导航:首页 > 知识科普 > 细晶材料的制备方法有哪些

细晶材料的制备方法有哪些

发布时间:2022-05-08 09:45:26

‘壹’ 试说明晶体材料在凝固过程中细化晶粒的原理与方法。满意的会加分!

1)在液态金属结晶时,提高冷却速度,增大过冷度,来促进自发形核。晶核数量愈多,则晶粒愈细。
(2)在金属结晶时,有目的地在液态金属中加入某些杂质,做为外来晶核,进行非自发形核,以达到细化晶粒的目的,此方法称为变质处理。这种方法在工业生产中得到了广泛的应用。如铸铁中加入硅、钙等。
(3)在结晶过程中,采用机械振动、超声波振动、电磁搅拌等,也可使晶粒细化。

‘贰’ 不存在固态相变的金属材料如何细晶

没有固态相变,那么就

  1. 加速液态到固态的相变速度,例如增加冷却速度,

  2. 创造固态相变的条件,例如在高温下加入晶体,再在低温下保持更久,可能会有相变.

‘叁’ 单晶材料的单晶制备方法:

此法为最常用方法,是从结晶物质的熔体中生长晶体。适用于光学半导体,激光技术上需要的单晶材料。
(一)晶体生长的必要条件。
根据晶体生长时体系中存在的——由熔体(m)向晶体(C)自发转变时——两相间自由焓的关系:Gm(T)>Gc(T),即△G=Gc(T)-Gm(T)≈△He-Te△Se-△T△Se=△T△Se<0。结晶时, △Se>0,只有△T<0 。熔体单晶体生长的必要条件是:体系温度低于平衡温度。体系温度低于平衡温度的状态称为过冷。△T的绝对值称为过冷度。过冷度作为熔体晶体生长的驱动力。一般情况:该值越大,晶体生长越快。当值为零时,晶体生长停止。
(二)晶体生长的充分条件
晶体生长是发生在固-液(或晶-液)界面上。通常为保证晶体粒生长只需使固-液界面附近很小区域熔体处于过冷态,绝大部分熔体处于过热态(温度高于Te )。已生长出的晶体温度又需低于Te。就是说整个体系由熔体到晶体的温度由过热向过冷变化。过热与过冷区的界面为等温区。此面与晶体生长界面间的熔体为过冷熔体。且过冷度沿晶体生长反方向逐渐增大。晶体的温度最低。这种由晶体到熔体方向存在的温度梯度是热量输运的必要条件。热量由熔体经生长面传向晶体,并由其转出。
晶体生长的充分条件:(dT/dz)c一定、(dT/dz)m为零时,整个区域熔体处于过冷态,晶体生长速率最大。对于一定结晶物质,过冷度一定时,决定晶体生长速率的主要因素是晶体与熔体温度梯度(dT/dz)c与(dT/dz)m的相对大小。只有晶体温度梯度增大,熔体温度梯度减少,才能提高晶体生长速度。需指出:晶体生长速度并非越大越好,太大会出现不完全生长,影响质量。
(三)晶体生长方法
1 提拉法:提拉法适于半导体单晶Si、Ge及大多数激光晶体。
工艺流程:
1)同成分的结晶物质熔化,但不分解,不与周围反应。
2)预热籽晶,旋转着下降后,与熔体液面接触,待熔后,缓慢向上提拉。
3)降低坩埚温度或熔体温度梯度,不断提拉籽晶,使其籽晶变大。
4)等径生长:保持合适的温度梯度与提拉速度,使晶体等径生长。
5)收晶:晶体生长所需长度后,拉速不变,升高熔体温度或熔体温度不变,加快拉速,使晶体脱离熔体液面。
6)退火处理晶体。
2 坩埚下降法:
在下降坩埚的过程,能精密测温,控温的设备中进行。过热处理的熔体降到稍高于凝固温度后,下降至低温区,实现单晶生长,并能继续保持。
3 泡生法:
过热熔体降温至稍高于熔点,降低炉温或冷却籽晶杆,使籽晶周围熔体过冷,生长晶体。控制好温度,就能保持晶体不断生长。
4 水平区熔法:
盛有结晶物质的坩埚,在带有温度梯度的加热器,从高温区向低温区移动,完成熔化到结晶过程。
以上四种晶体生长使用的坩埚,应具备:熔点高于工作温度200℃,不与熔体互熔起化学反应,良好的加工性及抗热震性,热膨胀系数与结晶物质相近,常用铂、铱、钢、石墨、石英及其它高熔点氧化物。 以水、重水或液态有机物作溶剂的溶液中,可生长完整均匀的大尺寸单晶体。
(一)晶体生长基本原理
1 晶体生长的必要条件:一定温度条件下,溶液的浓度大于该温度下的平衡浓度(即饱和浓度)称过饱和,其大于的程度称过饱和度,它是溶液法晶体生长的驱动力。
2 晶体生长的充分条件:把溶液的过饱和状态控制在亚稳定区内,避免进入不稳定或稳定区。
(二)晶体生长方法
1 降温法:利用不断降温并维持溶液亚稳过饱和态,以实现晶体不断生长的方法。
2 流动法:控制饱和槽和生长槽间温差及流速并使其处于亚稳过饱和态。维持晶体不断生长。
3 蒸发法:利用不断蒸发溶剂,并控制蒸发速度,维持溶液处于亚稳的过饱和状态,实现晶体的完全生长。
4 电解溶剂法:利用电解原理,不断从体系中去除溶剂,以维持溶液过饱和状态,实现晶体不断生长。关键是控制电解电流,即溶剂电解速度保持体系处于亚稳区。
5 凝胶法:两物质的溶液通过凝胶扩散,相遇,经化学反应,生成结晶物质,并在凝胶中成核,长大。 (一)基本原理
高温溶液法生长的结晶物质,须在高温下,溶于助溶剂,形成过饱和溶液。因此,助溶剂选择,溶液相关系的确定,是溶液生长晶体的先决条件。
助溶剂应具备的条件:
1)对结晶物质有足够大溶解度,并在生长温度范围内,有适宜的溶解度温度系数。
2)与溶质的作用应是可逆的,形成的晶体是唯一、稳定的。
3)具有尽可能高的沸点及尽可能低的溶点。
4)含有与结晶物质相同的离子。
5)粘滞性不大,利于溶质扩散和能量运输。
6)无毒、无腐蚀性。
7)可用适当溶液或溶剂溶解。
(二) 晶体生长方法
1 缓冷法及改进技术
以0.2-5℃/h的速度,使处在过饱和态的高温溶液降温,先慢后快,防止过多成核。温度降到出现其它相或溶解的温度系数近于0时,较快速降温。并用适当的溶剂溶掉凝固在晶体周围的溶液,便得晶体。
改进技术
(1)坩埚局部过冷(2)采用复合助熔剂(3)变速旋转坩埚(4)刺破坩埚以利于分离。
2 助溶剂挥发法:恒温下借助助溶剂的挥发,使溶液保持亚稳定过饱和态,以保持晶体生长。
3 籽晶降温法:引入籽晶后,靠不断降温维持溶液的亚稳定过饱和度,保持晶体不断生长。
晶体是十分奇妙、美丽而又用途巨大,而自然界中天然形成的晶体多含有大量的缺陷,从而影响到它的应用。在实验室中,采用精巧的设备,严格设定晶体生长所需的温度、气氛和组分,通过严格控制的条件可以生长出符合需要的高质量晶体。 (一)基本原理
利用运输反应来控制反应的进行,其生成物必须是挥发性的,且要有唯一稳定的固体相(所希望的)生成,ΔG→0?反应易为可逆,平衡时,反应物与生成物有足够的量。
(二) 晶体生长方法
1 升华法
将固体顺着温度梯度通过晶体在管子的冷端从气相中生长的方法。
即:在高温区蒸发原料,利用蒸气的扩散,让固体顺着温度梯度通过晶体在冷端形成并生长的方法。
固→气→固常压升华
常压升华(P>1 atm):As、P、CdS
减压升华(P<1 atm):雪花、ZnS、CdSe、HgI2
2 蒸气运输法
在一定的环境相下?利用运载气体来帮助源的挥发和运输?从而促进晶体生长的方法。通常采用卤素作运输剂。在极低的氯气压力下观察钨的运输?发现在加热的钨丝中,钨从较冷的一根转移到较热的一根上。
冷端:W+3Cl2↹WCl6
W以氯化物的形式挥发;热端、分解、沉积出W,规则排列,生长出单晶体。此法常用来提纯材料和生长单晶体。不仅可以生长纯金属单晶,也可用于生长二元或三元化合物。如:ZnIn2S4、HgGa2S2、ZnSiP2。
3 气相反应生长法让各反应物直接进行气相反应生成晶体的方法。成为工业上生产半导体外延晶体的重要方法之一,常用于制膜,如TiC、GaAs。
目前人类科技的镍基单晶材料共有五代。

‘肆’ 金属材料常用的强化方式及机理是什么

金属材料常用的强化方式有细晶强化、固溶强化、第二相强化、加工硬化。

1 细晶强化

通过细化晶粒而使金属材料力学性能提高的方法称为细晶强化,工业上将通过细 化晶粒以提高材料强度。

其原理是通常金属是由许多晶粒组成的多晶体,晶粒的大小可以用单位体积内晶粒的数目 来表示,数目越多,晶粒越细。

二.固溶强化

合金元素固溶于基体金属中造成一定程度的晶格畸变从而使合金强度提高 的现象。

原理:融入固溶体中的溶质原子造成晶格畸变,晶格畸变增大了位错运动的阻力, 使滑移难以进行,从而使合金固溶体的强度与硬度增加。

三.第二相强化

复相合金与单相合金相比,除基体相以外,还有第二相得存在。当第二相以细小 弥散的微粒均匀分布于基体相中时,将会产生显着的强化作用。

原理:它们与位错间的交互作用,阻碍了位错 运动,提高了合金的变形抗力。 对于位错的运动来说,合金所含的第二相有以下两种情况:

1、不可变形微粒的强化作用。

2、可变形微粒的强化作用。 弥散强化和沉淀强化均属于第二相强化的特殊情形。

四.加工硬化

随着冷变形程度的增加,金属材料强度和硬度指标都有所提高,但塑性、 韧性有所下降。

原理:金属在塑性变形时,晶粒发生滑移,出 现位错的缠结,使晶粒拉长、破碎和纤维化,金属内部产生了残余应力等。

(4)细晶材料的制备方法有哪些扩展阅读:

金属材料通常分为黑色金属、有色金属和特种金属材料。

①黑色金属又称钢铁材料,包括杂质总含量<0.2%及含碳量不超过0.0218%的工业纯铁,含碳0.0218%~2.11%的钢,含碳大于 2.11%的铸铁。广义的黑色金属还包括铬、锰及其合金。

②有色金属是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等,有色合金的强度和硬度一般比纯金属高,并且电阻大、电阻温度系数小。

③特种金属材料包括不同用途的结构金属材料和功能金属材料。其中有通过快速冷凝工艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减振阻尼等特殊功能合金以及金属基复合材料等。

金属材料的疲劳现象,按条件不同可分为下列几种:

⑴高周疲劳:指在低应力(工作应力低于材料的屈服极限,甚至低于弹性极限)条件下,应力循环周数在100000以上的疲劳。它是最常见的一种疲劳破坏。高周疲劳一般简称为疲劳。

⑵低周疲劳:指在高应力(工作应力接近材料的屈服极限)或高应变条件下,应力循环周数在10000~100000以下的疲劳。由于交变的塑性应变在这种疲劳破坏中起主要作用,因而,也称为塑性疲劳或应变疲劳。

⑶热疲劳:指由于温度变化所产生的热应力的反复作用,所造成的疲劳破坏。

⑷腐蚀疲劳:指机器部件在交变载荷和腐蚀介质(如酸、碱、海水、活性气体等)的共同作用下,所产生的疲劳破坏。

⑸接触疲劳:这是指机器零件的接触表面,在接触应力的反复作用下,出现麻点剥落或表面压碎剥落,从而造成机件失效破坏。

‘伍’ 晶体材料制备的方法有哪些,简述其原理

人工晶体的制备就是把组成晶体的基元(原子、分子或离子)解离后又重新使它们组合的过程。按照晶体组分解离手段的不同,人工晶体的制备主要有三大类:熔体法、溶液法和气相法。
一种晶体选择何种技术生长,取决于晶体的物理、化学性质和应用要求。选择的一般原则是:
♣有利于快速生长出具有较高实用价值、符合一定技术要求的晶体;
♣有利于提高晶体的完整性,严格控制晶体中的杂质和缺陷;
♣有利于提高晶体的利用率、降低成本。生长大尺寸的晶体始终是晶体生长工作者追求的
重要目标;
♣有利于晶体的后加工和器件化;
♣有利于晶体生长的重复性和产业化;
⒈溶液法生长
溶液法的基本原理是将原料(溶质)溶解在溶剂(如水)中,采取适当的措施造成溶液的过饱和状态,使晶体在其中生长。具体地包含有水溶液法、水热法与助熔剂法等。
⑴降温法
基本原理:
利用物质大的溶解度和较大的正溶解度温度系数,在晶体生长过程中逐渐降低温度,使析出的溶质不断在晶体上生长。
关键:晶体生长过程中掌握适合的降温速度,使溶液始终处在亚稳态区内并维持适宜的过
饱和度。
要求:物质溶解度温度系数不低于1.5g/kg℃。
⑵恒温蒸发法
基本原理:
将溶剂不断蒸发,使溶液保持在过饱和状态,从而使晶体不断生长。
特点:
比较适合于溶解度较大而溶解度温度系数很小或者是具有负温度系数的物质。与流动法一样也是在恒温条件下进行的。
(3)温差水热法
基本原理:
使用特殊设计的装置,人为地创造一个高温高压环境,由于高温高压下水的解离常数增大、黏度大大降低、水分子和离子的活动性增加,可使那些在通常条件下不溶或难溶于水的物质溶解度、水解程度极大提高,从而快速反应合成新的产物。

‘陆’ 细晶强化的原理以及金属性能

镁合金具有良好的生物兼容性、最高的比强度和比刚度、优异的工艺性能、较好的耐腐蚀性能、良好的导热、减振及电磁屏蔽性以及原材料丰富、切削加工简单和回收容易等优点。镁合金被认为是制备电器产品壳体、运输工具和航天飞行器零部件最具前途的结构材料。然而,镁合金的强度、塑性和韧性有待进一步提高。快速凝固(RS)技术可有效地细化合金晶粒、减少偏析,从而有望大幅度提高镁合金的力学性能。往复挤压(RE)是一种等体积大塑性变形技术,可以在不改变原始形状下,制备细晶材料。 研究了RE制备超细组织、高强高韧镁合金的强化机理及快速凝固薄带的焊合机制。研究包括的主要内容和获得的主要结论有: 基于RS原理完善了KND-Ⅱ型单辊快速凝固中试系统,在冷却速度介于1.14×10~6 K·s~(-1)~4.12×10~7K·s~(-1)条件下,制备的RS-Mg-Zn-Y合金薄带组织由过饱和α-Mg固溶体和少量在α-Mg晶粒间分布的Z相及其它金属间化合物构成,薄带组织存在微弱的微观偏析。薄带晶粒尺寸小于5μm。 研制了可在普通立式压力机上实现多道次RE装置,并采用该装置对CT及RS状态下的Mg-Zn-Y合金进行了RE。RE可促使RE-n-EX-CT-Mg-Zn-Y合金基体通过破碎和反复动态再结晶细化;晶界网状化合物通过破碎细化,并随材料的流动而发生位置迁移,最终均匀分布在基体上。提高RE道次,组织变得更均匀。RE是一种提高RE-n-EX-CT-Mg-Zn-Y镁合金强度和塑性的有效方法。 RE过程中,每一道次的名义应变速率是0.1503s~(-1)。温度介于300℃~350℃范围RE可以使材料内积累较高的真应变,有利于获得大的Zener-Hollomon参数Z~*值,促进原子扩散及析出相形核和长大;在获得高致密、高机械性能的同时,有利于RS薄带的焊合。 RE后,RE-n-EX-RS-Mg-Zn-Y合金强化相颗粒由三部分组成:第一类是原薄带晶粒内部凝固时的强化相,为~100nm。RE使第一类强化相在组织中分布更均匀,但大小基本不变;第二类是原薄带晶粒界面上的网状化合物经RE破碎形成的不规则颗粒,尺寸为~0.5μm;第三类为RE过程脱溶形成的沉淀相,尺寸一般为70nm左右,弥散分布于α-Mg基体中。RE后RE-n-EX-RS-Mg-Zn-Y合金获得了较高的拉伸强度(RE-n-EX-RS-B1和RE-n-EX-RS-B2合金的拉伸强度大于400MPa)、屈强比(大于0.8,其中RE-n-EX-RS66合金接近1)和伸长率(RE-n-EX-RS66合金的伸长率大于20%)。往复挤压获得高强韧快速凝固Mg-Zn-Y合金的强化机制包括细晶强化、固溶强化、位错强化、沉淀析出和弥散分布强化以及位错间的摩擦阻力强化机制。其中,细晶强化和Orowan强化机制是主要的强化机制。 在100~150℃温度范围,Mg-Zn-Y合金热(线)膨胀系数与制备工艺有关,材料的膨胀系数由大到小顺序为:α_tCT-Mg-Zn-Y>α_tRE-n-EX-CT-Mg-Zn-Y>α_tRE-n-EX-RS-Mg-Zn-Y。RE结合RS可以获得低膨胀系数的Mg-Zn-Y合金。

‘柒’ 举例说明工业中常采取哪些措施进行细晶强化

通过细化晶粒而使金属材料力学性能提高的方法称为细晶强化工业上将通过细化晶粒以提高材料强度的方法称为细晶强化。通常金属是由许多晶粒组成的多晶体,晶粒的大小可以用单位体积内晶粒的数目来表示,数目越多,晶粒越细。实验表明,在常温下的细晶粒金属比粗晶粒金属有更高的强度、硬度、塑性和韧性。这是由于细晶粒遭到外力产生塑性变形可分散在更多的晶粒内进行,塑性变形较均匀,应力集中较小;另外,晶粒越细,晶界面积越大,晶界越曲折,越不利于裂纹的扩大。故工业上将通过细化晶粒以提高材料强度的方法称为细晶强化。细晶强化有以下方法:1,增加过冷度;2,变质处理;3,振动与搅拌。
查看原帖>>

‘捌’ 金属材料细晶强化理论及强化方法总结

1,增加过冷度;
2,变质处理;
3,振动与搅拌;
4,对于冷变形的金属可以通过控制变形度,退火温度来细化晶粒

‘玖’ 细化晶粒为什么能提高材料的强度又提高材料的塑性和韧性

因为通过细化晶粒,金属材料力学性得到了提高:细晶粒受到外力发生塑性变形可分散在更多的晶粒内进行,塑性变形较均匀,应力集中较小。

通常金属是由许多晶粒组成的多晶体,晶粒的大小可以用单位体积内晶粒的数目来表示,数目越多,晶粒越细。实验表明,在常温下的细晶粒金属比粗晶粒金属有更高的强度、硬度、塑性和韧性。

这是因为细晶粒受到外力发生塑性变形可分散在更多的晶粒内进行,塑性变形较均匀,应力集中较小;此外,晶粒越细,晶界面积越大,晶界越曲折,越不利于裂纹的扩展。

(9)细晶材料的制备方法有哪些扩展阅读

细化晶粒的方法有以下四种:

1、增加过冷度:过冷度增加,形核率与长大速度都增加,但两者的增加速度不同,形核率的增长率大于长大速度的增长率。在一般金属结晶时的过冷范围内,过冷度越大,晶粒越细小。

2、变质处理:向金属液中添加少量活性物质,促进液体金属内部生核或改变晶体成长过程的一种方法,生产中常用的变质剂有形核变质剂和吸附变质剂。

3、振动与搅拌。

4、对于冷变形的金属可以通过控制变形度,退火温度来细化晶粒。

‘拾’ 如何获得细晶材料

铸造时采用以下措施,可以细化晶粒:
1,增加过冷度;
2,变质处理;
3,振动与搅拌;
合金成分中可以添加微量元素抑制晶粒长大;
热处理时采用快速冷却方法可细化晶粒;
固溶——时效处理可以适当细化晶粒尺寸;
进行塑性变形和适当的退火工艺可以细化晶粒。

阅读全文

与细晶材料的制备方法有哪些相关的资料

热点内容
柔性防水胶带安装方法 浏览:418
硅胶怎么用香蕉水去除最简单方法 浏览:187
鸡蛋茶的食用方法 浏览:973
ppr带水接管方法视频 浏览:1000
钢丝绳安装三通的方法 浏览:962
40除32简便方法 浏览:330
测出自己怀孕的方法有哪些 浏览:474
汽车平面轴承安装方法 浏览:570
学唱相声的技巧和方法 浏览:904
如何判断自己有没有杂化方法 浏览:846
桃木剑打磨方法视频 浏览:645
脑神经用什么方法治疗 浏览:936
眼睛黄素瘤治疗方法 浏览:830
回血鸽子配对方法视频 浏览:183
蜂蜜怎么熬制作方法 浏览:214
平板闪退的解决方法 浏览:453
单色釉真假鉴别方法 浏览:434
适用于对比研究的方法 浏览:311
荒岛上快速获得淡水的方法 浏览:157
增多肌肉的训练方法 浏览:847