A. 解基本不等式 的方法 (竅門)
加油!!
1.不等式的基本性質:
性質1:如果a>b,b>c,那麼a>c(不等式的傳遞性).
性質2:如果a>b,那麼a+c>b+c(不等式的可加性).
性質3:如果a>b,c>0,那麼ac>bc;如果a>b,c<0,那麼acb,c>d,那麼a+c>b+d.
性質5:如果a>b>0,c>d>0,那麼ac>bd.
性質6:如果a>b>0,n∈N,n>1,那麼an>bn,且.
例1:判斷下列命題的真假,並說明理由.
若a>b,c=d,則ac2>bd2;(假)
若,則a>b;(真)
若a>b且ab<0,則;(假)
若a若,則a>b;(真)
若|a|b2;(充要條件)
命題A:a命題A:,命題B:0說明:本題要求學生完成一種規范的證明或解題過程,在完善解題規范的過程中完善自身邏輯思維的嚴密性.
a,b∈R且a>b,比較a3-b3與ab2-a2b的大小.(≥)
說明:強調在最後一步中,說明等號取到的情況,為今後基本不等式求最值作思維准備.
例4:設a>b,n是偶數且n∈N*,試比較an+bn與an-1b+abn-1的大小.
說明:本例條件是a>b,與正值不等式乘方性質相比在於缺少了a,b為正值這一條件,為此我們必須對a,b的取值情況加以分類討論.因為a>b,可由三種情況(1)a>b≥0;(2)a≥0>b;(3)0>a>b.由此得到總有an+bn>an-1b+abn-1.通過本例可以開始滲透分類討論的數學思想.
練習:
1.若a≠0,比較(a2+1)2與a4+a2+1的大小.(>)
2.若a>0,b>0且a≠b,比較a3+b3與a2b+ab2的大小.(>)
3.判斷下列命題的真假,並說明理由.
(1)若a>b,則a2>b2;(假) (2)若a>b,則a3>b3;(真)
(3)若a>b,則ac2>bc2;(假) (4)若,則a>b;(真)
若a>b,c>d,則a-d>b-c.(真).
B. 不等式的解題方法與技巧
不等式的解法:1、找出未知數的項、常數項,該化簡的化簡。2、未知數的項放不等號左邊,常數項移到右邊。3、不等號兩邊進行加減乘除運算。4、不等號兩邊同除未知數的系數,注意符號的改變。
1.符號:
不等式兩邊都乘以或除以一個負數,要改變不等號的方向。
2.確定解集:
比兩個值都大,就比大的還大;
比兩個值都小,就比小的還小;
比大的大,比小的小,無解;
比小的大,比大的小,有解在中間。
三個或三個以上不等式組成的不等式組,可以類推。
3.另外,也可以在數軸上確定解集:
把每個不等式的解集在數軸上表示出來,數軸上的點把數軸分成若干段,如果數軸的某一段上面表示解集的線的條數與不等式的個數一樣,那麼這段就是不等式組的解集。有幾個就要幾個。帶=號的,數軸上的點是實心的,反之,就是空心的。
用符號「>」「<」表示大小關系的式子,叫作不等式。用「≠」表示不等關系的式子也是不等式。
通常不等式中的數是實數,字母也代表實數,不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z )(其中不等號也可以為 中某一個),兩邊的解析式的公共定義域稱為不等式的定義域,不等式既可以表達一個命題,也可以表示一個問題。
一般地,用純粹的大於號「>」、小於號「<」表示大小關系的式子,叫作不等式。用「≠」表示不等關系的式子也是不等式。
其中,兩邊的解析式的公共定義域稱為不等式的定義域。
整式不等式兩邊都是整式(即未知數不在分母上)。
一元一次不等式:含有一個未知數(即一元),並且未知數的次數是1次(即一次)的不等式。如3-x>0
同理,二元一次不等式:含有兩個未知數(即二元),並且未知數的次數是1次(即一次)的不等式。
①如果x>y,那麼y<x;如果y<x,那麼x>y;(對稱性)
②如果x>y,y>z;那麼x>z;(傳遞性)
③如果x>y,而z為任意實數或整式,那麼x+z>y+z;(加法原則,或叫同向不等式可加性)
④ 如果x>y,z>0,那麼xz>yz;如果x>y,z<0,那麼xz<yz;[1] (乘法原則)
⑤如果x>y,m>n,那麼x+m>y+n;(充分不必要條件)
⑥如果x>y>0,m>n>0,那麼xm>yn;
⑦如果x>y>0,xn>yn(n為正數),xn<yn(n為負數);
或者說,不等式的基本性質的另一種表達方式有:
①對稱性;
②傳遞性;
③加法單調性,即同向不等式可加性;
④乘法單調性;
⑤同向正值不等式可乘性;
⑥正值不等式可乘方;
⑦正值不等式可開方;
⑧倒數法則。
如果由不等式的基本性質出發,通過邏輯推理,可以論證大量的初等不等式。
另,不等式的特殊性質有以下三種:
①不等式性質1:不等式的兩邊同時加上(或減去)同一個數(或式子),不等號的方向不變;
②不等式性質2:不等式的兩邊同時乘(或除以)同一個正數,不等號的方向不變;
③不等式性質3:不等式的兩邊同時乘(或除以)同一個負數,不等號的方向變。 總結:當兩個正數的積為定值時,它們的和有最小值;當兩個正數的和為定值時,它們的積有最大值。
C. 不等式的解法 初一
不等式的解法:
1、找出未知數的項、常數項,該化簡的化簡。
2、未知數的項放不等號左邊,常數項移到右邊。
3、不等號兩邊進行加減乘除運算。
4、不等號兩邊同除未知數的系數,注意符號的改變。
一般地,用純粹的大於號「>」、小於號「
通常不等式中的數是實數,字母也代表實數,不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z )(其中不等號也可以為 中某一個),兩邊的解析式的公共定義域稱為不等式的定義域,不等式既可以表達一個命題,也可以表示一個問題。
一般地,用純粹的大於號「>」、小於號「<」連接的不等式稱為嚴格不等式,用不小於號(大於或等於號)「≥」、不大於號(小於或等於號)「≤」連接的不等式稱為非嚴格不等式,或稱廣義不等式。總的來說,用不等號(<,>,≥,≤,≠)連接的式子叫做不等式。
其中,兩邊的解析式的公共定義域稱為不等式的定義域。
整式不等式:
整式不等式兩邊都是整式(即未知數不在分母上)。
一元一次不等式:含有一個未知數(即一元),並且未知數的次數是1次(即一次)的不等式。如3-X>0
同理:二元一次不等式:含有兩個未知數(即二元),並且未知數的次數是1次(即一次)的不等式。
D. 初中不等式組要點解法。
解一元一次不等式各個步驟的根據、做法、注意事項如下:
(1)去分母:
做法:不等式兩邊同乘分母的最小公倍數.
注意:①不要漏乘不含分母的項.
②分子是一個代數式時,分數線有括弧的作用,去分母後應作為一個整體加上括弧.
③不等式兩邊都乘同一個負數時,不等號方向要改變.
(2)去括弧:
做法:先去小括弧,再去中括弧,最後去大括弧.
注意:①一個數乘多項式時,不要漏乘括弧里的項.
②不要出現符號的錯誤.
(3)移項:
做法:把含有未知數的項移到不等式的一邊,其他項都移到不等式的另一邊.
注意:移項時該項要變號、不要漏項.
(4)合並同類項:
做法:系數相加,字母和字母的指數不變,把不等式化為ax>b或ax<b(a不等於0)的形式.
注意:符號問題.
(5)系數化為1:
做法:①不等式兩邊都乘未知數項系數(如果它是分數)的倒數.
②不等式兩邊都除以未知項系數.
注意:①不要把分子、分母搞顛倒.
②不等式兩邊都乘(或除以)同一個負數時,不等號方向要改變.
本題中不等式中不含有分母,因此只需要使用「移項,合並同類項,將變數的系數化為1」,最終就
可求出不等式的解集.
E. 解不等式技巧
(1)解一元一次不等式和解一元一次方程相類似,但要特別注意不等式的兩邊都乘以(或除以)同一個負數時,不等號的方向必須改變。
(2)解不等式組一般先分別求出不等式組中各個不等式的解集,再求出它們的公共部分,就得到不等式組的解集。
列一元一次不等式(組)解決實際問題,掌握解不等式應用題的步驟:
(1)找出實際問題的不等關系,設定未知數,列出不等式(組);
(2)解不等式(組);
(3)從不等式組的解集中求出符合題意的答案。
、一元一次方程的解法及其解的三種情況:
咳
(1)解一元一次方程的一般步驟是去分母、去括弧、移項、合並同類項和將未知數的系數化為1;
(2)最簡一元一次方程ax=b的解有以下三種情況:
①當 a≠0時,方程有且僅有一個解;
②當 a=0,b≠0時,方程無解;
③當 a=0,b=0時,方程有無窮多個解.
其他
數學的解題方法是隨著對數學對象的研究的深入而發展起來的。六年級的同學們很快就要小學畢業,中學的大門已經向我們敞開。為了能進一步學好數學,有必要掌握初中數學的特點尤其是解題方法。 下面介紹的解題方法,都是初中數學中最常用的,有些方法也是中學教學大綱要求掌握的。同樣這些方法也能給你們現在的學習有些幫助。請同學們把它作為資料好好保存,當然,以後全部學會弄懂,保存大腦當中再好不過了。
1、配方法
所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。
3、換元法
換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。
4、判別式法與韋達定理
一元二次方程ax2+bx+c=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。
5、待定系數法
在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。
6、構造法
在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利於問題的解決。
7、反證法
反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然後,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。
反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行於/不平行於;垂直於/不垂直於;等於/不等於;大(小)於/不大(小)於;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。
歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發,否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。
作者: 菁菁9383 2006-5-24 16:39 回復此發言
--------------------------------------------------------------------------------
2 初中數學解題方法
8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用於計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯系起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
9、幾何變換法
在數學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至於無法下手的習題,可以藉助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利於對圖形本質的認識。
幾何變換包括:(1)平移;(2)旋轉;(3)對稱。
10、客觀性題的解題方法
選擇題是給出條件和結論,要求根據一定的關系找出正確答案的一類題型。選擇題的題型構思精巧,形式靈活,可以比較全面地考察學生的基礎知識和基本技能,從而增大了試卷的容量和知識覆蓋面。
填空題是標准化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷准確迅速,有利於考查學生的分析判斷能力和計算能力等優點,不同的是填空題未給出答案,可以防止學生猜估答案的情況。
要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。
(1)直接推演法:直接從命題給出的條件出發,運用概念、公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法,這種解法叫直接推演法。
(2)驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。
(3)特殊元素法:用合適的特殊元素(如數或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。
(4)排除、篩選法:對於正確答案有且只有一個的選擇題,根據數學知識或推理、演算,把不正確的結論排除,餘下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法。
(5)圖解法:藉助於符合題設條件的圖形或圖象的性質、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。
(6)分析法:直接通過對選擇題的條件和結論,作詳盡的分析、歸納和判斷,從而選出正確的結果,稱為分析法。
希望能對您有所幫助
F. 不等式怎麼解
不等式的解法:
1、找出未知數的項、常數項,該化簡的化簡。
2、未知數的項放不等號左邊,常數項移到右邊。
3、不等號兩邊進行加減乘除運算。
4、不等號兩邊同除未知數的系數,注意符號的改變。
簡介:
不等式就是把兩個式子用大於號、小於號、不大於號或不小於號連接起來所得的式子。如:x2-1≥0, -5<0,
G. 不等式選講解題技巧
一、基礎知識
1.含有絕對值的不等式的解法:
(1)|f(x)|>a(a>0)等價於f(x)>a或f(x)<-a;
(2)|f(x)|<a(a>0)等價於-a<f(x)<a;
(3)形如|x-a|+|x-b|≤c,|x-a|+|x-b|≥c的不等式,一是可以利用零點法進行分段討論,二是利用絕對值的幾何意義求解,此法會更加簡單。
2.含有絕對值的不等式的性質:
|a|-|b|≤|a±b|≤|a|+|b|.
在利用這個性質解題時,一定要注意取「=」的條件是:不等式|a|-|b|≤|a+b|≤|a|+|b|,右側「=」成立的條件是ab≥0,左側「=」成立的條件是ab≤0且|a|≥|b|;不等式|a|-|b|≤|a-b|≤|a|+|b|,右側「=」成立的條件是ab≤0,左側「=」成立的條件是ab≥0且|a|≥|b|.
3.柯西不等式:
設a,b,c,d為實數,則(a^2+b^2)·(c^2+d^2)≥(ac+bd)^2,當且僅當ad=bc時等號成立.
二、2018年高考真題賞析
不等式選講在高考中的難度不大,但是對於基本概念要掌握牢固,防止計算錯誤。
H. 不等式的解題步驟是什麼
1、找出未知數的項、常數項,該化簡的化簡。
2、未知數的項放不等號左邊,常數項移到右邊。
2、不等號兩邊進行加減乘除運算。
3、不等號兩邊同除未知數的系數,注意符號的改變。
不等式基本性質
①如果x>y,那麼y<x;如果y<x,那麼x>y;(對稱性)
②如果x>y,y>z;那麼x>z;(傳遞性)
③如果x>y,而z為任意實數或整式,那麼x+z>y+z;(加法原則,或叫同向不等式可加性)
④ 如果x>y,z>0,那麼xz>yz;如果x>y,z<0,那麼xz<yz;(乘法原則)
⑤如果x>y,m>n,那麼x+m>y+n;(充分不必要條件)
⑥如果x>y>0,m>n>0,那麼xm>yn;
⑦如果x>y>0,那麼x的n次冪>y的n次冪(n為正數),x的n次冪<y的n次冪(n為負數)。
I. 解不等式(詳細步驟)
不等式就是用不等式符號把一個式子連接起來的算式;不等式和等式主要的區別就是他們的符號不同,一個是「=」,一個是「>、<、≥、≤」。但解不等式是完全可以用等式的性質來解。下面我就以一道例題來講一下解不等式的標准步驟。
第一步、如果是應用題就要先理清楚思路,然後列出不等式,最後再解不等式;如果是解不等式的計算題,就直接寫「解」,開始寫出計算過程。
(9)化簡初中不等式的解題方法與技巧擴展閱讀:
1、如果x>y,則y<x;如果y<x,則x>y(對稱性)
2、如果x>y,y>z;則x>z(傳遞性)
3、如果x>y,而z為任意實數或整式,則x+z>y+z;(同向不等式可加性)
4、如果x>y,z>0,則xz>yz;如果x>y,z<0,則xz<yz;(乘法原則)
5、如果x>y,m>n,則x+m>y+n;(充分不必要條件)
6、如果x>y>0,m>n>0,則xm>yn;
7、如果x>y>0,則x的n次冪>y的n次冪(n為正數),x的n次冪<y的n次冪(n為負數)。
8、不等式的基本性質的另一種表達方式有:①對稱性;②傳遞性;③加法單調性,即同向不等式可加性;④乘法單調性。
J. 怎樣簡化求解不等式
其實化簡不等式跟化簡等式差不多,唯一一點需要注意的是:不等式兩邊同時乘以或者除以一個大於0的數,不等式兩邊不改變符號,但如果不等式兩邊同時乘以或者除以一個小於0的數,不等式的符號要發生改變