① 奧數題的解題技巧有哪些
1 、直觀畫圖法:解奧數題時,如果能合理的、科學的、巧妙的藉助點、線、面、圖、表將奧數問題直觀形象的展示出來,將抽象的數量關系形象化,可使同學們容易搞清數量關系,溝通「已知」與「未知」的聯系,抓住問題的本質,迅速解題。
2 、倒推法:從題目所述的最後結果出發,利用已知條件一步一步向前倒推,直到題目中問題得到解決。
3 、枚舉法:奧數題中常常出現一些數量關系非常特殊的題目,用普通的方法很難列式解答,有時根本列不出相應的算式來。我們可以用枚舉法,根據題目的要求,一一列舉基本符合要求的數據,然後從中挑選出符合要求的答案。
4 、正難則反:有些數學問題如果你從條件正面出發考慮有困難,那麼你可以改變思考的方向,從結果或問題的反面出發來考慮問題,使問題得到解決。
5 、巧妙轉化:在解奧數題時,經常要提醒自己,遇到的新問題能否轉化成舊問題解決,化新為舊,透過表面,抓住問題的實質,將問題轉化成自己熟悉的問題去解答。轉化的類型有條件轉化、問題轉化、關系轉化、圖形轉化等。
(1)奧數簡單方程解題方法擴展閱讀
數形結合作為一種數學思想方法,數形結合的應用大致又可分為兩種情形:或者藉助於數的精確性來闡明形的某些屬性,或者藉助形的幾何直觀性來闡明數之間某種關系,即數形結合包括兩個方面:
第一種情形是「以數解形」;
而第二種情形是「以形助數」。「以數解形」就是有些圖形太過於簡單,直接觀察卻看不出什麼規律來,這時就需要給圖形賦值,如邊長、角度等。
② 一道小學奧數題怎麼做求解求思路 急急急
其實這個很簡單,但是方程會好用很多,我盡量用最簡單最簡單的方式解給你看。
因為兩個人都是和小明做比較,所以設小明為X
小剛就是X+12
小強就是X-8
因為小剛是小強的三倍
所以3個小強=1個小剛
所以3(X-8)=X+12
3X-24=X+12
2X=36
X=18
小明18架
小剛30架
小強10架
不懂可追問哦,加油。
③ 怎樣用抓住方法用方程解奧數題
先找出數量關系,再根據數量關系列出方程,就能夠輕松求解啦!
④ 簡單奧數題方程解
兩車同向而行,快車從追上慢車到離開慢車共走了70+80=150米,用時1分鍾=60秒.
所以兩車的速度差為:150/60=2.5米/秒
兩車相向而行,快車從與慢車相遇到離開慢車,共走了70+80=150米,用時12秒,所以兩車的速度差為:150/12=12.5米/秒
快車速度為:(12.5+2.5)/2=7.5米/秒
慢車速度為:(12.5-2.5)/2=5米/秒
⑤ 小學奧數列方程解題
回答第一題
分析 若把男,女生人數分別設為x人和y人.依題意全體學生的平均分為76分,男,女生平均分數分別為79分,71分,可以確定等量關系:男生平均分數×男生人數+女生平均分數×女生人數=(男生人數+女生人數)×總平均分數.解方程後可以確定男,女生人數的比,再根據總人數的取值范圍確定參加比賽的最少人數,從而使問題得解.
解:設參加數學邀請賽的男生有x人,女生有y人.
79x+71y=(x+y)×76
79x+71y=76x+76y
3x=5y
∴ x:y=5:3
總份數:5+3=8.
在380~450之間能被8整除的最小三位數是384,所以參加邀請賽學生至少有384人. 而男生數最少是384 × 8分之5 = 240人,女生則是144人
⑥ 如何掌握奧數題的方法
⑦ 奧數如何找到簡便的方法
做題沒有什麼一蹴而就的辦法,只有多加練習,外加有個不錯的老師來輔 導,會給你成功之路助力!
邯鄲考試牛解答
-----------------------------------
網路知道答題不易,
答案正確
請及時採納或給予好評,
如有其他疑問,
可以繼續追問,
謝謝合作
⑧ 七年級奧數二元一次方程的解法
二元一次方程的解法
目錄二元一次方程組解方程組二元一次方程的解拓展解法典型例題模擬試題應用題展開二元一次方程組解方程組二元一次方程的解拓展解法典型例題模擬試題應用題展開
編輯本段二元一次方程組二元一次方程組(2張)
1. 認識二元一次方程組的有關概念,會把一些簡單的實際問題中的數量關系,用二元一次方程組的形式表示出來,學會用含有其中一個未知數的代數式表示另一個的方法。
2. 領會並掌握解二元一次方程組的方法,根據方程組的情況,能恰當地運用「代入消元法」和「加減消元法」解方程組。
3. 體會解二元一次方程組中的「消元」思想,即通過消元把二元一次方程轉化成一元一次方程,由此感受「氧化」思想的廣泛作用,提高分析問題和解決問題的能力。
4.了解二元一次方程有無數個解,要取公共解。[1]編輯本段解方程組求方程組的解的過程,叫做解二元一次方程組。
[2]1. 二元一次方程
(1)概念:方程兩邊都是整式,含有兩個未知數,並且含有未知數的項的次數都是1的方程,叫做二元一次方程.
[3]你能區分這些方程嗎?5x+3y=75(二元一次方程);3x+1=8x(一元一次方程);2y+y=2(一元一次方程);2x-y=9(二元一次方程)。
對二元一次方程概念的理解應注意以下幾點:
①等號兩邊的代數式是整式;
②在方程中「元」是指未知數,二元是指方程中含有兩個未知數;
③未知數的項的次數都是1,實際上是指方程中最高次項的次數為1,在此可與多項式的次數進行比較理解,切不可理解為兩個未知數的次數都是1.
(2)二元一次方程的解使二元一次方程兩邊相等的一組未知數的值,叫做二元一次方程的一個解.對二元一次方程的解的理解應注意以下幾點:
①一般地,一個二元一次方程的解有無數個,且每一個解都是指一對數值,而不是指單獨的一個未知數的值;
②二元一次方程的一個解是指使方程左右兩邊相等的一對未知數的值;反過來,如果一組數值能使二元一次方程左右兩邊相等,那麼這一組數值就是方程的解;
③在求二元一次方程的解時,通常的做法是用一個未知數把另一個未知數表示出來,然後給定這個未知數一個值,相應地得到另一個未知數的值,這樣可求得二元一次方程的一個解.
方法總結1. 二元一次方程與一元一次方程有很多類似的地方,學習時可運用類比的思想方法,比較二元一次方程與一元一次方程有關概念的相同點和不同點. 這樣,不但能加深對概念的理解,提高對「元」和「次」的認識,而且能夠逐步培養類比分析和歸納、概括的能力
.2. 方程組中的兩個未知數一般是不能同時求出來的,必須先想辦法消去一個未知數,把解方程組的問題轉化為解一元一次方程的問題,這種思想方法就叫做「消元法」. 解二元一次方程組的基本思想方法就是通過消元將「二元」轉化為「一元」. 代入法、加減法是解二元一次方程組的基本方法,必須靈活運用.二元一次方程組: 二元一次方程組如右圖所示這樣含有兩個未知數的兩個一次方程所組成的一組方程,叫做二元一次方程組。(兩式都寫在大括弧中)編輯本段典型例題
⑨ 簡單的奧數問題~(解方程)
解:設需要10%的x千克,30%就是250-x千克,所以混合後鹽的質量是
x*10%+(250-x)*10%,所以22%=[x*10%+(250-x)*30%]/250,解方程得,x=100
所以需上述兩種鹽水各100千克,150千克。
⑩ 解決奧數問題的基本與常用方法
1、配方法
所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。
3、換元法
換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。
4、判別式法與韋達定理
一元二次方程ax2+bx+c=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。
5、待定系數法
在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。
6、構造法
在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利於問題的解決。
7、反證法
反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然後,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。
反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行於/不平行於;垂直於/不垂直於;等於/不等於;大(小)於/不大(小)於;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。
歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發,否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。
8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用於計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯系起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
9、幾何變換法
在數學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至於無法下手的習題,可以藉助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利於對圖形本質的認識。
幾何變換包括:(1)平移;(2)旋轉;(3)對稱。
(1)直接推演法:直接從命題給出的條件出發,運用概念、公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法,這種解法叫直接推演法。
(2)驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。
(3)特殊元素法:用合適的特殊元素(如數或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。
(4)排除、篩選法:對於正確答案有且只有一個的選擇題,根據數學知識或推理、演算,把不正確的結論排除,餘下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法。
(5)圖解法:藉助於符合題設條件的圖形或圖象的性質、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。
(6)分析法:直接通過對選擇題的條件和結論,作詳盡的分析、歸納和判斷,從而選出正確的結果,稱為分析法。