先求 x、y 的平均数 x_=(3+4+5+6)/4=9/2,y_=(2.5+3+4+4.5)/4=7/2,
然后求对应的 x、y 的乘积之和 :3*2.5+4*3+5*4+6*4.5=66.5 ,x_*y_=63/4 ,
接着计算 x 的平方之和:9+16+25+36=86,x_^2=81/4 ,
现在可以计算 b 了:b=(66.5-4*63/4) / (86-4*81/4)=0.7 ,
而 a=y_-bx_=7/2-0.7*9/2=0.35 ,
所以回归直线方程为 y=bx+a=0.7x+0.35 。
(1)求解回归方程的常用方法扩展阅读:
回归方程运算案例:
若在一组具有相关关系的变量的数据(x与Y)间,通过散点图我们可观察出所有数据点都分布在一条直线附近,这样的直线可以画出许多条,而我们希望其中的一条最好地反映x与Y之间的关系,即我们要找出一条直线,使这条直线“最贴近”已知的数据点。
因为模型中有残差,并且残差无法消除,所以就不能用二点确定一条直线的方法来得到方程,要保证几乎所有的实测值聚集在一条回归直线上,就需要它们的纵向距离的平方和到那个最好的拟合直线距离最小。
记此直线方程为(如右所示,记为①式)这里在y的上方加记号“^”,是为了区分Y的实际值y,表示当x取值xi=1,2,……,6)时,Y相应的观察值为yi,而直线上对应于xi的纵坐标是①式叫做Y对x的
回归直线方程,相应的直线叫做回归直线,b叫做回归系数。要确定回归直线方程①,只要确定a与回归系数b。
回归方程的有关量:e.随机变量 ^b.斜率 ^a.截距 —x.x的数学期望 —y.y的数学期望 R.回归方程的精确度。
回归直线的求法
最小二乘法:
总离差不能用n个离差之和
来表示,通常是用离差的平方和,即作为总离差,并使之达到最小,这样回归直线就是所有直线中Q取最小值的那一条,这种使“离差平方和最小”的方法,叫做最小二乘法:
② 如何求回归直线的回归方程
首先,要对横坐标进行处理,题中原来给的是时间单位(如:
1:30
1:40),当计算回归直线方程时,就没办法对数据进行处理了,所以,可以将时间数据数量化,这里以横轴上单位1的长度表示十分钟,以横轴上1的坐标位置表示1:30,则
1:40
、1:50、
2:00、
2:10分别对应横轴上2、3、4、5的坐标位置此时的数据对应关系为:X:1
2
3
4
5Y:250
350
500
650
700这样就可以进行方程的计算了,因为公式比较难打,这里用截图:
这是数学必修三·最小二乘估计的知识,你可以翻书看看。PS:b的值我计算了两遍,你还可以自己验算一下。
③ 回归方程求法
所谓回归方程,就是在实验数据拟合的时候,这一方程能够保证与具体实验数据之间的误差最小.
比如,我有实验数据点
(x1,y1),(x2,y2)......,(xn,yn),假设这些数据可以用y=f(x)来拟合,
如果y=f(x)能够保证(y1-f(x1))^2+(y2-f(x2))^2+.........(yn-f(xn))^2取最小,那么
方程y=f(x)就是回归方程
④ 回归方程怎么求
1)用《可回归计算型计算器》直接按算——先调定要求的回归形式。然后按所给出的数据分组输入,再调出回归系数。
2)按最小误差理论建立的最小二乘法 手动回归。a)求平均值;b)求差值;c)求两个Σ值(即和值);d)求系数 b(一次项系数);e)求系数 a (常数项)——完成线性回归。
⑤ 回归方程公式是什么
线性回归方程公式:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)。
线性回归方程是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一。
线性回归也是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。按自变量个数可分为一元线性回归分析方程和多元线性回归分析方程。
线性回归方程求法介绍
1、用所给样本求出两个相关变量的(算术)平均值
2、分别计算分子和分母:(两个公式任选其一)分子
3、计算b:b=分子/分母
4、用最小二乘法估计参数b,设服从正态分布,分别求对a、b的偏导数并令它们等于零。
5、先求x,y的平均值X,Y
6、再用公式代入求解:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)后把x,y的平均数X,Y代入a=Y-bX
7、求出a并代入总的公式y=bx+a得到线性回归方程(X为xi的平均数,Y为yi的平均数)
以上内容参考 网络—线性回归方程
⑥ 如何求线性回归方程呢
直接按照题目把所给的几个函数图像画出来(要准确,一般都是几条直线)
然后求是直线的上还是下,比如说:
x-y-1>0,那就先把直线x-y-1=0画出来
再代个点(不要是这条直线上的点)进去,比如说(0,0)带进去,得到“0-0-1>0”
显然不成立。(0,0)在这条直线的上方,不成立,所以x-y-1>0是代表在直线x-y-1=0的下方的区域
或者:把x-y-1>0换成y<x-1
很容易看出来y<x-1表示在直线y=x-1下方的区域
同样地,其它的区域也是照着这么画。
注意因为是“>”“<”,所以直线上的点都取不到,因此最后要把这条直线画成虚线,再画阴影确定区域,这点非常容易疏忽,也是最容易扣分的地方
画完之后,因为“{”表示交集的意思,所以你真正最后所要画的是这几个区域都有覆盖的区域
高考题一般就是给你的区域求出来后是个三角形,于是就有这片区域的界限和顶点了
基本常见的题型是目标函数z=f(x,y)。以下举例:求出来后这个区域的三个顶点为(1,1)、(1,3)、(2,2),边界上的每个点都可以取得到
一般逃不过这3种考法:
①.z=ax+by型:
首先要先知道,初中所谓的一般一次函数方程y=kx+b与y轴的交点是(0,b),斜率k
比如说:z=2x+y
解法:y= -2x-z与y轴的交点是(0,-z),斜率为-2
(若出现因为不知道-z的值,所以难以下手的问题,不要急,先画直线y=-2x)
画出直线y=-2x后,再将这条直线上下平移,保证直线经过这片区域,看看符合的直线y=-2x-z的极限是哪两条。(平移的时候可以用尺子的就很容易看出来了)
看得出来,当直线过点(1,1)与(2,2)取得“极限”,
带进去,当直线经过点(1,1)的时候交y轴于最低点(0,-z1),经过点(2,2)与y轴交于最高点(0,-z2)
从而求出z1,z2
或者直接将(1,1)与(2,2)带进去求得这两个“z ”的大小,求的一个z是-3,一个是-6,于是z∈[-6,-3]
以此类推。。。。。。
②.z=(ax+b)/(cy+d)型:
基本概念:过点(x1,y1)与(x2,y2)(x1≠x2)的直线斜率k=(y1-y2)/(x1-x2)=(y2-y1)/(x2-x1)
比如z=y/(x+1)
就看成是z=(y-0)/(x - -1)
z是过点(x,y)与(-1,0)的直线的斜率,其中(x,y)在区域内,另一个点是 定点(0,-1)
所以就先将(-1,0)标出来,用尺子移动这个斜率且过这个定点,就可以看出来,过点(1,1)时斜率最小,过点(1,3)时斜率最大
将这两个点带进去就行了。
反之,如果是z=(x+1)/y,就把z看做是过定点(-1,0)的斜率的倒数。正数范围内,数越大,倒数越小,所以......
③.z=(x-a)²+(y-b)²型:
基本知识:(x-a)²+(y-b)²=r²表示圆心为点(a,b)、半径为r的圆(如果r=0,就表示点(a,b))
比如说,z=(x-1)²+(y-1)²是圆心为点(1,1)、半径为根号z的圆(或点),因此一下子就看出来
z∈[0,√2](注意这个圆(或点)必须过这片区域)
有的并不是这么容易看出来的,比如说z=x²+y²
圆心在(0,0),那么半径的最值一定是当这个圆经过区域的顶点的时候取到的。(如果想知道为什么就自己找几个试试看看)
所以将点(1,1)、(1,3)、(2,2)带进去,算出这三个z哪个最大哪个最小,这就是z的取值范围
以上的这两个例子都是圆心不在区域里面的情况,如果是在这个三角形里面的话,那么最小值就是0,最大值同样还是经过点(1,1)或(1,3)或(2,2)时取到的,同样三个点带进去,就求出三个z的值,比较出里边的最大值z0,那么z∈[0,z0]
对于第二点,我再次提醒一下,我举的那个例子是在保证斜率>0的情况下才这么好看出来。有时候这个区域会在x轴下方,甚至是一部分在上方,一部分在下方。这就需要熟练记住直线斜率的规则了:(记直线y=kx)
k=0时,直线与x轴重合,
k>0【想象一下用一只手将直线在y轴的右侧开始往上掰】时直线是上升的,越倾斜的直线,斜率就越大,然后无限趋近于y轴时斜率为+∞
越过y轴后,k立马变为-∞,再将这个直线(在y轴左侧)往下“掰”,k又从-∞逐渐增大。
k<0【想象一下用一只手将直线在y轴的右侧开始往下掰】时直线是下降的,越倾斜的直线,斜率就越小,然后无限趋近于y轴时斜率为-∞
越过y轴后,k立马变为+∞,再将这个直线(在y轴左侧)往上“掰”,k又从+∞逐渐减小。
讲了这么多,应该还能撑得住吧???希望贵君能理解
最后说一下:一般关于现行回归的题目有可能会给你的是应用题,那就要像初中的物理一样先列出“已知”:就是依据题意设几个数(x与y等),从题目的已知条件中列出x与y等的关系式,再用上述的方法求。要注意:x与y本身也是有范围的,要写明!
⑦ 回归分析的基本步骤是什么
回归分析:
1、确定变量:明确预测的具体目标,也就确定了因变量。如预测具体目标是下一年度的销售量,那么销售量Y就是因变量。通过市场调查和查阅资料,寻找与预测目标的相关影响因素,即自变量,并从中选出主要的影响因素。
2、建立预测模型:依据自变量和因变量的历史统计资料进行计算,在此基础上建立回归分析方程,即回归分析预测模型。
3、进行相关分析:回归分析是对具有因果关系的影响因素(自变量)和预测对象(因变量)所进行的数理统计分析处理。只有当自变量与因变量确实存在某种关系时,建立的回归方程才有意义。
因此,作为自变量的因素与作为因变量的预测对象是否有关,相关程度如何,以及判断这种相关程度的把握性多大,就成为进行回归分析必须要解决的问题。进行相关分析,一般要求出相关关系,以相关系数的大小来判断自变量和因变量的相关的程度。
4、计算预测误差:回归预测模型是否可用于实际预测,取决于对回归预测模型的检验和对预测误差的计算。回归方程只有通过各种检验,且预测误差较小,才能将回归方程作为预测模型进行预测。
5、确定预测值:利用回归预测模型计算预测值,并对预测值进行综合分析,确定最后的预测值。
Logistic Regression逻辑回归
逻辑回归是用来计算“事件=Success”和“事件=Failure”的概率。当因变量的类型属于二元(1 / 0,真/假,是/否)变量时,应该使用逻辑回归。这里,Y的值为0或1,它可以用下方程表示。
odds= p/ (1-p) = probability of event occurrence / probability of not event occurrence
ln(odds) = ln(p/(1-p))
logit(p) = ln(p/(1-p)) =b0+b1X1+b2X2+b3X3....+bkXk
在这里使用的是的二项分布(因变量),需要选择一个对于这个分布最佳的连结函数。它就是Logit函数。在上述方程中,通过观测样本的极大似然估计值来选择参数,而不是最小化平方和误差(如在普通回归使用的)。
以上内容参考:网络-回归分析
⑧ 线性回归方程公式是什么
线性回归方程公式:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)。线性回归方程是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一。
线性回归方程公式求法:
第一:用所给样本求出两个相关变量的(算术)平均值:
x_=(x1+x2+x3+...+xn)/n
y_=(y1+y2+y3+...+yn)/n
第二:分别计算分子和分母:(两个公式任选其一)
分子=(x1y1+x2y2+x3y3+...+xnyn)-nx_Y_
分母=(x1^2+x2^2+x3^2+...+xn^2)-n*x_^2
第三:计算b:b=分子/分母
用最小二乘法估计参数b,设服从正态分布,分别求对a、b的偏导数并令它们等于零,得方程组解为
其中,且为观测值的样本方差.线性方程称为关于的线性回归方程,称为回归系数,对应的直线称为回归直线.顺便指出,将来还需用到,其中为观测值的样本方差。
先求x,y的平均值X,Y
再用公式代入求解:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)
后把x,y的平均数X,Y代入a=Y-bX
求出a并代入总的公式y=bx+a得到线性回归方程
(X为xi的平均数,Y为yi的平均数)
应用
线性回归方程是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。这是因为线性依赖于其未知参数的模型比非线性依赖于其位置参数的模型更容易拟合,而且产生的估计的统计特性也更容易确定。
线性回归有很多实际用途。分为以下两大类:
如果目标是预测或者映射,线性回归可以用来对观测数据集的和X的值拟合出一个预测模型。当完成这样一个模型以后,对于一个新增的X值,在没有给定与它相配对的y的情况下,可以用这个拟合过的模型预测出一个y值。
给定一个变量y和一些变量X1,...,Xp,这些变量有可能与y相关,线性回归分析可以用来量化y与Xj之间相关性的强度,评估出与y不相关的Xj,并识别出哪些Xj的子集包含了关于y的冗余信息。
以上内容参考网络-线性回归方程
⑨ 回归直线方程的计算方法
要确定回归直线方程①,只要确定a与回归系数b。回归直线的求法通常是最小二乘法:离差作为表示xi对应的回归直线纵坐标y与观察值yi的差,其几何意义可用点与其在回归直线竖直方向上的投影间的距离来描述。数学表达:Yi-y^=Yi-a-bXi.总离差不能用n个离差之和来表示,通常是用离差的平方和即(Yi-a-bXi)^2计算。即作为总离差,并使之达到最小,这样回归直线就是所有直线中除去最小值的那一条。这种使“离差平方和最小”的方法,叫做最小二乘法。用最小二乘法求回归直线方程中的a,b有图一和图二所示的公式进行参考。其中,
(9)求解回归方程的常用方法扩展阅读
回归直线方程指在一组具有相关关系的变量的数据(x与Y)间,一条最好地反映x与y之间的关系直线。
离差作为表示Xi对应的回归直线纵坐标y与观察值Yi的差,其几何意义可用点与其在回归直线竖直方向上的投影间的距离来描述。数学表达:Yi-y^=Yi-a-bXi.
总离差不能用n个离差之和来表示,通常是用离差的平方和,即(Yi-a-bXi)^2计算。
⑩ 线性回归方程公式
线性回归方程公式:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)。线性回归方程是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一,应用十分广泛。
一、概念
线性回归方程中变量的相关关系最为简单的是线性相关关系,设随机变量与变量之间存在线性相关关系,则由试验数据得到的点,将散布在某一直线周围。因此,可以认为关于的回归函数的类型为线性函数。
分析按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。
其中,且为观测值的样本方差.线性方程称为关于的线性回归方程,称为回归系数,对应的直线称为回归直线.顺便指出,将来还需用到,其中为观测值的样本方差。
先求x,y的平均值X,Y
再用公式代入求解:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)
后把x,y的平均数X,Y代入a=Y-bX
求出a并代入总的公式y=bx+a得到线性回归方程
(X为xi的平均数,Y为yi的平均数)
三、应用
线性回归方程是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。这是因为线性依赖于其未知参数的模型比非线性依赖于其位置参数的模型更容易拟合,而且产生的估计的统计特性也更容易确定。
线性回归有很多实际用途。分为以下两大类:
如果目标是预测或者映射,线性回归可以用来对观测数据集的和X的值拟合出一个预测模型。当完成这样一个模型以后,对于一个新增的X值,在没有给定与它相配对的y的情况下,可以用这个拟合过的模型预测出一个y值。
给定一个变量y和一些变量X1,...,Xp,这些变量有可能与y相关,线性回归分析可以用来量化y与Xj之间相关性的强度,评估出与y不相关的Xj,并识别出哪些Xj的子集包含了关于y的冗余信息。
在线性回归中,数据使用线性预测函数来建模,并且未知的模型参数也是通过数据来估计。这些模型被叫做线性模型。最常用的线性回归建模是给定X值的y的条件均值是X的仿射函数。
不太一般的情况,线性回归模型可以是一个中位数或一些其他的给定X的条件下y的条件分布的分位数作为X的线性函数表示。像所有形式的回归分析一样,线性回归也把焦点放在给定X值的y的条件概率分布,而不是X和y的联合概率分布。