導航:首頁 > 方法技巧 > 如何用配方法解數學

如何用配方法解數學

發布時間:2022-05-09 09:10:16

Ⅰ 初三數學的配方法怎麼

用配方法解一元二次方程的步驟:

①把原方程化為ax²+bx+c=0(a≠0)的形式;

②方程兩邊同除以二次項系數,使二次項系數為1,並把常數項移到方程右邊;

③方程兩邊同時加上一次項系數一半的平方;

④把左邊配成一個完全平方式,右邊化為一個常數;

⑤如果右邊是非負數,就可以進一步通過直接開平方法來求出它的解,如果右邊是一個負數,則判定此方程無實數解.

2x²−4x=1(配方法)

解:2x²−4x=1

Ⅱ 這道題該怎麼做呢

1、配方法
所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其 中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求 函數的極值和解析式等方面都經常用到它。

2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題 中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、 待定系數等等。

3、換元法
換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。

4、判別式法與韋達定理
一元二次方程ax2+bx+c=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。

5、待定系數法
在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。

6、構造法
在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題 等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互 相滲透,有利於問題的解決。

7、反證法
反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然後,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命 題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為: (1)反設;(2)歸謬;(3)結論。
反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行於/不平行於;垂直於 /不垂直於;等於/不等於;大(小)於/不大(小)於;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。
歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發,否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。

Ⅲ 數學配方法是什麼配方法的步驟有哪些

通過配成完全平方式的方法,得到一元二次方程的根的方法.這種解一元二次方程的方法稱為配方法,配方的依據是完全平方公式.同時也是數學一元二次方程中的一種解法。
配方法的步驟
1.轉化:將此一元二次方程化為ax^2+bx+c=0的形式(即一元二次方程的一般形式)化為一般形式
2.移項:常數項移到等式右邊
3.系數化1:二次項系數化為1
4.配方:等號左右兩邊同時加上一次項系數一半的平方
5.用直接開平方法求解 整理 (即可得到原方程的根)
代數式表示方法:注(^2是平方的意思.) ax^2+bx+c=a(x+b/2a)^2+(4ac-b^2)/4a=a[(x+m)^2-n^2]=a(x+m+n)*(x+m-n)

Ⅳ 數學怎麼配方

配方只適用於等式方程,配方就是把等式通過左右兩邊同時加或減去一個數,使這個等式的左邊的式子變成完全平方式的展開式,再因式分解就可以解方程了,也就是說配方法這個方法是根據完全平方公式:(a+或-b)平方=a平方+或-2ab+b平方 得出的。

比如你說的這個式子,不是等式就不能用配方法來解,我來舉個例子:

2a²-4a+2=0

a²-2a+1=0 (二次項系數要先化為1,方便使用配方法解題,所以等式兩邊同除二次項系數2)

(a-1)²=0 (上一步的式子發現左邊是完全平方式,所以根據完全平方公式,將a²-2a+1因式分解為(a-1)²,這樣就完成了配方)

a-1=0(最後等式兩邊同時開平方)

a=1(得到結果)

(4)如何用配方法解數學擴展閱讀:

在基本代數中,配方法是一種用來把二次多項式化為一個一次多項式的平方與一個常數的和的方法。這種方法是把以下形式的多項式化為以上表達式中的系數a、b、c、d和e,它們本身也可以是表達式,可以含有除x以外的變數。

配方法通常用來推導出二次方程的求根公式:我們的目的是要把方程的左邊化為完全平方。由於問題中的完全平方具有(x + y)2 = x2 + 2xy + y2的形式,可推出2xy = (b/a)x,因此y = b/2a。等式兩邊加上y2 = (b/2a)2,可得:

這個表達式稱為二次方程的求根公式。

Ⅳ 解數學方程的時候,如何判斷它下一部要用到配方法配方法究竟該怎麼用能舉一些例題並寫上詳細過程嗎

孞一元二次方程,運用十字相乘法有難度時,可考慮配方法。配方法可根據x的一次項系數2ab來湊b^2。

x^2一3x一1又3/4=0

一,

Ⅵ 初中數學配方法

配方法是解一元二次方程的一種解法,也即是把一個一元二次方程配成完全平方的形式,再開方即可。對於一個二次項是1的方程,配方的時候先把常數項移到方程右邊,然後方程兩邊加上一次項系數一半的平方,最後把左邊寫成完全平方,正確解出方程就可以了,如果二次項系數不是1,先把二次項系數化成1,然後和二次項是1的配方是一樣的,認真做題就可以了。

Ⅶ 配方法的公式是什麼

配方法是根據完全平方公式:(a+/-b)²=a²+/-2ab+b²得出的。

配方只適用於等式方程,就是把等式通過左右兩邊同時加或減去一個數,使這個等式的左邊的式子變成完全平方式的展開式,再因式分解就可以解方程了。

舉例:

2a²-4a+2=0

a²-2a+1=0(二次項系數要先化為1,方便使用配方法解題,所以等式兩邊同除二次項系數2)

(a-1)²=0(上一步的式子發現左邊是完全平方式,所以根據完全平方公式,將a²-2a+1因式分解為(a-1)²,這樣就完成了配方)

a-1=0(最後等式兩邊同時開平方)

a=1(得到結果)

(7)如何用配方法解數學擴展閱讀

配方法的應用

1、用於比較大小:

在比較大小中的應用,通過作差法最後拆項或添項、配成完全平方,使此差大於零(或小於零)而比較出大小。

2、用於求待定字母的值:

配方法在求值中的應用,將原等式右邊變為0,左邊配成完全平方式後,再運用非負數的性質求出待定字母的取值。

3、用於求最值:

「配方法」在求最大(小)值時的應用,將原式化成一個完全平方式後可求出最值。

4、用於證明:

「配方法」在代數證明中有著廣泛的應用,學習二次函數後還會知道「配方法」在二次函數中也有著廣泛的應用。

Ⅷ 數學的配方法怎麼配公式是什麼

若x²+kx+n,則配中間項系數一半的平方。就醬。至於後邊的數字,需要幾就加或減幾

Ⅸ 用配方法解下列方程x的平方+10x+16=0

綜述:通過計算可以得到X=-8 ,X=-2。X²+10x+16=0用配方法的解法如下:X²+10x+16=0

X²+10x+25-25+16=0即(X+5)²=9,(X+5)=+-3,所以得到:X=-8 ,X=-2。

數學:

數學是研究數量、結構、變化、空間以及信息等概念的一門學科。數學是人類對事物的抽象結構與模式進行嚴格描述的一種通用手段,可以應用於現實世界的任何問題,所有的數學對象本質上都是人為定義的。從這個意義上,數學屬於形式科學,而不是自然科學。不同的數學家和哲學家對數學的確切范圍和定義有一系列的看法。

Ⅹ 數學中一元二次方程配方的方法具體是什麼

1、定義:配方法就是將一個式子(包括有理式和超越式)或一個式子的某一部分通過恆等變形化為完全平方式或幾個完全平方式的和,這種方法稱之為配方法。這種方法常常被用到式子的恆等變形中,以挖掘題目中的隱含條件,是解題的有力手段之一。

2、解一元二次方程的配方法:在一元二次方程中,配方法其實就是把一元二次方程移項之後,在等號兩邊都加上一次項系數絕對值一半的平方。

3、 示例:【例】解方程:2x²+6x+6=4

4、分析:原方程可整理為:x²+3x+3=2,x²+2×3/2x=-1,x²+2×3/2x+(3/2)²=-1+(3/2)²,(x+3/2)²=5/4,x+3/2=±√5/2,即:x1,2=(-3±√5)/2。

閱讀全文

與如何用配方法解數學相關的資料

熱點內容
邁騰空調使用方法 瀏覽:509
陳皮膏怎麼熬制方法 瀏覽:390
取名字最簡單的方法 瀏覽:597
小兒哮喘的中醫中葯治療方法 瀏覽:647
表式血壓計使用方法 瀏覽:671
資產保值率的計算方法 瀏覽:257
小孩子快速瘦身方法大全 瀏覽:73
盜竊價格計算方法 瀏覽:366
足球場視野訓練方法 瀏覽:123
華為wifi6紅燈閃爍解決方法 瀏覽:976
衣服上有魚血用什麼方法洗 瀏覽:765
怎麼快速有效瘦腿方法 瀏覽:18
折尿布的方法視頻 瀏覽:963
年輕人血壓差大的解決方法 瀏覽:921
嫩生薑的食用方法視頻 瀏覽:953
用化學方法鑒別苯甲醇和苯乙酮 瀏覽:840
要學會調查研究方法 瀏覽:21
惠州除甲醛最佳方法 瀏覽:626
公路隧道火災探測方法研究 瀏覽:435
社會統計學有哪些統計檢驗方法 瀏覽:239