Ⅰ 計算機進行數值計算時的高精度主要決定於什麼
主要決定於基本字長。
基本字長影響計算精度、指令功能。基本字長越長,計算精度越高。比如,基本字長是8位,那麼它可以表示最小的正數是0.0000001;而如果基本字長是16位,則可以表示0.000000000000001。顯然,後者的精度更高。
(1)數值計算方法精要擴展閱讀:
數值計算具有以下5個重要特徵:
1、數值計算的結果是離散的,並且一定有誤差,這是數值計算方法區別與解析法的主要特徵。
2、注重計算的穩定性。控制誤差的增長勢頭,保證計算過程穩定是數值計算方法的核心任務之一。
3、注重快捷的計算速度和高計算精度是數值計算的重要特徵。
4、注重構造性證明。
5、數值計算主要是運用有限逼近的的思想來進行誤差運算。
Ⅱ 什麼是數值計算
數值計算指有效使用數字計算機求數學問題近似解的方法與過程,以及由相關理論構成的學科。
數值計算主要研究如何利用計算機更好的解決各種數學問題,包括連續系統離散化和離散形方程的求解,並考慮誤差、收斂性和穩定性等問題。從數學類型分,數值運算的研究領域包括數值逼近、數值微分和數值積分、數值代數、最優化方法、常微分方程數值解法、積分方程數值解法、偏微分方程數值解法、計算幾何、計算概率統計等。
隨著計算機的廣泛應用和發展,許多計算領域的問題,如計算物理、計算力學、計算化學、計算經濟學等都可歸結為數值計算問題。
(2)數值計算方法精要擴展閱讀:
構造數值積分公式最通常的方法是用積分區間上的n 次插值多項式代替被積函數,由此導出的求積公式稱為插值型求積公式。特別在節點分布等距的情形稱為牛頓-柯茨公式,例如梯形公式與拋物線公式就是最基本的近似公式。但它們的精度較差。
龍貝格演算法是在區間逐次分半過程中,對梯形公式的近似值進行加權平均獲得准確程度較高的積分近似值的一種方法,它具有公式簡練、計算結果准確、使用方便、穩定性好等優點,因此在等距情形宜採用龍貝格求積公式。
當用不等距節點進行計算時,常用高斯型求積公式計算,它在節點數目相同情況下,准確程度較高,穩定性好,而且還可以計算無窮積分。數值積分還是微分方程數值解法的重要依據。許多重要公式都可以用數值積分方程導出。
Ⅲ 數值計算方法
1. 數值計算的結果是離散的,並且一定有誤差,這是數值計算方法區別與解析法的主要特徵。 2. 注重計算的穩定性。控制誤差的增長勢頭,保證計算過程穩定是數值計算方法的核心任務之一。 3. 注重快捷的計算速度和高計算精度是數值計算的重要特徵。 4. 注重構造性證明。 5.數值計算主要是運用MATLAB這個數學軟體來解決實際的問題 6.數值計算主要是運用有限逼近的的思想來進行誤差運算數值積分
Ⅳ 計算機 進行數值計算時的高精準度主要取決於
機器位數和小數處理方法。
Ⅳ 數值計算方法的直接迭代
直接法利用固定次數的步驟求出問題的解。這些方式包括求解線性方程組的高斯消去法及QR演算法(英語:QR algorithm),求解線性規劃的單純形法等。若利用無限精度算術的計算方式,有些問題可以得到其精確的解。不過有些問題不存在解析解(如五次方程),也就無法用直接法求解。在電腦中會使用浮點數進行運算,在假設運算方式穩定的前提下,所求得的結果可以視為是精確解的近似值。
迭代法是通過從一個初始估計出發尋找一系列近似解來解決問題的數學過程。和直接法不同,用迭代法求解問題時,其步驟沒有固定的次數,而且只能求得問題的近似解,所找到的一系列近似解會收斂到問題的精確解。會利用審斂法來判別所得到的近似解是否會收斂。一般而言,即使使用無限精度算術的計算方式,迭代法也無法在有限次數內得到問題的精確解。
在數值分析中用到迭代法的情形會比直接法要多。例如像牛頓法、二分法、雅可比法、廣義最小殘量方法(GMRES)及共軛梯度法等。在計算矩陣代數中,大型的問題一般會需要用迭代法來求解。
Ⅵ 求數值計算方法在某個專業中(機械專業,控制工程等等)的應用論文一篇
黃土路基溫度場數值分析掌
王鐵行劉明振魯潔
(西安建築科技大學土木工程學院陝西西安710Q55)
摘要基於黃土高原的氣候特徵及現有文獻,提出了模擬黃土高原氣候因素的地表溫度場數值
計算方法,並模擬氣溫、輻射量、濕度等邊界條件,經過對黃土高原邊界因素的分析研究,確定了適
於黃土高原的模型參數。對西安和延安兩地地表溫度的計算結果與實測結果的對比分析表明了文內方
法的合理性,分析了黃土路基溫度場隨氣候的動態變化。探討了溫度梯度對非飽和黃土路基穩定性的
影響,表明外界條件的晝夜變化對路基路面溫度的影響不超過30 cm。
關鍵詞黃土溫度氣候路基數值分析
1引言
路基直接受到諸如輻射、蒸發、濕度、風速等氣
候因素及路基地表形態的影響,其土體溫度場是變化
的。溫度變化引起水分遷移使含水量變化.^引,並
引起土體凍融相變使水份向凍融界面運移。溫度變化
導致工程土體濕度場變化,進一步導致強度場變
化¨卜p1,常常導致一系列病害的發生。路基工程橫
向熱差異問題及其導致的病害問題,即工程中的陰陽
坡問題,主要與路基陰、陽坡面受到的輻射等氣候因
素的差異有關。這方面研究成果目前較少。本文模擬
黃土高原氣候變化過程及路基地表形態,就黃土路基
溫度場的數值計算方法及溫度場的變化過程進行
探討。
2黃土路基溫度場數值模型及參數取值
輻射、蒸發、濕度、風速等因素隨時間變化。黃
土路基溫度場屬非穩態相變溫度場,其基本方程為
([K]+訾)四={P|t+岩四一山(1)
式中[K]為溫度剛度矩陣;[Ⅳ]為非穩態變溫矩
陣;{r}為溫度值的列向量;△f為時間步長;{P}為合
成列陣,下標f為時間。
{P}是綜合考慮相變、輻射、對流、蒸發的列
陣。輻射列陣包括太陽輻射列陣、大地輻射列陣和大
氣輻射列陣。各個列陣參見有關文獻∞1。參考有關文
獻¨卜歸1,取黃土地表大地輻射黑度為0.68,取黃土
地表對太陽輻射的吸收率為O.78,瀝青路面對太陽
輻射的吸收率為0.90。大氣輻射黑度z:與大地對大氣
輻射的吸收率口』的取值比較復雜,其值與氣溫、雲
量、濕度、粉塵含量等因素有關,氣溫和濕度不僅可
以反映空氣中水蒸氣的多少,也可以反映雲量水平
高低。
本文選取氣溫和濕度作為氣候的特徵指標確定Z:
與盧:經過分析,並考慮到計算中z:與盧7的乘積作為
一整體,得到z:盧』確定關系式
Z2盧』=,+0.006t+0.004Sd (2)
式中Z為氣溫,』(℃);s。為相對濕度,(%);廠
拳國家自然科學基金項目(50308024)。
王鐵行,男,教授。
為綜合考慮其他因素影響的區域性系數,西安取值
0.20,延安取值0.25。西安和延安地區每月平均氣溫
及相對濕度見表l。
表1氣溫和相對濕度表
』 以東西走向路基為例,路基邊坡坡率1:1.5,依
據文獻[10]方法計算得到路基南坡面和北坡面的
坡面系數如表2所示。
表2南坡面和北坡面的坡面系數表
萬方數據
·2· 全國中文核心期刊路基工程2008年第3期(總第138期)
3計算結果及分析
採用前文方法,模擬當地氣候條件對西安和延安
地表溫度進行計算,計算及實測得到平均地表溫度隨
時間變化,計算與實測結果較為一致。
以西安地區東西走向路堤為例對路基溫度場進行
計算分析。路基邊坡坡率1:1.5,寬度10 m,高度4
m,瀝青路面。計算得到不同月份路基日平均溫度分
布如圖1、圖2所示。
{
越
磺
溫度,℃ 溫度,℃
O 10 20 30 0 10 20 30
2
4
鑫6
聰8
10
12
2
逞4
嫠6
8
10
12
2
{4
越
璐6
8
lO
12
溫度,℃
0 10 20 30
2
乓4
蓑6
8
lO
12
2
逞4
嫠6
8
10
12
溫度,℃
0 lO 20 30
圖1路基陰坡面溫度隨深度分布圖
溫度,℃
O 10 20 30
溫度,℃
0 10 20 30
{
魁
聰
{
越
賺
溫度,℃
溫度,℃
O lO 20
圖2路基陽坡面溫度隨深度分布圖
圖l為路基陰坡面平均溫度隨深度分布;圖2為
路基陽坡面平均溫度隨深度分布。圖中顯示不論在陰
坡面還是陽坡面下,溫度沿深度分布均隨季節變化。
計算表明,冬季淺層土體平均溫度較低,3 m深度范
圍沿深度存在明顯的增溫梯度。因非飽和土體水分具
有從高溫區域向低溫區域遷移的特點,在溫度梯度作
用下,冬季土體水分不斷向地表遷移。當地表土體凍
結時,源源不斷地遷移水分逐漸凍結,在凍結層發生
凍脹,甚至出現高含冰凍土。凍結層春季融化後因強
度急劇降低,可造成溜方等病害,或形成疏鬆層,易
於遭受雨水沖刷。夏季淺層土體平均溫度較高,3 m
深度范圍沿深度存在明顯的負溫梯度,負溫梯度具有
抑制蒸發勢導致土體水分向地表遷移蒸發。
比較圖1和圖2看出,陰坡面和陽坡面的溫度分
布在夏季差別小,冬季差別大。夏至差別最小,冬至
差別最大。陽坡面和陰坡面在冬季出現較大溫差,易
於導致陰陽坡面出現不同凍結狀態。圖中顯示出西安
地區陽坡面一年四季不凍結,而陰坡面在冬季凍結。
在黃土高原北部寒冷地區則出現凍結深度差異等
問題。
圖3給出了路面下深度2 m和4 m處路基橫向溫
度分布。圖中顯示出,7月份路基溫度呈吸熱型,越
靠近坡面,溫度越高,溫度梯度越大。而1月份路基
溫度呈放熱型,越靠近坡面,溫度越低,溫度梯度越
大。路基中部區域溫度橫向變化較小,但隨著深度增
加,7月份2 m深度處的溫度高於4 m深度處。1月
份2 m深度處的溫度卻小於4 m深度處。
ZU
\ J6 /
、、、.—.,.一——,———.../
12
囂s
贈4
距中心距離,cm
(a)7月(深度2m)
p刪
\ 越16 /
\ 望!至。/
8
4
一10—8—6—4—2 0 2 4 6 8 10
距中心距離,cm
(b)7月(深度4m)
距中心距離/c「 距中心距離,cm
(c)1月(深度2m) (d)1月(深度4m)
圖3路基橫向熱分布圖
黃土路基溫度場隨氣候的動態變化,特別是溫度
梯度的存在,對考慮溫度影響確定非飽和土路基滲透
系數、確定非飽和土水勢、進行非飽和土路基水分場
計算是有價值的。
上述對路基日平均溫度進行了計算分析。為了進
一步探討晝夜路基溫度差異,將每日分為兩個時間段
進行計算。計算得到路基路面白天平均溫度分布和路
基路面晚上平均溫度分布。表面因直接承受晝夜外界
條件變化,白天和晚上溫度差別較大。這一差別隨季
節是變化的,7月份差別最大,超過30℃,1月份最
小,約為7℃。但在深度30 cm處,白天平均溫度和
晚上平均溫度幾乎是相同的,其差別可忽略不計。因
此,外界條件的晝夜變化對路面溫度的影響不超過
30 cm。當深度超過30 cm時,可不考慮外界條件晝
夜變化影響。當深度小於30 cm時,宜考慮晝夜比較
萬方數據
鄭健龍等:膨脹土路基溫度現場觀測分析與研究·3·
膨脹土路基溫度現場觀測分析與研究木
鄭健龍繆偉
(長沙理工大學公路工程學院湖南長沙410076)
摘要為了研究自然氣候條件下膨脹土路基內部土體溫度變化規律,在某膨脹土路堤內部進行
了一年多的現場跟蹤觀測,分析了不同位置土體溫度隨時間的變化規律,發現了不同深度溫度變化滯
後性和溫度場分布季節差異性,並對其特點和形成原因進行描述和解釋。根據溫度變幅標志,推測出
了當地膨脹土氣候劇烈影響深度,可作為相關工程處治的參考依據。
關鍵詞膨脹土溫度現場觀測氣候影響深度
1前言
膨脹土是一種粘粒成分主要由親水性礦物(蒙脫
石、伊利石)組成的高液限粘土,其主要特徵表現為
吸水顯著膨脹軟化,失水急劇干縮開裂。大量研究表
明,氣候干濕循環作用是引起膨脹土路基淺層破壞的
根本原因,因此,土水關系成為膨脹土研究的重點和
熱點,而對溫度這一同樣受氣候直接影響的指標則沒
有引起足夠的重視。
從熱力學理論和非飽和土理論來看,溫度對非飽
和土的性質影響很大。首先,非飽和土的吸力一般定
義為土中水的自由能狀態,溫度升高,土體水分勢能
增加,吸力降低,抗剪強度降低.。其次,土體中濕
度場和溫度場是耦合作用、相互影響的。也就是說土
壤水分的運動不僅僅是因含水量的分布不均衡引起
的,溫度梯度的存在也是驅使水分遷移的原因。由此
可見,研究膨脹土路基中的溫度在不同氣候條件下的
變化規律,具有極其重要的理論意義和工程實際
意義。
曩交通部西部交通建設科技項目(2002 318000)。
鄭健龍,男,教授,博士,博士生導師。
2觀測方案的設計和實施
在已進行的非飽和土溫度變化規律研究中,楊果
林等通過膨脹土路基模型試驗,得到了在積水、日
照、陰天和降雨4種模擬氣候條件下,膨脹土路基中
溫度的變化規律舊-。劉炳成等在多種條件下,對非飽
和多孔土壤中溫度和濕度分布的動態特性進行了室內
試驗研究,分析了溫度效應對水分運移的影響」J。為
了真實、准確地了解膨脹土路基在自然氣候條件下,
其內部土體溫度變化規律,本次研究採取了現場跟蹤
觀測。觀測地點設在南(寧)友(誼關)路寧明段
Al(2+412斷面,位於項目組「土工格柵加筋包邊處
治方案」試驗路段內,格柵包邊寬度為3.O m,路堤
填料採用寧明灰黑色膨脹頁岩風化破碎土HJ,共埋設
了溫度感測器、含水量探頭、土壓力盒、水平位移
計、剖面沉降管,垂直測斜管共6種觀測元件。其
中,為了保證觀測的精度和穩定性,選用了長沙金碼
高科公司生產的JMT一36型溫度感測器,其主要技術
指標為:測量范圍一20—110℃,精度+O.5℃,線
性誤差+0.3℃。溫度感測器沿橫向布置了7個,距
邊坡水平距離分別為0.4 m、0.9 m、1.5 m、2.2 m、
3.O m、4.0 m和13.0 m,距路基頂面的距離均為3.5
大的溫度變化。土表面因其吸熱性小於瀝青路面,外
界條件的晝夜變化引起路基溫度的變化小於瀝青路參考文獻:
面,故可認為,外界條件的晝夜變化對路基溫度的影[1】王鐵行,陸海紅·溫度影響下的非飽和黃土水分遷移問題探討·岩土力
響也不超過30 cm。Ⅲ蓋二=』0,:∑翟:%蝌,.w.鼬。一~。。。。。m。
4 結論(33):483—500.
溫度變化可導致黃土路基出現一系列病害問題, [3]黨進謙,李靖·含水量對非飽和黃土強度的影響·西北農業大學學報,
特別是陰陽坡及其導致的病害問題,主要與陰、陽坡[4]磊Z芸茹茹五學研究中的若干新趨勢.岩土工程學報』200l。
面受到的氣候因素的差異有關。本文基於黃土高原的23(1):l-13.
氣候特徵及現有文獻,提出了模擬黃土高原氣候因素[5]劉保健'支喜蘭,謝永利等·公路工程中黃土濕陷性問題分析·中國公
的地表溫度場數值計算方法,並模擬氣溫、輻射量、[6]譬盞≮=:蓋翟=二310 N嶇N。耐。d A蒯岫。‰訓
濕度等邊界條件,經過對黃土高原邊界因素的分析研一Te。二咖。i:』Qi。ghai—ibet之。一.萎ien。i。。h抵二E,2002,45
究,確定了適於黃土高原的模型參數。進一步對西安(4):433一「3.
塑堊耋要嫠筻鎏薴結量復窶型笙墨竺翌皆坌要耆翌! 罱蠢羹言:妻言蓮囂篡囂i艾奏≥誓蓄蠱釜}土i翥,』
本文方法的合理性,對東西走向坡面的計算結果揭示高蘭霸:薪』:『纂譽?葫籍桑蕃劃茹茹二;度場的數值模型.重
了陰陽坡面地表溫度的差異性,對陰陽坡面地表溫度慶大學學報,2003,26(6):66—69.
的差異性隨季節的變化規律進行了探討。外界條件的[10]王鐵行·岳彩坤·模擬氣候因素的黃土路基地表溫度數值分析.路基
晝夜變化對路基路面溫度的影響不超過30 cm。
工程-2008t(1):1也收稿日期:2007一04—20
萬方數據
Ⅶ 求數值計算方法 第三版 李有法 朱建新 課後答案
數值計算方法如下:
1、有限元法:有限元方法的基礎是變分原理和加權餘量法,其基本求解思想是把計算域劃分為有限個互不重疊的單元,在每個單元內,選擇一些合適的節點作為求解函數的插值點,將微分方程中的變數改寫成由各變數或其導數的節點值與所選用的插值函數組成的線性表達式。
藉助於變分原理或加權餘量法,將微分方程離散求解。採用不同的權函數和插值函數 形式,便構成不同的有限元方法。
在有限元方法中,把計算域離散剖分為有限個互不重疊且相互連接的單元,在每個單元內選擇基函數,用單元基函數的線形組合來逼近單元中的真解,整個計算域上總體的基函數可以看為由每個單元基函數組成的,則整個計算域內的解可以看作是由所有單元 上的近似解構成。
根據所採用的權函數和插值函數的不同 ,有限元方法也分為多種計算格式。從權函數的選擇來說,有配置法、矩量法、最小二乘法和伽遼金法,從計算單元網格的形狀來劃分,有三角形網格、四邊形網格和多邊形網格,從插值函數的精度來劃分,又分為線性插值函數和高次插值函數等。不同的組合 同樣構成不同的有限元計算格式。
2、多重網格方法:多重網格方法通過在疏密不同的網格層上進行迭代,以平滑不同頻率的誤差分量。具有收斂速度快,精度高等優點。
多重網格法基本原理微分方程的誤差分量可以分為兩大類,一類是頻率變化較緩慢的低頻分量;另一類是頻率高,擺動快的高頻分量。
一般的迭代方法可以迅速地將擺動誤差衰減,但對那些低頻分量,迭代法的效果不是很顯著。高頻分量和低頻分量是相對的,與網格尺度有關,在細網格上被視為低頻的分量,在粗網格上可能為高頻分量。
多重網格方法作為一種快速計算方法,迭代求解由偏微分方程組離散以後組成的代數方程組,其基本原理在於一定的網格最容易消除波長與網格步長相對應的誤差分量。
該方法採用不同尺度的網格,不同疏密的網格消除不同波長的誤差分量,首先在細網格上採用迭代法,當收斂速度變緩慢時暗示誤差已經光滑,則轉移到較粗的網格上消除與該層網格上相對應的較易消除的那些誤差分量,這樣逐層進行下去直到消除各種誤差分量,再逐層返回到細網格上。
3、有限差分方法:有限差分方法(FDM)是計算機數值模擬最早採用的方法,至今仍被廣泛運用。該方法將求解域劃分為差分網格,用有限個網格節點代替連續的求解域。
有限差分法以Taylor級數展開等方法,把控制方程中的導數用網格節點上的函數值的差商代替進行離散,從而建立以網格節點上的值為未知數的代數方程組。該方法是一種直接將微分問題變為代數問題的近似數值解法,數學概念直觀,表達簡單,是發展較早且比較成熟的數值方法。
對於有限差分格式,從格式的精度來劃分,有一階格式、二階格式和高階格式。從差分的空間形式來考慮,可分為中心格式和逆風格式。考慮時間因子的影響,差分格式還可以分為顯格式、隱格式、顯隱交替格式等。
構造差分的方法有多種形式,目前主要採用的是泰勒級數展開方法。其基本的差分表達式主要有三種形式:
一階向前差分、一階向後差分、一階中心差分和二階中心差分等,其中前兩種格式為一階計算精度,後兩種格式為二階計算精度。通過對時間和空間這幾種不同差分格式的組合,可以組合成不同的差分計算格式。
4、有限體積法:有限體積法(Finite Volume Method)又稱為控制體積法。其基本思路是:將計算區域劃分為一系列不重復的控制體積,並使每個網格點周圍有一個控制體積;將待解的微分方程對每一個控制體積積分,便得出一組離散方程。其中的未知數是網格點上的因變數的數值。
為了求出控制體積的積分,必須假定值在網格點之間的變化規律,即假設值的分段的分布的分布剖面。從積分區域的選取方法看來,有限體積法屬於加權剩餘法中的子區域法;從未知解的近似方法看來,有限體積法屬於採用局部近似的離散方法。簡言之,子區域法屬於有限體積發的基本方法。
有限體積法的基本思路易於理解,並能得出直接的物理解釋。離散方程的物理意義,就是因變數在有限大小的控制體積中的守恆原理,如同微分方程表示因變數在無限小的控 制體積中的守恆原理一樣。
限體積法得出的離散方程,要求因變數的積分守恆對任意一組控制體積都得到滿足,對整個計算區域,自然也得到滿足。這是有限體積法吸引人的優點。有一些離散方法,例如有限差分法,僅當網格極其細密時,離散方程才滿足積分守恆。
而有限體積法即使在粗網格情況下,也顯示出准確的積分守恆。就離散方法而言,有限體積法可視作有限單元法和有限差分法的中間物。有限單元法必須假定值在網格點之間的變化規律(既插值函數),並將其作為近似解。
有限差分法只考慮網格點上的數值而不考慮值在網格點之間如何變化。有限體積法只尋求的結點值 ,這與有限差分法相類似;但有限體積法在尋求控制體積的積分時,必須假定值在網格點之間的分布,這又與有限單元法相類似。
在有限體積法中,插值函數只用於計算控制體積的積分,得出離散方程之後,便可忘掉插值函數;如果需要的話,可以對微分方程 中不同的項採取不同的插值函數。
5、近似求解的誤差估計方法:近似求解的誤差估計方法共有三大類:單元餘量法,通量投射法及外推法。
單元餘量法廣泛地用於以FEM離散的誤差估計之中,它主要是估計精確運算元的餘量,而不是整套控制方程的全局誤差。
這樣就必須假定周圍的單元誤差並不相互耦合,誤差計算採用逐節點演算法進行。單元餘量法的各種不同做法主要來自對單元誤差方程的邊界條件的不同處理辦法。基於此,該方法能夠有效處理局部的殘餘量,並能成功地用於網格優化程序。
通量投射法的基本原理來自一個很簡單的事實:精確求解偏微分方程不可能有不連續的微分,而近似求解卻可以存在微分的不連續,這樣產生的誤差即來自微分本身,即誤差為系統的光滑求解與不光滑求解之差。該方法與單元餘量法一樣,對節點誤差採用能量范數,故也能成功地用於網格優化程序。
單元餘量法及通量投射法都局限於局部的誤差計算(採用能量范數),誤差方程的全局特性沒有考慮。另外計算的可行性(指誤差估計方程的計算時間應小於近似求解計算時間)不能在這兩種方法中體現,因為獲得的誤差方程數量,階數與流場控制方程相同。
外推是指採用後向數值誤差估計思想由精確解推出近似解的誤差值。各類文獻中較多地採用Richardson外推方法來估計截斷誤差。無論是低階還是高階格式,隨著網格的加密數值計算結果都會趨近於准確解。但由於計算機內存與計算時間的限制,實際上不能採用這種網格無限加密的辦法。
6、多尺度計算方法:近年來發展的多尺度計算方法包括均勻化方法、非均勻化多尺度方法、以及小波數值均勻化方法、多尺度有限體積法、多尺度有限元法等。
該方法通過對單胞問題的求解,把細觀尺度的信息映射到宏觀尺度上,從而推導出宏觀尺度上的均勻化等式,即可在宏觀尺度上求解原問題。均勻化方法在很多科學和工程應用中取得了巨大成功,但這種方法建立在系數細觀結構周期性假設的基礎上,因此應用范圍受到了很大限制。
鄂維南等提出的非均勻化多尺度方法,是構造多尺度計算方法的一般框架。該方法有兩個重要的組成部分:基於宏觀變數的整體宏觀格式和由微觀模型來估計缺少的宏觀數據,多尺度問題的解通過這兩部分共同得到。
該方法基於多分辨分析,在細尺度上建立原方程的離散運算元,然後對離散運算元進行小波變換,得到了大尺度上的數值均勻化運算元。此方法在大尺度上解方程,大大地減小了計算時間。
該法在宏觀尺度上進行網格剖分,然後通過在每個單元里求解細觀尺度的方程(構造線性或者振盪的邊界條件)來獲得基函數。從而把細觀尺度的信息反應到有限元法的基函數里,使宏觀尺度的解包含了細觀尺度的信息。但多尺度有限元方法在構造基函數時需要較大的計算量。
藉助於變分原理或加權餘量法,將微分方程離散求解。採用不同的權函數和插值函數 形式,便構成不同的有限元方法。
在有限元方法中,把計算域離散剖分為有限個互不重疊且相互連接的單元,在每個單元內選擇基函數,用單元基函數的線形組合來逼近單元中的真解,整個計算域上總體的基函數可以看為由每個單元基函數組成的,則整個計算域內的解可以看作是由所有單元 上的近似解構成。
根據所採用的權函數和插值函數的不同 ,有限元方法也分為多種計算格式。從權函數的選擇來說,有配置法、矩量法、最小二乘法和伽遼金法,從計算單元網格的形狀來劃分,有三角形網格、四邊形網格和多邊形網格,從插值函數的精度來劃分,又分為線性插值函數和高次插值函數等。不同的組合 同樣構成不同的有限元計算格式。
2、多重網格方法:多重網格方法通過在疏密不同的網格層上進行迭代,以平滑不同頻率的誤差分量。具有收斂速度快,精度高等優點。
多重網格法基本原理微分方程的誤差分量可以分為兩大類,一類是頻率變化較緩慢的低頻分量;另一類是頻率高,擺動快的高頻分量。
一般的迭代方法可以迅速地將擺動誤差衰減,但對那些低頻分量,迭代法的效果不是很顯著。高頻分量和低頻分量是相對的,與網格尺度有關,在細網格上被視為低頻的分量,在粗網格上可能為高頻分量。
多重網格方法作為一種快速計算方法,迭代求解由偏微分方程組離散以後組成的代數方程組,其基本原理在於一定的網格最容易消除波長與網格步長相對應的誤差分量。
該方法採用不同尺度的網格,不同疏密的網格消除不同波長的誤差分量,首先在細網格上採用迭代法,當收斂速度變緩慢時暗示誤差已經光滑,則轉移到較粗的網格上消除與該層網格上相對應的較易消除的那些誤差分量,這樣逐層進行下去直到消除各種誤差分量,再逐層返回到細網格上。
3、有限差分方法:有限差分方法(FDM)是計算機數值模擬最早採用的方法,至今仍被廣泛運用。該方法將求解域劃分為差分網格,用有限個網格節點代替連續的求解域。
有限差分法以Taylor級數展開等方法,把控制方程中的導數用網格節點上的函數值的差商代替進行離散,從而建立以網格節點上的值為未知數的代數方程組。該方法是一種直接將微分問題變為代數問題的近似數值解法,數學概念直觀,表達簡單,是發展較早且比較成熟的數值方法。
對於有限差分格式,從格式的精度來劃分,有一階格式、二階格式和高階格式。從差分的空間形式來考慮,可分為中心格式和逆風格式。考慮時間因子的影響,差分格式還可以分為顯格式、隱格式、顯隱交替格式等。
構造差分的方法有多種形式,目前主要採用的是泰勒級數展開方法。其基本的差分表達式主要有三種形式:
一階向前差分、一階向後差分、一階中心差分和二階中心差分等,其中前兩種格式為一階計算精度,後兩種格式為二階計算精度。通過對時間和空間這幾種不同差分格式的組合,可以組合成不同的差分計算格式。
4、有限體積法:有限體積法(Finite Volume Method)又稱為控制體積法。其基本思路是:將計算區域劃分為一系列不重復的控制體積,並使每個網格點周圍有一個控制體積;將待解的微分方程對每一個控制體積積分,便得出一組離散方程。其中的未知數是網格點上的因變數的數值。
為了求出控制體積的積分,必須假定值在網格點之間的變化規律,即假設值的分段的分布的分布剖面。從積分區域的選取方法看來,有限體積法屬於加權剩餘法中的子區域法;從未知解的近似方法看來,有限體積法屬於採用局部近似的離散方法。簡言之,子區域法屬於有限體積發的基本方法。
有限體積法的基本思路易於理解,並能得出直接的物理解釋。離散方程的物理意義,就是因變數在有限大小的控制體積中的守恆原理,如同微分方程表示因變數在無限小的控 制體積中的守恆原理一樣。
限體積法得出的離散方程,要求因變數的積分守恆對任意一組控制體積都得到滿足,對整個計算區域,自然也得到滿足。這是有限體積法吸引人的優點。有一些離散方法,例如有限差分法,僅當網格極其細密時,離散方程才滿足積分守恆。
而有限體積法即使在粗網格情況下,也顯示出准確的積分守恆。就離散方法而言,有限體積法可視作有限單元法和有限差分法的中間物。有限單元法必須假定值在網格點之間的變化規律(既插值函數),並將其作為近似解。
有限差分法只考慮網格點上的數值而不考慮值在網格點之間如何變化。有限體積法只尋求的結點值 ,這與有限差分法相類似;但有限體積法在尋求控制體積的積分時,必須假定值在網格點之間的分布,這又與有限單元法相類似。
在有限體積法中,插值函數只用於計算控制體積的積分,得出離散方程之後,便可忘掉插值函數;如果需要的話,可以對微分方程 中不同的項採取不同的插值函數。
5、近似求解的誤差估計方法:近似求解的誤差估計方法共有三大類:單元餘量法,通量投射法及外推法。
單元餘量法廣泛地用於以FEM離散的誤差估計之中,它主要是估計精確運算元的餘量,而不是整套控制方程的全局誤差。
這樣就必須假定周圍的單元誤差並不相互耦合,誤差計算採用逐節點演算法進行。單元餘量法的各種不同做法主要來自對單元誤差方程的邊界條件的不同處理辦法。基於此,該方法能夠有效處理局部的殘餘量,並能成功地用於網格優化程序。
通量投射法的基本原理來自一個很簡單的事實:精確求解偏微分方程不可能有不連續的微分,而近似求解卻可以存在微分的不連續,這樣產生的誤差即來自微分本身,即誤差為系統的光滑求解與不光滑求解之差。該方法與單元餘量法一樣,對節點誤差採用能量范數,故也能成功地用於網格優化程序。
單元餘量法及通量投射法都局限於局部的誤差計算(採用能量范數),誤差方程的全局特性沒有考慮。另外計算的可行性(指誤差估計方程的計算時間應小於近似求解計算時間)不能在這兩種方法中體現,因為獲得的誤差方程數量,階數與流場控制方程相同。
外推是指採用後向數值誤差估計思想由精確解推出近似解的誤差值。各類文獻中較多地採用Richardson外推方法來估計截斷誤差。無論是低階還是高階格式,隨著網格的加密數值計算結果都會趨近於准確解。但由於計算機內存與計算時間的限制,實際上不能採用這種網格無限加密的辦法。
6、多尺度計算方法:近年來發展的多尺度計算方法包括均勻化方法、非均勻化多尺度方法、以及小波數值均勻化方法、多尺度有限體積法、多尺度有限元法等。
該方法通過對單胞問題的求解,把細觀尺度的信息映射到宏觀尺度上,從而推導出宏觀尺度上的均勻化等式,即可在宏觀尺度上求解原問題。均勻化方法在很多科學和工程應用中取得了巨大成功,但這種方法建立在系數細觀結構周期性假設的基礎上,因此應用范圍受到了很大限制。
鄂維南等提出的非均勻化多尺度方法,是構造多尺度計算方法的一般框架。該方法有兩個重要的組成部分:基於宏觀變數的整體宏觀格式和由微觀模型來估計缺少的宏觀數據,多尺度問題的解通過這兩部分共同得到。
該方法基於多分辨分析,在細尺度上建立原方程的離散運算元,然後對離散運算元進行小波變換,得到了大尺度上的數值均勻化運算元。此方法在大尺度上解方程,大大地減小了計算時間。
該法在宏觀尺度上進行網格剖分,然後通過在每個單元里求解細觀尺度的方程(構造線性或者振盪的邊界條件)來獲得基函數。從而把細觀尺度的信息反應到有限元法的基函數里,使宏觀尺度的解包含了細觀尺度的信息。但多尺度有限元方法在構造基函數時需要較大的計算量。
Ⅷ 誰有 《數值計算方法 第三版》高等教育出版社 主編朱建新、李有法 課後答案以及 山西師范大學 的歷年考題
主編朱建新、李有法課後答案以及山西師范大學的歷年考題:
有限元法:有限元方法的基礎是變分原理和加權餘量法,其基本求解思想是把計算域劃分為有限個互不重疊的單元,在每個單元內,選擇一些合適的節點作為求解函數的插值點,將微分方程中的變數改寫成由各變數或其導數的節點值與所選用的插值函數組成的線性表達式。
藉助於變分原理或加權餘量法,將微分方程離散求解。採用不同的權函數和插值函數 形式,便構成不同的有限元方法。
在有限元方法中,把計算域離散剖分為有限個互不重疊且相互連接的單元,在每個單元內選擇基函數,用單元基函數的線形組合來逼近單元中的真解,整個計算域上總體的基函數可以看為由每個單元基函數組成的,則整個計算域內的解可以看作是由所有單元 上的近似解構成。
(8)數值計算方法精要擴展閱讀:
構造數值積分公式最通常的方法是用積分區間上的n 次插值多項式代替被積函數,由此導出的求積公式稱為插值型求積公式。特別在節點分布等距的情形稱為牛頓-柯茨公式,例如梯形公式與拋物線公式就是最基本的近似公式。但它們的精度較差。
龍貝格演算法是在區間逐次分半過程中,對梯形公式的近似值進行加權平均獲得准確程度較高的積分近似值的一種方法,它具有公式簡練、計算結果准確、使用方便、穩定性好等優點,因此在等距情形宜採用龍貝格求積公式。
Ⅸ 如何提高運算時的數值精度
如何提高運算時的數值精度
大致看了你的basis函數,問題出在被積函數本身
y=A.*Hermite1(n,x).*exp(-0.5.*x.*x).*1./((2.^n).*factorial(n))^(0.5).*(hbarc^2./(m.*c^2)./hbara)^(0.25);
這里主要麻煩就是紅色部分造成的,其他項都是常數。而實際上含 x 的項只有前面兩個紅色項。紅色部分之所以可能會造成麻煩,是因為當x > 1 且 n 較大時 (n 也不需要特別大,比如 n = 10),Hermite1(n,x) 的取值很大,而分母里 factorial(n)^0.5 也很大,當兩個數都很大並相除時浮點誤差可能很大。最極端的情況是,當兩項分別大到為 Inf 時,他們相除的結果是 NaN。另外,當 x 較大且 n 較大時 (x 並不需要很大,比如 x = 10),此時,exp(-0.5.*x.*x) 非常小,而 Hermite1(n,x) 可能非常大,二者相乘的誤差也很大。這兩種因素共同作用,使得這個積分用數值方法很難精確計算。MATLAB 的數值計算精度最高為雙精度計算精度,而且默認是在雙精度范圍計算,所以,你無法提高其數值計算精度了。
不過,這個積分可以轉化為符號計算來精確計算,計算過程很容易,不會有誤差。我大致看了一下你的 Hermite1 子函數的定義,可以看出你的 Hermite1 函數就是 physicists' Hermite polynomials,它的解析式實際上就是常規多項式,只要你計算出每個 n 對應多項式系數即可。那麼生下來,你需要計算的積分實際上就是:
int(x.^m*exp(-0.5.*x.*x), x = -10..10), m = 1:n,
顯然這個積分當 m 為奇函數時,原函數是偶函數,所以積分為0。所以,你只需計算m為偶數的情形,而這種情形下,積分簡化為:
2*int(x.^m*exp(-0.5.*x.*x), x = 0..10),
這個積分的解析解可以計算如下:
>> syms x m
>> assume(m/2,'integer')
>> assumeAlso(m>0)
>> int(x^m*exp(-x^2/2),0,10)
ans =
(2^(m/2)*2^(1/2)*(gamma(m/2 + 1/2) - igamma(m/2 + 1/2, 50)))/2