋鑒定。 之後,一個有意義的肽片段在實驗儀器質譜儀被選作「母離子」,在飛行至離子反應器的過程中降解為「子離子」。在反應器中,用逐漸降低的電壓可測量至檢測器的不同大小的片段。但經常產生不完全的片段。現在用肽片段來測序的方法始於70年代末的CID,可以一個三聯四極質譜ESI-MS或MALDI-TOF-MS聯合碰撞器內來完成。在ESI-MS中,由電霧源產生的肽離子在質譜儀的第一個四極質譜中測量,有意義的肽片段被送至第二個四極質譜中,惰性氣體轟擊使其成為碎片,所得產物在第三個四極質譜中測量。與MALDI-PSD相比,CID穩定、強健、普遍,肽離子片段基本沿著醯胺鍵的主架被轟擊產生梯形序列。 連續的片段間差異決定此序列在那一點的氨基酸的質量。由此,序列可被推測。由CID圖譜還可獲得的幾個序列的殘基,叫做「肽序列標簽」。這樣,聯合肽片段母離子的分子量和肽片段距N- C端的距離將足以鑒定一個蛋白質。 1977年首次作為鑒定蛋白質的一種工具,是一種獨特的「腳印」技術。利用蛋白質異質性的氨基酸組分特徵,成為一種獨立於序列的屬性,不同於肽質量或序列標簽。Latter首次表明氨基酸組分的數據能用於從2-DE凝膠上鑒定蛋白質。 通過放射標記的氨基酸來測定蛋白質的組分,或者將蛋白質印跡到PVDF膜上,在155℃進行酸性水解1 h,通過這一簡單步驟的氨基酸的提取,每一樣品的氨基酸在40min內自動衍生並由色譜分離,常規分析為100個蛋白質/周。依據代表兩組分間數目差異的分數,對資料庫中的蛋白質進行排榜,「冠軍」蛋白質具有與未知蛋白質最相近的組分,考慮冠亞軍蛋白質分數之間的差異,僅處於冠軍的蛋白質的可信度大。Internet上存在多個程序可用於氨基酸組分分析,如AACompIdent,ASA,FINDER,AAC-PI,PROP-SEARCH等,其中,在PROP-SEARCH中,組分、序列和氨基酸的位置被用來檢索同源蛋白質。 但仍存在一些缺點,如由於不足的酸性水解或者部分降解會產生氨基酸的變異。故應聯合其他的蛋白質屬性進行鑒定。

『肆』 尿微量白蛋白的尿微量檢測

尿微量白蛋白指高於正常,但常規方法無法檢出的白蛋白尿,他的檢測作為早期腎損害診斷的重要指標已受到廣泛重視,測定方法包括放射免疫法、ELASA法等。應用較多的是免疫透射比濁法,但報告方式不一,有的以每升尿中白蛋白量表示,有的以24小時排泄量表示,常用的報告方式是以白蛋白/肌酐比值報告。我們以不同表示方法對正常人尿白蛋白的正常值進行了統計分析,並對部分高血壓、糖尿病患者進行測定,現報告如下。 1.儀器與方法:尿微量白蛋白測定試劑盒,肌酐測定試劑盒均購於凱創公司。儀器應用瑞士產Cobas MIRA plus全自動生化分析儀。尿白蛋白測定,取標本10 ml,1 500×g離心10分鍾,取上清10 μl,加緩沖液250 μl,抗血清50 μl,測定波長340 nm,反應溫度37℃,測定時限300秒,5點定標,范圍5~200 mg/L。肌酐採用Jaffe′s法,尿標本預先用生理鹽水30倍稀釋測定。
2.對象:對照組,健康人70例(男43例,女27例),平均年齡41.2歲(21~54歲),均排除高血壓、糖尿病及其他和腎病有關病史。糖尿病組,42例(男28例,女14例),平均年齡51.2歲(34~72歲),病程2~20年。高血壓組,62例(男39例,女23例),平均年齡44.5歲(31~71歲),血壓范圍160~190/95~120 mmHg,病程2~27年。臨床診斷Ⅰ期21例,Ⅱ期41例,其中Ⅱ期患者以眼底動脈硬化或心臟改變為診斷依據,尿常規分析蛋白定性均為陰性。
3.標本:對照組均分別留取24小時尿和隨機尿,測定24小時白蛋白和每升白蛋白及白蛋白/肌酐比值,並以不同方法計算正常值,患者組均取隨機尿測定白蛋白及肌酐,以白蛋白/肌酐比值報告,以上標本均當日測定。 1.不同計算方法尿白蛋白正常值:以mg/L計算,范圍2.2~41.7,均值12.7;以mg/gCr計算,范圍2.7~26.1,均值8.1;以mg/24 h計算,范圍2.4~34.3,均值11.4。因尿白蛋白值呈非正態分布,低值無臨床意義,在建立參考范圍時以百分位數法按單側值95%上限確定。從以上結果可見,不同計算方法的結果正常值范圍有明顯差異,尤以每升結果報告時,由於受尿量影響較大,正常范圍較寬,這樣易使部分異常標本落入正常范圍而延誤診斷。
2.高血壓組:診斷Ⅰ期、Ⅱ期高血壓的標準是以是否累及血管、臟器為依據,我們測定的41例Ⅱ期患者中,常規尿蛋白定性均未發現腎臟損害,診斷是以眼底改變和心電圖改變為主。我們將測定結果依據高血壓病期、病程、舒張壓水平分組進行統計,結果。Ⅰ期21例,范圍4.6~38.2 mg/gCr,均值17.8 mg/gCr;Ⅱ期41例,范圍5.1~62 mg/gCr,均值29.7 mg/gCr;舒張壓95~105 mmHg 34例,范圍4.6~43.4 mg/gCr,均值16.4 mg/gCr;舒張壓106~120 mmHg 28例,范圍5.0~62 mg/gCr,均值31.2 mg/gCr;病程2~10年19例,4.6~40.2 mg/gCr,均值13.1 mg/gCr;病程11~15年,28例,范圍4.6~54.2 mg/gCr,均值19.3 mg/gCr;病程16~27年,15例,范圍5.1~62 mg/gCr,均值37.2 mg/gCr。上述結果中以正常值? mg/gCr為界,Ⅰ期高血壓中有4例超過正常值,Ⅱ期高血壓中有14例超過正常值,說明這些患者已有輕度腎損害。尤其1期高血壓中有五分之一患者出現尿白蛋白異常,尿白蛋白的值與病程及血壓水平相關。
3.糖尿病組:42例糖尿病患者按病程分組,2~10年28例,尿白蛋白為5.2~39.6 mg/gCr,均值21.2 mg/gCr,大於25 mg/gCr 13例;11年以上組14例,結果為10.4~68.
1 mg/gCr,均值29.4 mg/gCr,大於25 mg/gCr 8例。通過了解病史並分析結果,堅持長期口服葯物或注射胰島素治療者與不經常治療兩者結果間有明顯差異(P?.01)。
測定尿微量白蛋白最理想的方法是留取24小時標本,但因留取困難,在實際應用上受到限制。隨機尿測定是目前最常用,最易行的方法。但應同時測定肌酐,因每日肌酐排除量相對恆定,可避免尿量變化對結果的影響。
尿微量白蛋白測定是一種靈敏、簡便、快速的測定方法,易於在常規實驗室中廣泛應用,對早期腎損害的診斷遠遠優於常規定性或半定量試驗。

『伍』 血清白蛋白的測定方法

血清清蛋白測定一般採用溴甲酚綠比色法,目前首選推薦的清蛋白定量方法

『陸』 血清白蛋白檢測的英文資料

血清白蛋白檢測 serum albumin detection

Serum albumin, often referred to simply as albumin, is the most abundant plasma protein in humans and other mammals. Albumin is essential for maintaining the osmotic pressure needed for proper distribution of body fluids between intravascular compartments and body tissues. It also acts as a plasma carrier by non-specifically binding several hydrophobic steroid hormones and as a transport protein for hemin and fatty acids.

Types
The human version is human serum albumin.
Bovine serum albumin, or BSA, is commonly used in immunodiagnostic proceres, clinical chemistry reagents, cell culture media, protein chemistry research and molecular biology laboratories (usually to leverage its non-specific protein binding properties).

[edit] General characteristics
Albumin (when ionized in water at pH 7.4, as found in the body) is negatively charged. The glomerular basement membrane is also negatively charged in the body; some studies suggest that this prevents the filtration of albumin in the urine. According to this theory, that charge plays a major role in the selective exclusion of albumin from the glomerular filtrate. A defect in this property results in nephrotic syndrome leading to albumin loss in the urine. Nephrotic syndrome patients are sometimes given albumin to replace the lost albumin.

Because smaller animals (for example rats) function at a lower blood pressure, they need less oncotic pressure to balance this, and thus need less albumin to maintain proper fluid distribution.

Serum albumin contains eleven distinct binding domains for hydrophobic compounds. One hemin and six long-chain fatty acids can bind to serum albumin at the same time

Human serum albumin is the most abundant protein in human blood plasma. It is proced in the liver. Albumin comprises about half of the blood serum protein. It is soluble and monomeric.

The gene for albumin is located on chromosome 4 and mutations in this gene can result in various anomalous proteins. The human albumin gene is 16,961 nucleotides long from the putative 'cap' site to the first poly(A) addition site. It is split into 15 exons which are symmetrically placed within the 3 domains that are thought to have arisen by triplication of a single primordial domain.

Albumin is synthesized in the liver as preproalbumin which has an N-terminal peptide that is removed before the nascent protein is released from the rough endoplasmic reticulum. The proct, proalbumin, is in turn cleaved in the Golgi vesicles to proce the secreted albumin.

The reference range for albumin concentrations in blood is 30 to 50 g/L. It has a serum half-life of approximately 20 days. It has a molecular mass of 67 kDa.

Functions of albumin
Maintains oncotic pressure
Transports thyroid hormones
Transports other hormones, particularly fat soluble ones
Transports fatty acids ("free" fatty acids) to the liver
Transports unconjugated bilirubin
Transports many drugs, and serum albumin levels can affect the half-life of drugs.
Competitively binds calcium ions (Ca2+)
Buffers pH

[edit] Pathology

[edit] Hypoalbuminemia
Low blood albumin levels (hypoalbuminemia) can be caused by:

liver disease / Cirrhosis of the liver (most commonly)
Decreased proction (as in starvation/malnutrition/malabsorption)
Excess excretion by the kidneys (as in nephrotic syndrome)
Excess loss in bowel (protein losing enteropathy e.g. Menetrier's)
Burns (Plasma loss in the absence of skin barrier)
Redistribution (hemodilution [as in Pregnancy], increased vascular permeability or decreased lymphatic clearance)
Acute disease states (referred to as a negative acute phase protein)
Mutation causing analbuminemia (very rare)

[edit] Hyperalbuminemia
Typically is a sign of severe dehydration.

[edit] Glycation (Glycosylation) of Serum Albumin
It has been known for a long time that human blood proteins like hemoglobin [1] and serum albumin [2][3] may undergo a slow non-enzymatic glycation, mainly by formation of a Schiff base between ε-amino groups of lysine (and sometimes arginine) resies and glucose molecules in blood (Maillard reaction). This reaction can be inhibited in the presence of antioxidant agents [4]. Although this reaction may happen normally [5] , elevated glycoalbumin is observed in diabetes mellitus [6].

Glycation has the potential to alter the biological structure and function of the serum albumin protein [7][8][9][10]. Moreover, the glycation finally can result in the formation of Advanced Glycosylation End Procts (AGE), which result in abnormal biological effects. Accumulation of AGEs leads to tissue damage via alteration of the structures and functions of tissue proteins, stimulation of cellular responses, through receptors specific for AGE-proteins, and via generation of reactive oxygen intermediates. AGEs also react with DNA, thus causing mutations and DNA transposition. Thermal processing of proteins and carbohydrates brings major changes in allergenicity. AGEs are antigenic and represent many of the important neoantigens found in cooked or stored foods [11]. They also interfere with the normal proct of nitric oxide in cells [12].

Although there are several lysine and arginine resies in the serum albumin structure, very few of them can take part in the glycation reaction [13][14]. It is not clear exactly why only these resies are glycated in serum albumin [15].

[edit] Testing for albumin loss via the kidneys
In the healthy kidney, albumin's size and negative electric charge exclude it from excretion in the glomerulus. This is not always the case, as in some diseases including diabetic nephropathy, a major complication of uncontrolled diabetes where proteins can cross the glomerulus. The lost albumin can be detected by a simple urine test.[16] Depending on the amount of albumin lost, a patient may have normal renal function, microalbuminuria, or albuminuria.

[edit] Amino Acid Sequence
The approximate sequence of human serum albumin is:

MKWVTFISLL FLFSSAYSRG VFRRDAHKSE VAHRFKDLGE ENFKALVLIA FAQYLQQCPF EDHVKLVNEV TEFAKTCVAD ESAENCDKSL HTLFGDKLCT VATLRETYGE MADCCAKQEP ERNECFLQHK DDNPNLPRLV RPEVDVMCTA FHDNEETFLK KYLYEIARRH PYFYAPELLF FAKRYKAAFT ECCQAADKAA CLLPKLDELR DEGKASSAKQ RLKCASLQKF GERAFKAWAV ARLSQRFPKA EFAEVSKLVT DLTKVHTECC HGDLLECADD RADLAKYICE NQDSISSKLK ECCEKPLLEK SHCIAEVEND EMPADLPSLA ADFVESKDVC KNYAEAKDVF LGMFLYEYAR RHPDYSVVLL LRLAKTYETT LEKCCAAADP HECYAKVFDE FKPLVEEPQN LIKQNCELFE QLGEYKFQNA LLVRYTKKVP QVSTPTLVEV SRNLGKVGSK CCKHPEAKRM PCAEDYLSVV LNQLCVLHEK TPVSDRVTKC CTESLVNRRP CFSALEVDET YVPKEFNAET FTFHADICTL SEKERQIKKQ TALVELVKHK PKATKEQLKA VMDDFAAFVE KCCKADDKET CFAEEGKKLV AASQAALGL

Where the italicized first 24 amino acids are signal and propeptide portions not observed in the transcribed, translated and transported protein but present in the gene. There are 609 amino acids in this sequence with only 585 amino acids in the final proct observed in the blood.

『柒』 如何選擇合適的蛋白含量測定方法

選擇一種蛋白測定方法時,需要考慮兩個重要因素:緩沖液的化學組成和檢測的蛋白量。基於dford方法的Quick Start Bradford和Bio–Rad 蛋白測定靈敏度高,可以兼容糖、巰基乙醇、DTT等。而對於去污劑和NaOH這兩種干擾Bradford測定的物質,DC蛋白測定卻可以兼容。

如果蛋白是在loading buffer中,准備跑1D或2D電泳,或者剛從細胞裂解液中抽提出來,需要定量,那麼RC DC蛋白測定更合適。

(7)檢測白蛋白的常規方法是擴展閱讀:

常見測試方法:

Quick Start Bradford蛋白測定是一種簡單、精確的蛋白濃度定量方法。現成的1倍濃度染料和7 個預稀釋濃度(0.125、0.25、0.5、 0.75、1.0、1.5、2.0 mg/ml)的蛋白標准品,讓你擁有現成的檢測工具。無需稀釋標准品和染料,一步完成蛋白濃度定量。

Bio–Rad 蛋白測定也是一種簡單的蛋白濃度測定方法。該方法適應標准濃度測定、低濃度微量測定,或96孔微孔板的快速測定。它的基本原理和流程和上面的Quick Start Bradford都是一樣的,不過要麻煩一點點。因為除了要稀釋蛋白標准品,配成幾個不同濃度之外,還要稀釋染料,再過濾除去不溶顆粒。

Quick Start Bradford 和Bio–Rad 蛋白測定方法的起源都是Bradford染料結合方法 (Bradford 1976),該方法檢測考馬斯亮藍G–250染料與蛋白結合時(主要結合鹼性或芳香族氨基酸殘基)的顏色變化。這種測定方法能定量多數蛋白或多肽(分子量> 3,000–5,000 Da),操作簡單、速度快,靈敏度高,與一些還原劑(如DTT、巰基乙醇)兼容。

DC (Detergent Compatible) 蛋白測定是一種適用於含有去垢劑的蛋白樣品比色測定方法。該方法類似於常規的Lowry 測定方法 (Lowry et al.1951),但經過改良,節省了操作時間。DC 蛋白測定只需要15分鍾的溫育過程,而且吸光值讀數能保持2小時的穩定。

RC DC (Recing agent Compatible & Detergent Compatible) 蛋白測定是一種適用於含還原劑和去垢劑的蛋白樣品比色測定方法。

以 Lowry 方法(Lowry et al.1951)為基礎的 RC DC 蛋白測定,具有原來DC蛋白測定的特點,並能與更多的試劑兼容,簡化了復雜蛋白樣品溶液的定量測定。吸光值至少穩定1小時。

除了與DC 蛋白測定兼容的試劑外,RC DC 蛋白測定還與以下試劑和緩沖液兼容:2% CHAPS、350 mM DTT、0.1MEDTA、Laemmli 緩沖液、10% beta-巰基乙醇、ReadyPrep 抽提試劑等。

『捌』 測定血清總蛋白的參考方法是

總蛋白的六種檢測方法
(一)凱氏定氮法
將血清與強酸一起加熱消化,使血清中的含氮化合物轉化為銨鹽,再加鹼使銨鹽成為氨進經蒸餾分離出來,最後用酸滴定測定氮量,按每克氨相當於6.25g蛋白質計算蛋白質的濃度。
應用歷史較久,結果較准確,是蛋白質測定的參考方法,但操作復雜,影響因素較多,且不少蛋白質的含氮量並非16%,不適用於日常工作,目前多用於標准蛋白的標定及校正其它的常規方法。
(二)雙縮脲法
蛋白質中的肽鍵(-CONH-)在鹼性條件下與Cu2+絡合成紫紅色復合物,產生的顏色強度在一定范圍內與蛋白質含量成正比。
此反應和二分子尿素縮合後的產物雙縮脲(H2N-CO-NH-CO-NH2)與鹼性銅溶液作用形成紫紅色的反應相似,故稱為雙縮脲反應。幾分子中含有兩個甲醯胺基(-CO-NH2)的化合物都能出現此反應。
因至少含2個-CONH-基團才能與Cu2+絡合,所以氨基酸和二肽無此反應。體液中小分子肽含量極低,故血漿中除蛋白質外幾乎不存在可與雙縮脲試劑顯色的物質,且各種蛋白質顯色程度基本相同。
此法簡便、准確、重復性好,在10-120g/L。濃度范圍內呈良好的線性關系,批內CV值<2%,但靈敏度較其它方法稍差,是目前臨床上最常規的方法。
(三)酚試劑法
蛋白質分子中的酪氨酸殘基和色氨酸殘基能夠和酚試劑中的磷鎢酸-磷鉬酸反應生成藍色化合物。Lowry改良法在酚試劑中加入Cu2+,提高了呈色的靈敏度,其中75%呈色靠銅離子產生。Lowry改良法的靈敏度為雙縮脲法的100倍左右。
由於各種蛋白質中酪氨酸和色氨酸的比例不同,如白蛋白含色氨酸為0.2%,而在一些球蛋白中色氨酸含量高達2%~3%,因此使用本法測定純粹的、單一的蛋白質較合適。此法靈敏度較高,為10~60ug/ml,因而適用於測定蛋白質含量較少的標本(如腦脊液),但試劑反應易受還原性化合物糖類、酚類及多種葯物如水楊酸、氯丙嗪和某些磺胺葯的干擾。
(四)紫外分光光度法
蛋白質分子內的色氨酸、酪氨酸等芳香族氨基酸可使蛋白質溶液在280nm波長處有一吸收峰,依此性質可用於蛋白質定量。
由於各種蛋白質中芳香族氨基酸的含量和比例不同,血清中游離的酪氨酸和色氨酸在280nm處也有吸收,因尿酸和膽紅素在280nm處也有干擾,因而本法的准確性和特異性都受到很大的影響。
此法敏感而且簡便,由於制劑未經任何處理,蛋白質的生物活性得以保留,故常用於較純的酶和免疫球蛋白的測定。但此法需紫外分光光度計和石英比色杯。
(五)染料結合法
在酸性環境中,蛋白質分子解離出的-NH3+,可與染料的陰離子產生顏色反應。常用的染料有氨基黑、考馬斯亮藍等。這一性質可用於電泳後蛋白質的染色和血清總蛋白測定。
此法操作簡便、重復性好、靈敏度高、且干擾因素較少。缺點是特異性不高,分子量3 000以上的多肽也參與反應。另外,不同蛋白質和染料的結合力不一致,因此很難找到一種合適的物質作標准物,使此方法的應用受到限制。
(六)比濁法
用某些酸類(如二氯醋酸、磺基水楊酸等)和血清蛋白質結合產生沉澱,然後測定其濁度,與同樣處理的蛋白標准液比較,即可求得蛋白質含量。
此方法簡便,不需特殊儀器。缺點是濁度形成的強弱易受多種因素影響,如加入試劑的方法、反應時的溫度等。另外,蛋白質沉澱時易形成絮狀物,難以獲得穩定的懸浮液

『玖』 尿常規中的蛋白質檢查用的是什麼方法

醫院一般用八聯試紙---機器讀取數據
蛋白多的話,是用24小時尿蛋白定量做細化的檢測---
在家自己可以用尿蛋白試紙,2.5元可以測20次,也可以自己燒尿,滴醋觀察渾濁情況---

閱讀全文

與檢測白蛋白的常規方法是相關的資料

熱點內容
研究固定資產核算的方法 瀏覽:601
胎方法都有哪些 瀏覽:782
從手機上買東西的方法 瀏覽:685
手機屏幕顯示時間的方法 瀏覽:744
快速使用電腦拼幾張圖方法 瀏覽:541
涵曦嬰兒針使用方法 瀏覽:801
真米酒檢測方法 瀏覽:555
登峰訓練方法視頻 瀏覽:696
最簡單的蔬菜種植方法 瀏覽:507
如何補肝最快的方法 瀏覽:745
用什麼方法讓一個人忘不了你 瀏覽:181
並聯電路缺零線安裝方法 瀏覽:449
痛風的最佳治療方法及吃什麼葯 瀏覽:772
粉絲快速長大的方法 瀏覽:410
金屬超聲波檢測方法 瀏覽:444
電勢計算方法的探究 瀏覽:804
韶關同城電腦租賃方法 瀏覽:401
芋頭粉怎麼消腫散結最快方法 瀏覽:24
什麼拿破崙的記憶方法 瀏覽:508
硝酸根試劑檢測方法 瀏覽:210