Ⅰ 27×21-27×1的简便计算
这就很简单算27乘1得27得27乘21减27前面有21个27后面有1个27,21减1乘27的540
Ⅱ 23×27最简便的口算式怎么写
27乘20加27乘3
Ⅲ 两位数乘两位数口算技巧
两位数乘两位数的速算法的口诀是头乘头,尾加尾,尾乘尾,相同,尾互补。
两位数乘法速算口诀般口诀首位之积排在前,首尾交叉积之和十倍再加尾数积。数学速算法是指利用数与数之间的特殊关系进行较快的加减乘除运算的计算方法。
Ⅳ 快速口算的方法是什么
一、一种做多位乘法不用竖式的方法。我们都可以口算1X1 10X1,但是,11X12 12X13 12X14呢?这时候,大家一般都会用竖式,通过竖式计算,得数是132、156、168。其中有趣的规律:即个位上的数字正好是两个因数个位数字的积。十位上的数字是两个数字个位上的和。百位上的数字是两个因数十位数字的积。例如:
12X14=168 1=1X1 6=2+4 8=2X4如果有进位怎么办呢?这个定律对有进位的情况同样适用,在竖式时只要~满几时,就向下一位进几。~例如:
14X16=224 4=4X6的个位 2=2+4+6 2=1+1X1 试着做做看下面的题:
12X15= 11X13= 15X18= 17X19=二、几十一乘以几十一的速算方法 例如: 21×61= 41×91= 41×91= 51×61= 81×91= 41×51= 41×81= 71×81= 这些算式有什么特点呢?是“几十一乘以几十一”的乘法算式,我们可以用:先写十位积,再写十位和(和满10 进1),后写个位积。“先写十位积,再写十位和(和满10 进1),后写个位积”就是一见到几十一乘以几十一的乘法算式,如果十位数的和是一位数,我们先直接写十位数的积,再接着写十位数的和,最后写上1 就一定正确;如果十位数的和是两位数,我们先直接写十位数的积加1 的和,再接着写十位数的和的个位数,最后写一个1 就一定正确。我们来看两个算式:21×61=41×91= 用“先写十位积,再写十位和(和满10 进1),后写个位积”这种速算方法直接写得数时的思维过程。第一个算式,21×61=?思维过程是:2×6=12,2+6=8, 21×61 就等于1281。第二个算式,41×91=?思维过程是:4×9=36,4+9=13,36+1=37, 41×91 就等于3731。 试试上面题目吧!然后再看看下面几题 61×91= 81×81= 31×71= 51×41=一、10-20的两位数乘法及乘方速算方法:尾数相乘,被乘数加上乘数的尾数(满十进位)【例1】 1 2 X 1 3 ----------1 5 6 (1)尾数相乘2X3=6 (2)被乘数加上乘数的尾数12+3=15 (3)把两计算结果相连即为所求结果【例2】 1 5X 1 5------------2 2 5(1)尾数相乘5X5=25(满十进位)(2)被乘数加上乘数的尾数15+5=20,再加上个位进上的2即20+2=22(3)把两计算结果相连即为所求结果二、两位数、三位数乘法及乘方速算a.首数相同,尾数相加和是十的两位数乘法 方法:尾数相乘,首数加一再相乘 【例1】 5 4X 5 6---------3 0 2 4(1)尾数相乘4X6=24直接写在十位和个位上(2)首数5加上1为6,两首数相乘6X5=30(3)把两结果相连即为所求结果【例2】 7 5X 7 5----------5 6 2 5(1)尾数相乘5X5=25直接写在十位和个位上(2)首数7加上1为8,两首数相乘8X7=56(3)把两计算结果相连即可b.尾数是5的三位数乘方速算方法:尾数相乘,十位数加一,再将两首数相乘【例】 1 2 5X 1 2 5------------1 5 6 2 5(1)尾数相乘5X5=25直接写在十位和个位上(2)首数12加上1为13,再两数相乘13X12=156(3)两计算结果相连c.任意两位数乘法方法:尾数相乘,对角相乘再相加,首数相乘 【例】 3 7X X 6 2---------2 2 9 4(1)尾数相乘7X2=14(满十进位)(2)对角相乘3X2=6;7X6=42,两积相加6+42=48(满十进位)(3)首数相乘3X6=18加上十位进上的4为18+4=22(4)把计算结果相连即为所求结果b.任意两位数及三位平方速算方法:尾数的平方,首数乘尾数扩大2倍,首数的平方[例] 2 3X 2 3---------5 2 9 (1)尾数的平方3X3=9(满十进位)(2)首尾数相乘2X3=6扩大两倍为12写在十位上(满十进位)(3)首数的平方2X2=4加上十位进上的1为5(4)把计算结果相连即为所求结果c.三位数的平方与两位数的平方速算方法相同[例] 1 3 2 X 1 3 2------------1 7 4 2 4(1)尾数的平方2X2=4写在个位(2)首尾数相乘13X2=26扩大2倍为52写在个位上(满十进位)(3)首数的平方13X13=169加上十位进上的5为174(4)把计算结果相连即为所求结果〖注意:三位数的首数指前两位数字!〗三、大数的平方速算方法:把题目与100相差,相差数称之为差数;先算差数的平方写在个位和十位上(缺位补零),再用题目减去差数得一结果;最后把两结果相连即为所求结果【例】 9 4X 9 4-----------8 8 3 6(1)94与100相差为6(2)差数6的平方36写在个位和十位上(3)用94减去差数6为88写在百位和千位上(4)把计算结果相连即为所求结果 B55 × 55 = ? 27 × 23 = ? 91 × 99 = ? 43 × 47 = ? 88 × 82 = ? 74 × 76 = ?大家能够很快算出这些算式的正确答案吗?注意,是很快哦!你能吗?我能--3025 ; 621 ; 9009 ;2021 ; 7216 ; 5624 ;很神气吧!速算秘诀:(就以第一题为例好啦)(1)分别取两个数的第一位,而后一个的要加上一以后,相乘。[5×(5+1)]=30;(2)再将末尾数相乘的得数写在后面就可以得出正确的答案了。5×5=25;(3)3025!Bingo!其它依次类推就行了。仔细看每一个式子里的两位数的十位是相同的,而个位的两数则是相补的。这样的速算秘诀只能够适用于这种情况的算式。所以说大家千万不要把巧算和真正的速算混淆在一起,真正的速算是任何数都能算的。一、关于9的数学速算技巧(两位数乘法)
关于9的口诀:
1 × 9 = 9 2 × 9 = 18 3 × 9 = 27 4 × 9 = 36
5 × 9 = 45 6 × 9 = 54 7 × 9 = 63 8 × 9 = 72
9 × 9 = 81从上面的口诀口有没有看到从1到9任何一个数和9相乘的积,个位数和十位数的和还是等于9。
你看上面的:0 + 9 =9;1 + 8 = 9;2 + 7 = 9;3 + 6 = 9;
4 + 5 = 9;5 + 4 = 9;6 + 3 = 9;7 + 2 = 9;8 + 1 = 9下面我们再做一些复杂一点的乘法:
18 × 12 = ? 27 × 12 = ? 36 × 12 = ? 45 × 12 = ?
54 × 12 = ? 63 × 12 = ? 72 × 12 = ? 81 × 12 = ?
关于两位数的乘法,上面的题目中,前面的乘数都是9的倍数,而且个位和十位的和都等于9。
这样我们能不能找到一种简便的算法呢?也就是把两位数的乘法变成一位数的乘法呢?
我们先把上面这些数变一变。
18 = 1 × 10 + 8;27 = 2 × 10 + 7;36 = 3 × 10 + 6;
45 = 4 × 10 + 5;54 = 5 × 10 + 4;63 = 6 × 10 + 3;
72 = 7 × 10 + 2;81 = 8 × 10 + 1;
我们再把上面的数变一变
1 × 10 + 8 = 1 × 9 + 1+8 = 1 × 9 + 9 = 1 × 9 + 9 = 2 × 9
当然如果知道口诀你们可以直接把18 = 2 × 9同样的方法你们可以拆出下面的数,也可以背口诀27 = 3 × 9 ; 36 = 4 × 9 ;45 = 5 × 9
54 = 6 × 9 ; 63 = 7 × 9 ;72 = 8 × 9
81 = 9 × 9
为了找到计算上面问题的方法,我们把上面的式子再变一次。
18 = 2×(10-1);27 = 3×(10-1);36 = 4×(10-1)
45 = 5×(10-1);54 = 6×(10-1);63 = 7×(10-1)
72 = 8×(10-1);81 = 9×(10-1)
现在我们来算上面的问题:
18 × 12 = 2×(10-1)× 12
= 2 ×(12 ×10 - 12)
= 2 ×(120- 12)
120 - 12 = 108;
这样就有了
18 × 12 = 2 × 108 = 216
是不是把一个两位数的乘法变成了一位数的乘法?
而且可以通过口算就得出结果?我用这种方法教威威算乘法,他只需要我算这一个,后边的题目就自己会算了。
上面我们的计算好象很麻烦,其实现在总结一下就简单了。
看下一个题目:
27 × 12 = 3×(10-1)× 12 = 3 ×(120- 12)
= 3 × 108 = 324
36 × 12 = 4×(10-1)× 12 = 4 ×(120- 12)
= 4 × 108 = 432发现什么规律没有?下面的题目好象不用算了,都是把前面的数加1再乘108
45 × 12 = 5 × 108 = 540
54 × 12 = 6 × 108 = 648
63 × 12 = 7 × 108 = 756
72 × 12 = 8 × 108 = 864
81 × 12 = 9 × 108 = 972
我们再看看上面的计算结果,发现什么了吗?
我们把一个两位数乘法变成了一位数的乘法。其中一个乘数的个位和十位的和等于9,这样变化以后的数中一位数的那个乘数,都是正好比前面的乘数大1。
而后面的一个两位数也有一个特点,就是一个连续数(12),1和2是连续的。
能不能找到一种更简便的计算方法呢?
为了找到一种更简便的算法。我在这里引入一个新的名词——补数。
什么是补数呢?
1 + 9 = 10;2 + 8 = 10;3 + 7 = 10;4 + 6 = 10;5 + 5 = 10;
6 + 4 = 10;7 + 3 = 10;8 + 2 = 10;9 + 1 = 10;
从上面的几个加法可见,如果两个数的和等于10,那么这两个数就互为补数。
也就是说1和9为补数,2和8为补数,3和7为补数,4和6为补数,5的补数还是5就不用记了,只要记4个就行了。
现在我们再看看上面的计算结果:
拿一个 63 × 12 = 7 × 108 = 756 举例吧
结果的最前面一个数是7(不用管它是什么位),是不是正好等于第一个乘数(63)中前面的数加1? 6 + 1 = 7
结果的后两位怎么算出来的呢?如果拿这个7去乘后面那个乘数(12)的最后一位的补数(8)会是什么?7 × 8 = 56
呵呵,我们现在不用再分解了,只要把第一个乘数(63)中前面的数加1就是结果的最前面的数,再把这个数乘以后面那个乘数(12)的最后一位的补数(8)就得到结果的后两位。
这样行吗?如果行的话,那可真是太快了,真的是速算了。
试一试其他的题:
18 × 12 =
第一个乘数(18)的前面的数加1:1 + 1 =2 ——结果最前面的数
拿2去乘第二个乘数(12)的后面的数(2)的补数(8):2×8=16
结果就是 216。看一看上面对吗?
27 × 12 =
结果最前面的数——2 + 1 =3
结果最后面的数——3 ×8 = 24
结果 324
36 × 12 =
结果最前面的数——3 + 1 =4
结果最后面的数——4 ×8 = 32
结果 432
45 × 12 =
结果最前面的数——4 + 1 =5
结果最后面的数——5 ×8 = 40
结果 540
54 × 12 =
结果最前面的数——5 + 1 =6
结果最后面的数——6 ×8 = 48
结果 648
63 × 12 =
结果最前面的数——6 + 1 =7
结果最后面的数——7 ×8 = 56
结果 756
72 × 12 =
结果最前面的数——7 + 1 =8
结果最后面的数——8 ×8 = 64
结果 864
81 × 12 =
结果最前面的数——8 + 1 =9
结果最后面的数——9 ×8 = 72
结果 972
计算结果是不是和上面的方法一样?从结果中还能看出什么?
是不是计算结果的三位数的和还是等于9或者是9的倍数?
自己算一下看是不是?
看我这篇文章,下面我给你们出几个题,看你们掌握了方法没有。
54 × 34 = ? 18 × 78 = ? 36 × 56 = ?
72 × 89 = ? 45 × 67 = ? 27 × 45 = ? 81 × 23 = ?
上面的题目如果再扩展一下,把后面的连续数扩大到多位数。
如:123、234、345、2345、34567、123456、23456789等等
看一看有没有什么运算规律,或许你们都能找出快速的计算方法。
如果能的话,象
63 × 2345678 =
这样的题目你们用口算就能快速计算出结果来。
Ⅳ 什么样的口算方法又快又准
印度的九九乘法表是从1 背到19(→19×19乘法? ),
不过您知道印度人是怎么记 11到19 的数字吗?
我是看了下面这本书之后才恍然大悟的。 “印度式计算训练” 2007年 6月 10日第一版第 6 刷发行株式会社晋游社发售。该书介绍了加减乘除的各种快速计算方法。不过在这里我只介绍印度的九九乘法。因为实在太神奇了!!下面的数字跟说明都是引用该书P.44 的例子。
请试着用心算算出下面的答案:
13 X 12 = ?
( 被乘数) (乘数 )
印度人是这样算的。
****************************************************************************
第一步:
先把(13)跟乘数的个位数 (2)加起来
13 + 2 = 15
第二步:
然后把第一步的答案乘以10(→也就是说后面加个 0 )
第三步:
再把被乘数的个位数(3)乘以乘数的个位数 (2)
2 X 3 = 6
(13+2)x10 + 6 = 156
****************************************************************************
就这样,用心算就可以很快地算出11X11 到19X19了喔。这真是太神奇了!
我们试着演算一下
14×13:
(1)14+3=17
(2)17×10=170
(3)4×3=12
(4)170+12=182
16×17:
(1)16+7=23
(2)23×10=230
(3)6×7=42
(4)230+42=272
真的是耶,好简单喔 !
怎不早点让我知道呢 ?
有趣的是善舞银蛇还发现此算法只要对第二步稍作改变,就能演算19×19乘法以上的十位数相同的任意十位数,(第二步:把第一步的答案乘以10,改变为乘以被乘数和乘数相同的十位数。)此演算如被乘数和乘数的十位数不相同则不成立。
更有趣的是只要被乘数和乘教的十位数以上的数都相同,就能用同样方法演算。
我们试着演算一下
23 X 22 = ?
( 被乘数) (乘数 )
第一步:
先把(23)跟乘数的个位数 (2)加起来
23 + 2 = 25
第二步:
然后把第一步的答案乘以20(→也就是说后面加个 0 )
第三步:
再把被乘数的个位数(3)乘以乘数的个位数 (2)
2 X 3 = 6
(23+2)x20 + 6 = 506
我们试着再演算一下
54×53:
(1)54+3=57
(2)57×50=2850
(3)4×3=12
(4)2850+12=2862
76×77:
(1)76+7=83
(2)83×70=5810
(3)6×7=42
(4)5810+42=5852
854×853
(1)854+3=857
(2 )857×850=728450
(3)4×3=12
(4)728450+12=728462
Ⅵ 儿童口算心算速算方法
儿童口算心算速算方法具体如下:
一、30以内的两个两位数乘积的心算速算
1、两个因数都在20以内任意两个20以内的两个两位数的积,都可以将其中一个因数的”尾数”移加到另一个因数上,然后补一个0,再加上两“尾数”的积。例如:11×11=120+1×1=121 。
2、两个因数分别在10至20和20至30之间对于任意这样两个因数的积,都可以将较小的一个因数的“尾数”的2倍移加到另一个因数上,然后补一个0,再加上两“尾数”的积。例如: 22×14=300+2×4=308 。
3、两个因数都在20至30之间对于任意这样两个因数的积,都可以将其中一个因数的“尾数”移加到另一个因数上求积,然后再加上两“尾数”的积。例如:22×21=23×20+2×1=462 掌握此法后,30以内两个因数的积,都可以用心算快速求出结果。
掌握上述两方法后,30以内两个因数的积和大于70的两个两位数的积,都可以用心算快速求出结果。
儿童是指从生命诞生之始到成年期之前的人类,不同国家儿童时期的年龄段各有不同
Ⅶ 二年级快速口算技巧
1.多做多练,熟能生巧
“冰冻三尺,非一日之寒”,口算能力是孩子必备的基本功,我们应作出长计划,短安排,有目的、有计划、有步骤地进行教学和训练,体现出循序渐进的基本原则和按新的课程标准进行教学。
在日常生活中每天要坚持3—5分钟的口算训练,每天坚持练习1条口算题。开始是在家长的督促下完成,慢慢可放手使孩子形成习惯,自觉、自愿的完成。
2.保质、保量的训练
每次练习要记录完成1页所用的时间,做完后马上订正对错并分析错误原因。每做一次训练,都与上一次的速度比较一下,看看有没有进步,进步了,家长应当适当地赞扬一下小孩,说“真棒,有进步!”
孩子这时需要及时鼓励,正如在球场上拼搏的球员需要自己的队友当啦啦队一样,也可将他们优秀的练习张贴在家中醒目的地方作为激励,有时也可以给他们一个小小的奖品。
家长切不可一见自己的小孩的速度稍慢就急不可耐,说“真笨,怎么搞的!”如果当家长这样会对孩子有不利的影响,这是一件需要耐心和爱心才能做好的事情。
对有退步的孩子则可以和孩子一起分析退步的原因,然后再轻轻地摸着他们的头提出在以后口算中应该怎样去做,如果下次成绩提高了就及时表扬,鼓励他们继续努力,树立自信。
3.训练形式多样化
多做多练是前提,但孩子习惯对新鲜事物感兴趣,尤其喜欢在游戏中学习从中增长知识,如果长期单独某种练习,孩子是容易感到厌倦情绪的。
由此,口算练习要活泼、生动、多样化,在练习中可以采用的补充方式有:玩扑克牌(24点),听算,开火车,对口令,夺红旗,送信,找朋友,争擂台大王,定期检测等等。(要注意讲究实效、简便易行)
同时通过一些数学实践活动让孩子体会口算能力的培养对我们日常生活的重要性,(如买菜,逛超市等)。
4.理解算理,掌握巧算的方法
口算能力的提高,有赖于孩子对算理的理解,只有在理解的基上,才能收到举一反三的效果,大大提高口算的速度和准确性,并形成口算能力。为此要重视加强孩子对算理的理解。
例如:口算中常用的凑整法、凑十法、分解法,以及熟记一些常见的数据等。来看25×4=100 ,125×8=1000时,提醒孩子们能经常用它们作为口算的拐杖,有的时候还可以利用分解法将题目转换成有25×4=100,125×8=1000的形式。
让孩子将平时发现的巧算方法记下来,与同学分享。这样同时也培养了孩子口算的兴趣。
5.养成良好的计算习惯
养成良好的计算习惯,是提高孩子计算能力切实有效的办法。帮助孩子养成以下良好计算习,应该做到“一看、二想、三计算”的认真计算习惯。
计算是一件非常严肃认真的事情,来不得半点马虎,但恰恰有孩子没有良好学习习惯,拿到计算题后,没有看清数字,没有弄清运算顺序,就盲目的算起来。
例如:在计算6+4÷2这样一道简单的计算题时,由于孩子马虎,结果算成了5。如果在计算时,只要仔细一点,很容易看出这道题的运算顺序是先算除法再算加法,正确结果应该是8。
小学数学速算技巧
据说这是世界上最快的数学计算法!为了孩子,爸爸妈妈们必须收起来!
1、十几乘十几:
口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?
解: 1×1=1
2+4=6
2×4=8
12×14=168
注:个位相乘,不够两位数要用0占位。
2、头相同,尾互补(尾相加等于10):
口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
注:个位相乘,不够两位数要用0占位。
3、第一个乘数互补,另一个乘数数字相同:
口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
注:个位相乘,不够两位数要用0占位。
4、几十一乘几十一:
口诀:头乘头,头加头,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861
5、11乘任意数:
口诀:首尾不动下落,中间之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分别在首尾
11×23125=254375
注:和满十要进一。
6、十几乘任意数:
口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。
例:13×326=?
解:13个位是3
3×3+2=11
3×2+6=12
3×6=18
13×326=4238
注:和满十要进一。
Ⅷ 27乘21竖式怎么列
27×21=567
Ⅸ 乘法快速口算技巧
数学快速乘法技巧方法如下:
1.十几乘十几:
口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?
解: 1×1=1
2+4=6
2×4=8
12×14=168
注:个位相乘,不够两位数要用0占位。
2.头相同,尾互补(尾相加等于10):
口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
注:个位相乘,不够两位数要用0占位。
3.第一个乘数互补,另一个乘数数字相同:
口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
注:个位相乘,不够两位数要用0占位。
4.几十一乘几十一:
口诀:头乘头,头加头,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861
5.11乘任意数:
口诀:首尾不动下落,中间之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分别在首尾
11×23125=254375
注:和满十要进一。
6.十几乘任意数:
口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。
例:13×326=?
解:13个位是3
3×3+2=11
3×2+6=12
3×6=18
13×326=4238
注:和满十要进一。
Ⅹ 21乘27最简单的口算方法
21X20+21X7=420+147=567