導航:首頁 > 計算方法 > 對數指數函數計算方法

對數指數函數計算方法

發布時間:2022-04-26 19:32:22

㈠ 指數函數與對數函數的轉換公式

設指數函數為y=a^x

則轉換成對數函數是y=loga(x)

指數函數合和他相應的對數函數應該是互為反函數

(1+n)^7=10

可求得n=log7(10)-1

有時對數運算比指數運算來得方便,因此以指數形式出現的式子,可利用取對數的方法,把指數運算轉化為對數運算。

(1)對數指數函數計算方法擴展閱讀:

對數與指數之間的關系

當a大於0,a不等於1時,a的X次方=N等價於log(a)N=x

log(a^k)(M^n)=(n/k)log(a)(M)(n屬於R)

換底公式(很重要)

log(a)(N)=log(b)(N)/log(b)(a)=lnN/lna=lgN/lga

ln自然對數以e為底e為無限不循環小數(通常情況下只取e=2.71828)

lg常用對數以10為底

㈡ 對數函數的運演算法則

由指數和對數的互相轉化關系可得出:

1.兩個正數的積的對數,等於同一底數的這兩個數的對數的和,即,有一個對數函數和一個指數函數,它們互為反函數。

㈢ 指數和對數的計算公式啊,圖像性質,都是啥來著……

指數函數:一般地,函數y=ax(a>0,且a≠1)叫做指數函數,其中x是自變數。函數的定義域是R。
對數函數是指數函數的反函數,教材是根據互為反函數的兩個函數的圖象間關於直線y=x對稱的性質。
函數y=x^a叫做冪函數,其中x是自變數,a是常數(這里我們只討論a是有理數n的情況).

㈣ 對數函數的運算公式.

對數的運算性質

當a>0且a≠1時,M>0,N>0,那麼:

(1)log(a)(MN)=log(a)(M)+log(a)(N);

(2)log(a)(M/N)=log(a)(M)-log(a)(N);

(3)log(a)(M^n)=nlog(a)(M) (n∈R)

(4)log(a^n)(M)=(1/n)log(a)(M)(n∈R)

(5)換底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)

(6)a^(log(b)n)=n^(log(b)a)

設a=n^x則a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)

(7)對數恆等式:a^log(a)N=N;

log(a)a^b=b 證明:設a^log(a)N=X,log(a)N=log(a)X,N=X

(8)由冪的對數的運算性質可得(推導公式)

1.log(a)M^(1/n)=(1/n)log(a)M , log(a)M^(-1/n)=(-1/n)log(a)M

2.log(a)M^(m/n)=(m/n)log(a)M , log(a)M^(-m/n)=(-m/n)log(a)M

3.log(a^n)M^n=log(a)M , log(a^n)M^m=(m/n)log(a)M

4.log(以 n次根號下的a 為底)(以 n次根號下的M 為真數)=log(a)M ,

log(以 n次根號下的a 為底)(以 m次根號下的M 為真數)=(n/m)log(a)M

5.log(a)b×log(b)c×log(c)a=1

(4)對數指數函數計算方法擴展閱讀

對數公式是數學中的一種常見公式,如果a^x=N(a>0,且a≠1),則x叫做以a為底N的對數,記做x=log(a)(N),其中a要寫於log右下。其中a叫做對數的底,N叫做真數。通常我們將以10為底的對數叫做常用對數,以e為底的對數稱為自然對數。

參考資料對數公式_網路

㈤ 指數函數的運演算法則和對數函數的運演算法則有哪些

指數:加減沒什麼好說的,和多項式是一樣的。乘除法:分別是指數的相加和相減,例如e^x * e^2x=e^(x+2x)=e^3x,除法則為相減。
對數:其實對數和指數是逆著來的,指數乘法是指數相加,對數加法則就是相乘,減法則為相除。例如ln x+ln 2x=ln(x*2x)=ln(2x^2).

㈥ 對數函數和指數函數的運算方法有哪些

1對數的概念
如果a(a>0,且a≠1)的b次冪等於N,即ab=N,那麼數b叫做以a為底N的對數,記作:logaN=b,其中a叫做對數的底數,N叫做真數.
由定義知:
①負數和零沒有對數;
②a>0且a≠1,N>0;
③loga1=0,logaa=1,alogaN=N,logaab=b.
特別地,以10為底的對數叫常用對數,記作log10N,簡記為lgN;以無理數e(e=2.718 28…)為底的對數叫做自然對數,記作logeN,簡記為lnN.
2對數式與指數式的互化

式子名稱abN指數式ab=N(底數)(指數)(冪值)對數式logaN=b(底數)(對數)(真數)
3對數的運算性質

㈦ 急求指數函數和對數函數的運算公式

指數函數的運算公式:

1、

通常我們將以10為底的對數叫常用對數(common logarithm),並把log10N記為lgN。另外,在科學計數中常使用以無理數e=2.71828···為底數的對數,以e為底的對數稱為自然對數(natural logarithm),並且把logeN記為In N。

(7)對數指數函數計算方法擴展閱讀

同底的對數函數與指數函數互為反函數。

當a>0且a≠1時,ax=N。

x=㏒aN。

關於y=x對稱。

對數函數的一般形式為 y=㏒ax,它實際上就是指數函數的反函數(圖象關於直線y=x對稱的兩函數互為反函數),可表示為x=ay。

因此指數函數里對於a的規定(a>0且a≠1),右圖給出對於不同大小a所表示的函數圖形:關於X軸對稱、當a>1時,a越大,圖像越靠近x軸、當0<a<1時,a越小,圖像越靠近x軸。

可以看到,對數函數的圖形只不過是指數函數的圖形的關於直線y=x的對稱圖形,因為它們互為反函數。

閱讀全文

與對數指數函數計算方法相關的資料

熱點內容
編織披肩的方法和技巧 瀏覽:136
集體備課的步驟和方法微博 瀏覽:802
易拉罐做花籃簡單方法 瀏覽:706
如何抓住漲跌的方法 瀏覽:844
種草花常用方法 瀏覽:222
租戶如何對付物業最有效的方法 瀏覽:534
五級量化表分析方法 瀏覽:356
綁魚鉤的方法簡單圖解 瀏覽:782
石廠輸送帶的安裝方法 瀏覽:851
防爆棍正確使用方法 瀏覽:633
藍牙連接檢測設備方法 瀏覽:72
姬存希煥顏乳使用方法 瀏覽:787
鰻麥雞胸沙拉的食用方法 瀏覽:324
胸下肌鍛煉方法圖解 瀏覽:677
數字萬用表電容測量方法 瀏覽:591
電腦怎樣復原系統文件和設置方法 瀏覽:645
小產串門怎麼破解方法 瀏覽:440
電商拍照構圖方法和技巧 瀏覽:924
15乘以35簡便計算方法 瀏覽:803
老人尿失禁治療方法 瀏覽:796