1. 油气管道变形检测的技术方法有哪些
一、管道检测技术的发展方向
长输油气管道运行过程中通常受到来自内、外两个环境的腐蚀,内腐蚀主要由输送介质、管内积液、污物以及管道内应力等联合作用形成;外腐蚀通常因涂层破坏、失效产生。内腐蚀一般采
用情管、加缓蚀剂等手段来处理,近年来随着管道业主对管道运行管理的加强以及对输送介质的严格要求,内腐蚀在很大程度上得到了控制。目前国内外长输油气管道腐蚀控制主要发展方向是在外防腐方面,因而管道检测也重点针对因外腐蚀造成的涂层缺陷及管道缺陷。
近年来,随着计算机技术的广泛普及和应用,国内外检测技术都得到了迅猛发展,管道检测技术逐渐形成管道内、外检测技术(涂层检测、智能检测)两个分枝。通常情况下涂层破损、失效处下方的管道同样受到腐蚀,管道外检测技术的目的是检测涂层及阴极保护有效性的基础上,通过挖坑检测,达到检测管体腐蚀缺陷的目的,对于目前大多数布局北内检测条件的管道是十分有效的。管道内检测技术主要用于发现管道内外腐蚀、局部变形以及焊缝裂纹等缺陷,也可间接判断涂层的完好性。
二、管道外检测技术
埋地管道通常采用涂层与电法保护(CP)共同组成的防护系统联合作用进行外腐蚀控制,这2种方法起着一种互补作用:涂层是阴极保护即经济又有效,而阴极保护又使涂层出现针孔或损伤的地方受到控制。该方法是已被公认的最佳保护办法并已被广泛用于对埋地管道腐蚀的控制。
涂层是保护埋地管道免遭外界腐蚀的第一道防线,其保护效果直接影响着电法保护电流的工作效率,NACE1993年年会第17号论文指出:“正确涂敷的涂层应该为埋地构件提供99 %的保护需求,而余下的1%才由阴极保护提供”。因此要求涂层具有良好的电绝缘性、黏附性、连续性及耐腐蚀性等综合性能,对其完整性的维护是至关重要的。涂层综合性能受许多因素的影响,诸如涂层材料、补口技术、施工质量、腐蚀环境以及管理水平等,并且管道运行一段时间后,涂层综合性能会出现不同程度的下降,表现为老化、龟裂、剥离、破损等状况,管体表面因直接或间接接触空气、土壤而发生腐蚀,如果不能对涂层进行有效的检测、维护,最终将导致管道穿孔、破裂破坏事故。
涂层检测技术是在对管道不开挖的前提下,采用专用设备在地面非接触性地对涂层综合性能进行检测,科学、准确、经济地对涂层老化及破损缺陷定位,对缺陷大小进行分类统计,同时针对缺陷大小、数量进行综合评价并提出整改计划,以指导管道业主对管道涂层状况的掌握,并及实践性维护,保证涂层的完整性及完好性。
国内实施管道外检测技术始于20世纪80年代中期,检测方法主要包括标准管/地电位检测、皮尔逊(Pearson)涂层绝缘电阻测试、管内电流测试等。检测结果对涂层的总体评价到了重要作用,但在缺陷准确定位、合理指导大修方面尚有较大的差距。近年来,通过世界银行贷款以及与国外管道公司交流,管道外检测设备因价格相对较为便宜,操作较为方便,国外管道外间的技术已广泛应用于国内长输油气管道涂层检测,目前国内管道外检测技术基本上达到先进发达国家水平,在实际工作中应用较为广泛的外检测技术主要包括:标准管/地电位检测、皮尔逊检测、密间距电位测试、多频观众电流测试、直流电为梯度测试。
1. 标准管/地点位检测技术(P/S)
该技术主要用于监测阴极保护效果的有效性,采用万用表测试接地CU/CuSO4电极与管道金属表面某一点之间的电位,通过电位距离曲线了解电位分布情况,用以区别当前电位与以往电位的差别,还可通过测得的阴极保护电位是否满足标准衡量涂层状况。该法快速、简单,现仍广泛用于管道管理部门对管道涂层及阴极保护日常管理及监测中。
2. 皮尔逊监测技术(PS)
该技术是用来找出涂层缺陷和缺陷区域的方法,由于不需阴极保护电流,只需要将发射机的交流信号(1000 Hz)加载在管道上,因操作简单、快速曾广泛使用与涂层监测中。但检测结果准确率低,以受外界电流的干扰,不同的土壤和涂层段组都能引起信号的改变,判断是缺陷以及缺陷大小依赖于操作员的经验。
3. 密间距电位测试技术(CIS、CIPS)
密间距电位测试(Close Interval Survey)和密间距极化电位(Close Interval Potential Survey)监测类似于标准管/地电位(P/S)测试法,其本质是管地电位加密测试和加密断电电位测试技术。通过测试阴极保护在管道上的密集电位和密集化电位,确定阴极保护效果的有效性,并可间接找出缺陷位置、大小,反映涂层状况。该方法也有局限性,其准确率较低,其准确率较低,依赖于操作者经验,易受外界干扰,有的读书误差达200~300 mV。
4. PCM多频管中电流测试
多频管中点留法是监测涂层漏电状况的新技术,是以管中电流梯度测试法为基础的改进型涂层检测方法。它选用了目前较为先进的PCM仪器,按已知检测间距测出电流量,测定电流梯度的分布,描绘出整个管道的概貌,可快速、经济地找出电流信号漏失较严重的管段,并通过计算机分析评价涂层的状况,再使用PCM仪器的“A”字架检测地表电位梯度精确定位涂层破点。该方法是与不同规格、材料的管道,可长距离地检测整条管道,受涂层材料、地面环境变化影响较小,适合于复杂地形并可对涂层老化状况评级;可计算出管段涂层面电阻 R g值,对管道涂层划分技术等级,评价管道涂层的状况,提出涂层维护方式。采用专用的耦合线圈,还可对水下管道进行涂层检测。
5. 直流电位梯度(DCVG)方法
该方法通过检测流至埋地管道涂层破损部位的阴极保护电流在土壤介质上产生的电位梯度(即土壤的 IR降)并依据IR降的百分比来计算涂层缺陷的大小,其优点在于不受交流电干扰,通过确定电流是流入还是流出管道,还可判断管道是否正遭受到腐蚀。
6. 几种测试方法的比较
近几年,笔者在四川龙——苍线、工——自线、泸——威线、申——倒线等多条管道涂层及阴极保护有效性检测方面,对上述几种方法进行了比较,发现各种涂层缺陷检测技术都是通过在管道上加载直流或交流信号来实现的,不同的仅是在结构上、性能上、功用上的差异。每种方法各有侧重,在对涂层综合性能评价方面均具有一定说服力,但各有利弊。
为克服单一检测技术的局限性,现场检测中笔者发现综合几种检测方法对涂层缺陷进行检测,可以弥补各项技术的不足。对于由阴极保护的管道,可先参考日常管理记录中(P/S)的测试值,然后利用CIPS技术测量管道的管地电位,所测得的断电电位可确定阴极保护系统效果,在判断涂层可能有缺陷后,利用DCVG技术确定每一缺陷的阴极和阳极特性,最后利用DCVG确定缺陷中心位置,用测得的缺陷泄漏电流流经土壤造成的IR降确定缺陷的大小和严重性,以此作为选择修理的依据。对于未事假阴极保护的管道,可先用PCM测试技术确定电流信号漏失较严重的管段,然后在PCM使用的“A”字架或皮尔逊检测技术精确定位涂层破损点,确定涂层破损大小。PCM测试技术也可用于具有阴极保护的管道,其检测精度略低于DCVG技术。
由于所有涂层检测技术均是在管道上施加电信号,因此各种技术均存在一些不足,对某些涂层缺陷无法查找,如部分露管涂层破损处管体未与大地接触,信号因不能流向大地形成回路,只能通过其他手段查找;因屏蔽作用,不适用于加套管的穿越管线;所有技术均不能判定涂层是否剥离。
三、管道内检测技术
管道内检测技术是将各种无损检测(NDT)设备加在岛清管器(PIG)上,将原来用作清扫的非智能改为有信息采集、处理、存储等功能的智能型管道缺陷检测器(SMART PIG),通过清管器在管道内的运动,达到检测管道缺陷的目的。早在1965年美国Tuboscopc公司就已将漏磁通(MFL)无损检测(NDT)技术成功地应用于油气长输管道的内检测,紧接着其他的无损内检测技术也相继产生,并在尝试中发现其广泛的应用前景。
目前国外较有名的监测公司由美国的Tuboscopc GE PII、英国的British Gas、德国的Pipetronix、加拿大的Corrpro,且其产品已基本上达到了系列化和多样化。内检测器按功能可分为用于检测管道几何变形的测径仪、用于管道泄漏检测仪、用于对因腐蚀产生的体积型缺陷检测的漏磁通检测器、用于裂纹类平面型缺陷检测的涡流检测仪、超声波检测仪以及以弹性剪切波为基础的裂纹检测设备等。下面对应用较为广泛的几种方法进行简要介绍。
1. 测径检测技术
改技术主要用于检测管道因外力引起的几何变形,确定变形具体位置,有的采用机械装置,有的采用磁力感应原理,可检测出凹坑、椭圆度、内径的几何变化以及其他影响管道内有效内径的几何异常现象。
2. 泄漏检测技术
目前较为成熟的技术是压差法和声波辐射方法。前者由一个带测压装置仪器组成,被检测的管道需要注以适当的液体。泄漏处在管道内形成最低压力区,并在此处设置泄漏检测仪器;后者以声波泄漏检测为基础,利用管道泄漏时产生的20~40 kHz范围内的特有声音,通过带适宜频率选择的电子装置对其进行采集,在通过里程轮和标记系统检测并确定泄漏处的位置。
3. 漏磁通过检测技术(MFL)
在所有管道内检测技术中,漏磁通检测历史最长,因其能检测出管岛内、外腐蚀产生的体积型缺陷,对检测环境要求低,可兼用于输油和输气管道,可间接判断涂层状况,其应用范围最为广泛。由于漏磁通量是一种相对地噪音过程,即使没有对数据采取任何形式的放大,异常信好在数据记录中也很明显,其应用相对较为简单。值得注意的是,使用漏磁通检测仪对管道检测时,需控制清管器的运行速度,漏磁通对其运载工具运行速度相当敏感,虽然目前使用的传感器替代传感器线圈降低了对速度的敏感性,但不能完全消除速度的影响。该技术在对管道进行检测时,要求管壁达到完全磁性饱和。因此测试精度与管壁厚度有关,厚度越大,精度越低,其适用范围通常为管壁厚度不超过12 mm。该技术的精度不如超声波的高,对缺陷准确高度的确定还需依赖操作人员的经验。
4. 压电超声波检测技术
压电超声波检测技术原理类似于传统意义上的超声波检测,传感器通过液体耦合与管壁接触,从而测出管道缺陷。超声波检测对裂纹等平面型缺陷最为敏感,检测精度很高,是目前发现裂纹最好的检测方法。但由于传感器晶体易脆,传感器元件在运行管道环境中易损坏,且传感器晶体需通过液体与管壁保持连续的耦合,对耦合剂清洁度要求较高。因此仅限于液体输送管道。
5. 电磁波传感检测技术(EMAT)
超声波能在一种弹性导电介质中得到激励,而不需要机械接触或液体耦合。这种技术是利用电磁物理学原理以新的传感器替代了超声波检测技术中的传统压电传感器。当电磁波传感器载管壁上激发出超声波能时,波的传播采取已关闭内、外表面作为“波导器”的方式进行, 当管壁是均匀的,波延管壁传播只会受到衰减作用;当管壁上有异常出现时,在异常边界处的声阻抗的突变产生波的反射、折射和漫反射,接收到的波形就会发生明显的改变。由于基于电磁声波传感器的超生壁检测最重要的特征是不需要液体耦合剂来确保其工作性能。因此该技术提供了输气管道超声波检测的可行性,是替代漏磁通检测的有效方法。
2. 储油气层的检测方法常规分析有哪些
1)薄片及铸体薄片鉴定
表2—3 岩浆岩及变质岩储油气层特征(1)砾岩。
镜下一般只能鉴定细砾岩,鉴定时使用低倍镜。在手标本鉴定基础上进一步鉴定砾石成分与填隙物成分和结构等。
(2)砂岩。
①成分及含量。
a.碎屑颗粒,指石英、长石、岩屑(包括岩浆岩、变质岩、沉积岩)及其它如重矿物及云母等颗粒。
b.杂基,主要指泥质和细粉砂。
c.胶结物,指铁质、硅质、碳酸盐矿物(方解石、白云石、铁白云石、菱铁矿等),自生的粘土矿物(高岭石、蒙皂石、绿泥石、伊/蒙混层等),其次还有石膏、硬石膏、海绿石等,判断它们含量及形成顺序。
②结构:a.颗粒结构,颗粒大小、形状、磨圆等;b.填隙物结构;c.孔隙(包括孔隙含量类型、大小、几何形状、连通性、分选性),铸体薄片可有效地统计面孔率;d.支撑型与胶结类型。
③显微构造:如微递变、微冲刷、微细层理等。
④含油及化石情况。
⑤岩石定名:颜色+构造+粒度+成分。一般砂岩类型可分为纯石英砂岩、石英砂岩、次岩屑长石砂岩或次长石岩屑砂岩、长石岩屑砂岩或岩屑长石砂岩、长石砂岩、岩屑砂岩等。
⑥砂岩的成岩作用。
⑦砂岩成因分析。
应从以下几方面入手:
a.从碎屑成分看陆源区母岩性质及大地构造情况;b.从成分成熟度看风化作用强弱和搬运距离;c.从结构成熟度(分选、磨圆、杂基含量)及沉积构造看搬运介质方式,推断沉积环境;d.从化学胶结物推断成岩环境及成岩作用;e.从颜色(岩石及胶结物)推断沉积环境。
(3)火山碎屑岩。
火山碎屑岩是火山作用产生的各种碎屑物沉积后,经熔结、压结、水化学胶结等成岩作用形成的岩石。
在薄片下可确定火山碎屑物由石屑(包括岩屑、火山弹、塑性岩屑)、晶屑、玻屑(刚性及塑性岩屑)组成。
与石油储层密切相关的岩石为凝灰岩、沉凝灰岩及火山碎屑沉积岩。
在薄片鉴定中要密切注意火山碎屑岩中原生或次生孔、洞、缝发育、保存与充填情况。
(4)泥岩(粘土岩)。
在手标本基础上进一步鉴定粘土岩成分。包括机械混入物成分及含量,自生矿物种类,形状、含量,生物化石等,鉴定结构、构造次生变化、结合X衍射资料对泥岩定名。
(5)碳酸盐岩。
在手标本肉眼观察鉴定的基础上,偏光显微镜下系统描述鉴定岩石薄片:
①矿物成分。碳酸盐岩中常见矿物有:a.碳酸盐矿物主要是方解石、白云石,其次是铁白云石、铁方解石、菱铁矿、菱镁矿和菱锰矿等;b.自生的非碳酸盐矿物,如石膏、硬石膏、重晶石,天青石、石英、海绿石等;c.陆源碎屑混入物,如粘土矿物、石英、长石及一些重矿物等。
②结构组分和结构类型。
碳酸盐岩的结构在一定程度上反映了岩石的成因,它是岩石的重要鉴定标志,也是岩石分类命名的依据。
a.具颗粒结构的碳酸盐岩,颗粒类型包括内碎屑、鲕粒、生物颗粒、球粒、藻粒等;填隙物由化学沉淀物(亮晶胶结物)及泥晶基质及少量陆原杂基及渗流粉砂组成;注意它们的胶结类型。
b.具晶粒结构的碳酸盐岩,注意晶粒的大小,自形程度。
c.具生物格架的碳酸盐岩描述造礁生物种类、骨架的显微结构、矿物成分,大小分布等特点。
③沉积构造。
包括显微层理、微型冲刷、充填构造、结核构造、缝合线及成岩收缩缝等,乌眼及示底构造、生物钻孔、潜穴生物扰动等。
④成岩作用。
主要有溶解作用、矿物的转化作用和重结晶作用、胶结作用、交代作用、压实作用和压溶作用。注意观察这些成岩阶段(同生期、早成岩期、晚成岩期、表生期)、不同成岩环境(海底成岩环境和大气淡水成岩环境,浅—中埋藏成岩环境、深埋藏成岩环境、表生成岩环境)中的特点和识别标志。
⑤孔隙和裂缝。
用铸体薄片观察原生及次生孔隙,以次生孔隙发育为特征的储层还包括构造裂缝描述与观察。从孔隙结构类型来讲,主要有粒内、粒间、晶间、生物格架、遮蔽、鸟眼、铸模等孔隙,还有溶孔、溶缝、溶沟、溶洞等。
⑥岩石综合定名。
附加岩石名称(颜色+成岩作用类型+特殊矿物+特殊结构)+岩石基本名称(结构命名+矿物成分)命名,主要岩石类型有:泥晶灰岩或白云岩、粒屑泥晶灰岩或白云岩、泥晶粒屑灰岩或白云岩、亮晶粒屑灰岩或白云岩。
⑦环境分析。
a.颗粒形成环境;b.颗粒沉积环境;c.成岩研究。
(6)岩浆岩与变质岩。
①岩浆岩。我国岩浆岩储层的岩石类型以熔岩为主,最主要的是玄武岩和安山岩、次火山岩、流纹岩和脉岩类。
②变质岩。包括区域变质岩、混合岩、接触变质岩和动力变质岩。
2)孔隙度、渗透率、含油气饱和度、含水饱和度测定储层孔隙特征的研究是储层研究的一项重要内容,这是因为关系着储层的储集性能和产能。流体在储集层中的渗流不仅受限于宏观储层的几何形态而更多的受微观的孔隙特征所制约,因而研究储层的孔隙特征对储层的认识与评价,油气层产能的预测、油水在油层中的运动、水驱油效率及提高采收率均具有实际意义。
(1)孔隙度。
岩样的总孔隙度Φ=Vp/Vf是指岩样所具有的孔隙度容积Vp与岩样的外表体积Vf的比值,通常以百分数表示。
通常使用的孔隙度为有效孔隙度Φe=Vep/Vf,其中Φe为有效孔隙度(流动连通孔隙度),Vep为有效孔隙体积(除去死孔隙及微毛细管孔隙)。有效孔隙度是计算储量和评价储层特性的重要指标,在实验室常用饱和煤油法及气体法进行测定。
(2)渗透率。
在一定的压差下岩石连通的孔隙系统可以让油、气、水在其中流动。为衡量流体通过多孔介质的能力通常采用渗透率来量度。当岩石为单流体100%饱和且流体与岩石不发生任何物理化学作用时所测得的岩石渗透率为绝对渗透率。
决定渗透率的因素:①孔隙半径,K=Φr2/8(K渗透率、Φ孔隙度、r孔隙半径);②岩石比表面,岩石比表面越大,渗透率越小;③渗透率随岩石颗粒变细而急剧下降,砂岩渗透率随着泥质含量增加而急剧下降,另外油层岩石的沉积条件及埋藏深度也影响渗透率大小。
孔隙度、渗透率资料必须绘制孔隙度直方图、渗透率直方图等。
(3)流体饱和度。
所谓饱和度系指单位体积内油、气、水所占的体积百分数。
式2—1中:Vo、Vg、Vw分别为油、气、水在油层孔隙中所占体积;So、Sg、Sw分别为油、气、水饱和度。
3)粒度分析、重矿分析(1)粒度分析。
测定碎屑沉积物中不同粗细颗粒含量的方法称粒度分析。粒度是碎屑沉积物的重要结构特征,是其分类命名(如砾、砂、粉砂、粘土等)的基础,是用来研究其储油性能的重要参数(如粒度中值、分选系数等),有时也可用粒度资料作为地层对比的辅助手段。但是粒度分析更广泛地应用于沉积学的研究,近几年来已成为沉积环境研究的重要标志。
①粒度分析方法。
a.筛析法;b.沉降法;c.薄片粒度分析。
目前已发展成用图像法及颗粒计数法来取代人工薄片颗粒计数法。
②粒度分析资料整理。
a.编制粒度分析数据表(各粒度的重量百分比及各粒级累积重量百分比),数据绘制成图(包括直方图、频率曲线图、累积曲线图、概率曲线图、C—M图);b.粒度参数:粒度平均值(Mz)、中值(Md)、众数(Mo)、标准偏差(σ1)、偏度(SK1)、峰度(Kg)。
(2)重矿分析。
将砂岩中比重大于2.86的矿物分离出来进行专门研究的方法叫重矿分析,重矿物在碎屑岩中含量很少,一般不超过1%,主要分布在0.25~0.05mm粒级内。
重矿物资料分析及意义。
①母岩性质分析:不同类型母岩其重矿物组合不同,利用重矿物组合与含量变化来解释母岩区(表2—4)。
②物质来源方向分析:利用水平方向上重矿物种类和含量变化图,可以推测物质的几个来源方向。
③母岩侵蚀顺序确定:重矿物剖面同一侵蚀区上下层位可有不同的母岩,随时间进展,最先侵蚀的最上面层位的岩层,它们产生的物质(包括重矿物组合)在沉积区是沉积在最底层;最后受侵蚀的是最下部层位的母岩,但沉积在最上部层位中。
表2—4 不同母岩的重矿物组合④划分和对比地层。
3. 储油气层的检测方法是什么
1.常规分析1)薄片及铸体薄片鉴定
表2—16 岩屑含油等级指数(以冀东油田为例)
(4)油田水及干酪根中有机酸测定。
油田水及干酪根中的有机酸在埋藏成岩次生孔隙形成中有重要的作用。这些低碳酸(C1—C6)的单、双官能团羧酸(包括甲、乙、丙、丁、戊酸及甲二酸、乙二酸、丙二酸、丁二酸、戊二酸)能有效地络合矿物中的铝,形成易溶于水的有机盐,从而大大提高了铝硅酸盐及碳酸盐矿物的溶解度,导致孔隙度增加。因而有机酸高浓度带也就是次生孔隙发育带。
Surdam R.C.(1982)对次生孔隙形成曾作了系统的实验研究。研究结果表明,导致碳酸盐矿物,特别是硅酸盐矿物溶解的是孔隙水中的羧酸。
Carothers和Kharaba(1978)曾查明,在80~140℃的温度范围内,油田水中所含羧酸可达100~1000μg/g。
目前,测定有机酸的方法有离子色谱法、气相色谱法、液相色谱法、毛细管电泳法等多种。
4. 测量储罐液位的方法有哪些
液位测量有哪些测量方法?
在许多公司和应用领域中,必须进行液位测量。可以连续检查现有货物数量,以保护不得空转或出于其他原因运行的电动机和泵。用户可以在工业规模上使用许多不同的技术。我们介绍了不同的变体及其优点和缺点。
进行全面液位测量的充分理由
并不是每个工厂和区域都需要液位测量。但是对供应淡水或灰水,持续测量也很重要。在这种情况下,将安装合适的液位传感器,该液位传感器会显示液位的绝对值或在超过或未达到某些极限值时触发警报。所用方法的类型尤其取决于各个测量要求,还取决于液体的类型及其粘度。因此,重要的是要预先确定合适的合适的液位测量技术。
各种测量方法概述
首先,我们应该概述一下液位测量的不同方法。因为可以根据简单的标准区分不同的测量方法。一个区别在于:
机械测量方法
电导率测量
电容测量
光学测量
以及其他应用领域受限的方法
连续测量和限位开关
基本上,首先必须细分各种测量方法。连续液位测量与液位限位开关的使用有所区别。当存在的液体量超过或低于限值时,这些限位开关始终跳闸。这些系统通常根据非常简单的原理工作,并在许多行业和制造领域中使用。但是,如果要监视和控制液体的相对量,则只能进行连续的液位测量。这可以使用各种方法监控储罐或水池中的当前液位,因此可以输出固定的算术变量,其他机器可以在数据处理中采用该变量。通常,使用自动化系统时只能考虑连续的液位测量。
01
机械测量方法
机械测量方法使用许多不同的方法来实现全面而精确的物位测量。最简单的形式是浮子,它浮在液体上。根据浮子的高度,可以确定水箱中的水位,并可以计算水位。游泳者可用于许多不同的场景和应用领域。振动传感器也属于机械测量方法。通常,制造一种音叉来使压电振动,并将其引入液体介质中。介质和介质的数量会改变声音信号的频率。只能在某些区域有效使用的液位传感器。也经常使用所谓的静液压液位测量。计算液体表面和底部之间的压力差,以便液位传感器可以确定液位的确切液位,这种液位测量方法也称为压力差测量。另一个机械式液位测量是使用所谓的液位探头,对于我们的解决方案,我们也更喜欢这种探头。这种液位传感器保留在液体中,并使用静液压原理确定液位。压敏传感器元件可以精确地测量压力及其变化并将其转换为电信号,该电信号可以传输到各种输出设备。
02
深度电导率测量
根据液体的类型及其性质,在不同的情况下使用导电性测量,即电导率测量。电流通过两个电极之间的液体。但是,使用这种方法只能记录特定级别。因此,这种液位传感器仅是用于液位检测的装置,并且只能与导电液体一起使用。液体介质的电导率也可用于热导率测量。涉及由于与液体接触而导致的加热元件上的温度变化。因此,您可以看到各种电导率测量方法仅在一定程度上适用于液位测量,因此仅在特殊条件下使用。
03
电容测量
电容测量通常仅在某些液体中才可能进行,因为电极处的电容会根据介质和浸入深度而变化。使用这种液位传感器,取决于介质,可以实现连续测量和纯极限值采集。
04
其他测量方法概述
还有其他液位测量方法可以与适当的液位传感器和适当的介质一起使用。其中包括使用超声波或高频微波进行液位测量,还包括使用雷达和辐射测量法进行测量。但是,许多这些方法仅在非常有限的应用领域中使用。通常在无法使用常规液位传感器的地方。
5. (三)油气检测方法
找到了砂体并不意味着找到了油气,勘探的目的在于寻找油气而不在于寻找砂体,如何判断砂体是否含有油气是提高钻探成功率的关键。在对飞雁滩地区上百口探井及开发井进行统计分析的基础上,通过储层的精细标定,发现不同类型的河道沉积微相,其含油气性也存在较大的差别。通常主河道及牛轭湖微相,在沉积时,由于物源丰富,水动力条件较强,砂岩粒度适中,储渗条件相对较好,含油级别高,其地震特征为 “强波谷、低频,有下拉现象”,平面上呈弯曲的长条形展布,如钻遇的埕 130 “S”形河道上的井均获工业油流。而堤岸、决口扇及河漫滩沉积,其储层物性稍差,因而含油性较差,如埕 131 井。以上现象说明了砂体成藏的复杂性及进行含油气预测的必要性。
图 8-27 飞雁滩地区馆陶组 14 + 5孔隙度、渗透率预测图 (红色为高值区)
1.正演模拟砂岩振幅与厚度、含油性及沉积相的关系
从统计的飞雁滩油田砂层厚度与振幅的散点图来看,表面上看杂乱无章,不具备理论上的调谐厚度范围内振幅与厚度的理想线性关系,但总体趋势表现为振幅随地层厚度增加而增加。仔细分析后发现,这些散点呈油水相间的 4 个条带。每一条带内振幅随厚度线性增大的趋势十分清楚。形成上述现象的原因我们分析认为,主要是不同沉积相带、不同含油属性的砂体存在速度差异所致。因为从速度与振幅、速度与频率的关系来看,速度与振幅具有明显的正相关,而速度与频率则呈现负相关的特性。
为进一步探讨砂岩振幅与厚度、含油性及沉积相的关系,通过理想模型进行了分析。设计了一个菱形地质模型,选取 2450、2500、2550、2600 m/s 分别作为非河道油砂、非河道水砂、河道油砂、河道水砂的速度,以 2200 m/s 作为泥岩的速度,分别进行正演褶积,提取相应的振幅参数进行对比研究。发现当泥岩围岩速度不变的情况下,河道含水砂岩、河道含油砂岩、非河道水砂和非河道油砂,在调谐厚度变化范围内,各自厚度与振幅具有典型的线性变化关系,呈现明显的 4 个条带 (图 8-28)。厚度与振幅的线性变化关系,可以表示为:
H = K1* Am + K2
式中: K1、K2为常数; H 为厚度; Am 为振幅。
从对比来看,同一沉积亚相同种属性的砂岩厚度每增加 5 m 振幅提高 200 ~240。同一厚度同一沉积亚相的砂岩水层比油层振幅高100 ~120,相当于同种属性砂岩厚度增加1.5 ~2.5m。同种属性、同样砂层厚度,河道砂岩比非河道砂岩振幅高 220 ~240。由此来看,馆上段河道砂体油藏砂岩储层的振幅与砂层的厚度、沉积相及含油性等有密切的关系,三者都不同程度地控制了振幅的变化,但以沉积亚相和砂层厚度对振幅的贡献最大。
2.气藏的预测
气藏以亮点为特征,但不同沉积亚相其亮点的强度不同,通过对工区亮点进行分类,对亮点边界和气水边界正演分析,可以较好地落实气藏的分布范围。
(1)亮点的分类及沉积亚相划分
通过对本区 20 多口井的气层厚度、深度、速度、自然电位特征形态及地震相的气层振幅的资料统计,拟合了本区亮点河道亚相与非河道亚相气层厚度与振幅的不同关系曲线,确定了Ⅰ、Ⅱ类亮点相对振幅分区门槛值为 7000,确定了河道亚相和非河道亚相亮点含气的相对振幅门槛值为 3000、2000 (图 8-29)。
通过对本区已知井振幅与速度的统计可以看出,非河道亚相具有相对较高的层速度和相对较低的振幅值,而河道亚相正好相反,具有相对较低的层速度和相对较高的振幅值,从实际统计的资料出发,我们设计了河道亚相和非河道亚相气砂体正演模型,通过提取其地震响应的振幅参数,并与相应的气层厚度拟合关系曲线,可以看出,其振幅与厚度的变化规律与根据实际井资料反演的储层厚度的变化规律相吻合,从而证明了用井资料所反演储层厚度的方法是正确的。
从河道亚相与非河道亚相振幅与厚度的拟合曲线图上还可以看出,Ⅱ类亮点区包括有两种沉积亚相: 河道亚相、非河道亚相。对比要区分开来,才能确保反演气层厚度和储量计算的准确性。为此,我们主要依据亮点的形态进行划分: 河道沉积的条带状亮点、废弃河道形成的牛轭状亮点归为河道亚相; 漫滩沉积的薯仔状亮点、决口扇形成的烧瓶状亮点归为非河道亚相。
综上所述,对每个亮点不仅进行Ⅰ、Ⅱ类的划分,还要进行沉积亚相的划分,这样就为下一步不同沉积亚相亮点气层厚度反演的准确性和亮点储量计算的可靠性打下了必要的基础。
(2)亮点边界与气水边界划分
1)亮点边界的确定。从模型分析和实际井的统计规律看出,河道亚相和非河道亚相振幅和厚度曲线分区明显,所以在确定亮点边界时,河道亚相和非河道亚相的亮点边界的门槛值不同,所以根据实际井的统计规律把河道亚相的亮点振幅值大于 3000 和非河道亚相亮点振幅值大于 2000 的范围确定为亮点含气的范围。
图 8-28 河道砂体的振幅与厚度、沉积相及含油性关系图
图 8-29 飞雁滩地区气层厚度与振幅关系图
2)亮点气水边界的模型分析。飞雁滩气田的储层主要有纯气和气水砂岩两种,能否利用地震资料确定气水边界呢? 为此,我们根据本区实际的地质资料设计了气水砂岩的透镜体模型,从其地震响应提取振幅值,制作厚度与振幅变化曲线,可以看出,当透镜体厚度大于 36 m (即 λ/2)时,气水边界才表现出来 (图 8-30),由于本区砂岩为曲流河的沉积,厚度一般小于 36 m,所以在本区确定气水砂岩的气水边界是十分困难的。
图 8-30 亮点气水边界的模型分析
3.油藏的检测
(1)瞬时子波吸收分析技术
地震波在地下传播过程中,除整体能量衰减外,频率成分也随介质不同而有不同程度的衰减。由于介质的黏滞效应,地震波高频成分将在传播过程中衰减,特别是在疏松介质或孔隙内充满气体的介质中,地震波高频能量将会很快衰减。因此地震波在传播过程中其高频能量衰减规律可用于岩石类型、孔隙度、流体类型等分析。吸收分析就是利用这一原理来分析储层的含油、气特征 (图 8-31)。在实际应用时可使用 Metalink 系统来分析储层的含油气性,Metalink 系统是一种瞬时子波吸收分析软件系统,该系统利用地震振幅信息预测油气藏,保幅处理和油气检测是其两项关键技术。传统的地震资料处理方法由于受到资料品质和计算能力的限制而过多的使用数字假设和约束,使地震资料的频谱和振幅纵横向相对关系受到很大程度的改造,这样就不可能得到理想的保幅成果。为了确保提取的地震信息的准确性,Metalink 系统首先对地震资料进行高分辨率、高信噪比和高保真方法处理,使地震信息保持相对振幅、保持频率、保持波形。在此基础上进行基于子波的能量吸收分析,即在复赛谱上分离地震子波和反射系数序列,求取能时变、空变的地震子波,再求取瞬时子波能量衰减的垂向分布规律,消除强反射的干扰,在叠后资料中准确分析出含油、气储层的吸收异常 (王宏语,2007)。
图 8-31 瞬时子波吸收分析原理(据王宏语,2007)
瞬时子波吸收分析技术应用的主要模块包括以下几方面:
1)PID 相位反演反褶积。地震记录频谱上,子波相当于平滑的成分,而反射系数及噪声表现为频谱的 “毛刺”。地震记录可以表示为子波与反射系数的褶积,地震记录的频谱是子波频谱与反射系数频谱的乘积,即 S(f)= W(f)·Rc(f),取对数后 S'(f)= W'(f)+Rc'(f),再经逆傅立叶变换到时间域 (复赛谱)。子波和反射系数分别位于复赛谱的近、远时端,这样就可设计一个时域滤波器分离出时变、空变子波。子波内包含地震波传播过程中的各种振幅和相位信息,反褶积后可消除多次波及非地表一致性影响,对叠后资料还可达到谱平衡的效果 (王宏语,2007)。
2)PMO 相位动校正。一种无需输入速度的道集内相位拉平方法。首先考察地震资料的振幅谱 和相位谱 arccos
济阳坳陷北部馆陶组油气地质与勘探技术
济阳坳陷北部馆陶组油气地质与勘探技术
可见,只有相位谱才包含地震旅行时信息。这样,道集内在保留每道振幅谱的同时,使用近偏移距道相位谱代替远道,即可实现相位拉平。PMO 能相对保幅处理展平非双曲线相位。
3)WEA 瞬时子波吸收分析。地震记录是地震子波与反射系数的褶积,反射系数是地层格架序列的组合,并不代表地层吸收特性,由于反射系数干扰了地震频谱,吸收分析的结果也势必受反射系数的影响,造成 “假亮点”现象,即强反射就有强吸收,这大大制约了吸收分析的实际应用效果。反射系数的干扰致使吸收分析在很大程度上受到反射振幅强弱的影响,而地震子波是地震波在传播过程中受大地滤波作用的综合载体,稳健的吸收分析应在子波频率衰减分析的基础上进行。WEA 就是利用这一原理,在地震道记录滑动时窗计算地震子波,利用全记录道信息在频率补零时域道内插以得到可靠的小时窗地震频谱。再使用 PID 相位反演反褶积子波提取技术在复赛谱域提取子波的振幅谱,拟合谱上的高频能量衰减曲率。由于计算过程是小时窗滑动计算,可以得到新的子波高频能量衰减曲率值曲线。为消除大地滤波造成的衰减随埋深增加的影响,还需使用趋势分析方法分离出剩余衰减曲率输出形成新的吸收预测道。这样去除自然吸收背景后的异常更能反映目标储层的吸收衰减作用,而不受地层埋深的限制。
当然,任何地球物理分析手段都要受到信噪比的影响,WEA 也不例外,在低信噪比地区需谨慎分析。至于分辨率,由于小时窗滑动分析,已摆脱了 λ/ 4 的限制,但仍然要受地震采样率的制约。从实现过程可以看出,WEA 完全利用地震信息,不需要测井资料的约束。然而,WEA 计算的吸收系数是个相对值,无法利用数值去识别气层,这个过程需要井信息的刻度。WEA 反映强弱关系,利用已知气井位置拾取吸收系数 μ0,大于该值的区域可以认为是气层或油层,再利用已知干井位置拾取吸收系数 μ1,小于该值的区域可以认为不是气层或油层 (王宏语,2007)。
实例: 飞雁滩馆上 14 + 5砂组瞬时子波分析。在地震信息分析的基础上,确定瞬时子波吸收分析参数,主要包括不同频率、子波长度、滑动时窗大小和吸收分析种类等参数。在此基础上首先对过油气井的地震剖面进行参数试验和效果实验。Metalink 系统可以直接对三维地震数据进行瞬时子波吸收分析,但由于数据量太大,那样将会花很长时间。所以,将 3D 地震数据按线方向和道方向隔 10 线和10 道抽成2D 地震数据,对它们用与前述过井剖面相同的处理参数进行瞬时子波吸收分析,然后将处理结果 (segy 格式文件)加载到别的地震属性系统 (如 MDI)进行显示,并进行沿层吸收属性提取 (剖面本身是吸收分析结果,提取其总能量就是吸收强度),形成吸收分析剖面图及平面图。通过与实际钻井对比,该技术可以较好地预测油藏的平面分布 (图 8-32,图 8-33),吻合率达到了 80%。
(2)瞬时频率法
瞬时频率法是通过提取砂体的瞬时频率参数对其是否含油进行判断。在飞雁滩地区,通过提取瞬时频率参数及对多口井的统计表明: 瞬时频率小于 34Hz 一般为含油区,瞬时频率大于 40Hz 为含水区,瞬时频率在 34 ~40Hz 之间为油水过渡带。在飞雁滩地区依据瞬时频率进行砂体的含油气判别所部署的井位大都与钻井情况相符合 (图 8-34)。由此可得出这样的推论,砂体含流体的不同造成对地震波频率的选择性吸收,在地震剖面上表现为砂体含油后以低频成分为主,砂体含水后以高频成分为主。从应用情况看,该方法适合于判别河道砂体是否含有油气。
图 8-32 瞬时子波吸收分析剖面图
图 8-33 馆陶组 14 + 5砂组瞬时子波吸收分析图
图 8-34 飞雁滩地区瞬时频率和砂体的关系
6. 储油罐油气检测标准
一) 重质油品分类
1、 风险重质油品:即加工工艺可能出现溶剂等轻组分进入,形成混合性爆炸气体的重质油品,扫线前需要进行气相可燃气体检测。主要包括:糠醛料、白土料、催化轻料(含酮苯蜡下油、去蜡油)、糠醛抽出油、含糠醛抽出油的重油或油浆、石蜡。风险重质油品油罐见附件E。风险重质油品通扫线前必须进行气相化验分析。
2、 安全重质油品:即加工工艺安全,不可能出现轻组分进入,不可能形成混合性爆炸气体的重质油品,扫线前不需要进行气相可燃气体检测。主要包括:酮苯料、润滑油基础油、催化重料(二CT、渣油加氢渣油、一BT)、重油(三CT)、纯催化油浆、石蜡(精制)、加氢裂化原料(三CL、B3)、加裂尾油。安全重质油品油罐见附件F。安全重质油品在装置生产稳定,产品平稳合格外送时,原则上不做气相分析。
部分安全重质油品在装置开停工或出现大的波动等特殊工况下,可能变成风险重质油品,这时的安全油品我们可以称为潜在风险油品。如蒸馏CT、BT、催化油浆等,在装置开停工时可能带入轻组分。所以这一时段,需要升级管理,按风险重质油品管理。
3、 对于部分油罐在不同时期收风险重质油品或安全重质油品。在收风险重质油品时,扫线前必须进行气相化验分析。在收风险重质油品后,切换收安全重质油品时,必须将罐内油品置换两倍罐容量,并作气相化验分析合格后,再恢复安全重质油品操作方案。
4、 安全重质油品与风险重质油品和潜在风险油品兼收的油罐必须进行气相分析。
7. 如何检测油气管道堵塞
听:听管线管壁是否有原油液体在管线中流动的声音。
看:看管线温度计温度是否过低,看管线压力表是否升高高出正常值。
摸:摸管线温度是否过低。
查:检查井口是否发生喷油,管线相接处是否漏油,单井量油是否量油液面上升
8. 油罐车油气回收系统怎么多长时间进行检测一次
根据《加油站大气污染物排放标准》(GB20952-2007 )要求,油气回收系统每年至少进行1次油气回收检测。
油气回收检测项目包括:液阻检测、密闭性检测、气液比检测、外观和功能检测;
液阻检测:以规定的氮气流量向油气回收管线内充人氮气,模拟油气通过油气回收管线。用压力表或同等装置检测气体通过管线的液体阻力,了解管线内因各种原因对气体产生阻力的程度,用来判断是否影响油气回收。
密闭性检测:用氮气对油气回收系统加压至500Pa,允许系统压力衰减。检测5min后的剩余压力值与国家标准规定的最小剩余压力限值进行比较,如果低于限值,表明系统泄漏程度超出允许范围。
气液比检测:在加油枪的喷管处安装-一个密合的适配器。该适配器与气体流量计连接,气流先通过气体流量计,然后进入加油枪喷管上的油气收集孔。所计量的气体体积与加油机同时计量的汽油体积的比值称为气液比。通过气液比的检测,可以了解油气回收系统的回收效果。
外观和功能的检测:是从整个系统方面进行的,主要检测油气回收改造后对加油枪的流量及其计量有没有影响、电源电压有没有影响,改造油气回收系统的单位有没有资质。加油枪气液比调整器是否正常,改造后的加油机制造单位有无制造许可证等。
9. 油气管道的外径检测技术方法有哪些
人工测量、光电测径仪自动测量都能测量油气管道的外径,光电测径仪可自动化检测,安装于生产线上测量。