㈠ 粉尘含量检测仪是采用哪种技术实现的
粉尘含量检测仪的常用技术主要有以下几中:
摩擦静电技术:用一个探针插入到烟气管道,这个可以测量颗粒携带的电荷的变化从而记录 它们的存在。他们的准确性和可靠性是受以下几点影响:它们只能测量碰撞的或者是非常靠近探头的粉尘。
阻光度技术:利用光传输(更具体来说就是 光吸收)作为一种手段来测量颗粒密度,用穿过烟气管道的窄光束测量光吸收。
光散射技术:光散射技术利用气流中的颗粒反射出来的闪光的频率及跟持续时间来测量 颗粒的含量,它比其他技术而言拥有压倒性优势是把由于气流中的湿度导致的误差 大大地降低到了无关紧要的水平。
光吸收技术:当光波通过线性物质时,会与物质发生相互作用,光波一部分被介质吸收,转化为热能;一部分被介质散射,偏离了原来的传播方向,剩下的部分仍按原来的传播方向通过介质。透过部分的光强与入射光强之间符合朗伯一比尔定律。光吸收型粉尘浓度检测仪以朗伯一比尔定律为基础,通过测量入射光强与出射光强,经过计算得到粉尘浓度,该法具有在高粉尘浓度情况下测量准确的特点.
㈡ 关于饲料场破碎料的含粉率测定问题:
从打包处取样A克(有代表性),然后使用颗粒料粒径1/3的筛子来筛,秤取筛下物B克,含粉率即:B/A*100%。破碎料同样,只是筛子的孔径选用破碎料平均粒径的1/3即可。其实国标法有详细的筛子目数要求(即多大粒径的颗粒料对应多少目数的筛子,但个人觉得那个方法实用性不强)。
㈢ 怎样测粉尘颗粒的大小.
筛分法,图像法,激光法是比较常用的粒径检测手段,但都是对直径的统计测算,直接对半径直接测算的还没有,可以利用直径结果换算为半径进行测量,也可以和厂家联系直接带入半径公式到软件模型,就可以测量出半径了。
测粒度分布的有:筛分法、沉降法、激光法、电感法(库尔特)。
测比表面积的有:空气透过法(没淘汰)、气体吸附法。
直观的有:(电子)显微镜法、全息照相法。
显微镜法(Micros)
SEM、TEM;1nm~5μm范围。
适合纳米材料的粒度大小和形貌分析。
沉降法(Sedimentation Size Analysis) 沉降法的原理是基于颗粒在悬浮体系时,颗粒本身重力(或所受离心力)、所受浮力和黏滞阻力三者平衡,并且黏滞力服从斯托克斯定律来实施测定的,此时颗粒在悬浮体系中以恒定速度沉降,且沉降速度与粒度大小的平方成正比。10nm~20μm的颗粒。
光散射法(Light Scattering)
激光衍射式粒度仪仅对粒度在5μm以上的样品分析较准确,而动态光散射粒度仪则对粒度在5μm以下的纳米样品分析准确。
激光光散射法可以测量20nm-3500μm的粒度分布,获得的是等效球体积分布,测量准确,速度快,代表性强,重复性好,适合混合物料的测量。
利用光子相干光谱方法可以测量1nm-3000nm范围的粒度分布,特别适合超细纳米材料的粒度分析研究。测量体积分布,准确性高,测量速度快,动态范围宽,可以研究分散体系的稳定性。其缺点是不适用于粒度分布宽的样品测定。
光散射粒度测试方法的特点
测量范围广,现在最先进的激光光散射粒度测试仪可以测量1nm~3000μm,基本满足了超细粉体技术的要
光散射力度测试远离示意图
求。
测定速度快,自动化程度高,操作简单。一般只需1~1.5min。
测量准确,重现性好。
可以获得粒度分布。
激光相干光谱粒度分析法
通过光子相关光谱(PCS)法,可以测量粒子的迁移速率。而液体中的纳米颗粒以布朗运动为主,其运动速度取决于粒径,温度和粘度等因素。在恒定的温度和粘度条件下,通过光子相关光谱(PCS)法测定颗粒的迁移速率就可以获得相应的颗粒粒度分布。
光子相关光谱(pcs)技术能够测量粒度度为纳米量级的悬浮物粒子,它在纳米材料,生物工程、药物学以及微生物领域有广泛的应用前景。
优点是可以提供颗粒大小,分布以及形状的数据。此外,一般测量颗粒的大小可以从1纳米到几个微米数量级。
并且给的是颗粒图像的直观数据,容易理解。但其缺点是样品制备过程会对结果产生严重影响,如样品制备的分散性,直接会影响电镜观察质量和分析结果。电镜取样量少,会产生取样过程的非代表性。
适合电镜法粒度分析的仪器主要有扫描电镜和透射电镜。普通扫描电镜的颗粒分辨率一般在6nm左右,场发射扫描电镜的分辨率可以达到0.5nm。
扫描电镜对纳米粉体样品可以进行溶液分散法制样,也可以直接进行干粉制样。对样品制备的要求比较低,但由于电镜对样品有求有一定的导电性能,因此,对于非导电性样品需要进行表面蒸镀导电层如表面蒸金,蒸碳等。一般颗粒在10纳米以下的样品比较不能蒸金,因为金颗粒的大小在8纳米左右,会产生干扰的,应采取蒸碳方式。
扫描电镜有很大的扫描范围,原则上从1nm到mm量级均可以用扫描电镜进行粒度分析。而对于透射电镜,由于需要电子束透过样品,因此,适用的粒度分析范围在1-300nm之间。
对于电镜法粒度分析还可以和电镜的其他技术连用,可以实现对颗粒成份和晶体结构的测定,这是其他粒度分析法不能实现的。
㈤ 颗粒物的浓度测定
在标准状态下(即压力760毫米汞柱,温度为273K)气体每单位体积含尘重量(微克或毫克)数称为含尘浓度。测定方法主要有:
重量法
又叫重量浓度法,采用过滤器或其他分离器收集粉尘并称重的方法,是测定含尘量的可靠方法。过滤器可用滤纸、聚苯乙烯的微滤膜等。有多种测定仪器,如静电降尘重量分析仪可测出低达每标准立方米含尘10微克的浓度。若将已知有效表面积的集尘装置放在露天的适当位置,收集足够量的尘粒进行称重,可测定降尘量。
光散射法
激光粉尘仪具有新世纪国际先进水平的新型内置滤膜在线采样器,仪器在连续监测粉尘浓度的同时,可收集到颗粒物,以便对其成份进行分析,并求出质量浓度转换系数K值。可直读粉尘质量浓度(mg/m3),具有PM10、PM5、PM2.5、PM1.0及TSP切割器供选择。仪器采用了强力抽气泵,使其更适合需配备较长采样管的中央空调排气口PM10可吸入颗粒物浓度的检测,和对可吸入尘PM2.5进行监测。
仪器符合工业企业卫生标准(GBZ1-2002)、工作场所有害因素接触限值(GBZ2-2002)标准、卫生部WS/T206-2001《公共场所空气中可吸入颗粒物(PM10)测定法-光散射法》标准、劳动部LD98-1996《空气中粉尘浓度的光散射式测定法》标准以及铁道部TB/T2323-92《铁路作业场所空气中粉尘测定相对质量浓度与质量浓度的转换方法》等行业标准以及卫生部卫法监发[2003] 225号文件发布的《公共场所集中空调通风系统卫生规范》。
浓度规格表比较法
应用较广泛的是M.R.林格曼提出的林格曼煤烟浓度表(见表)。该表是在长14厘米、宽20厘米的各张白纸上描出宽度分别为1.0、2.3、3.7、5.5、10.0毫米的方格黑线图,使矩形白纸板内黑色部分所占的面积大致为 0、20、40、60、80、100%,以此把烟尘浓度区别为6级,分别称为0、1、2、3、4、5度。在标准状态下,1度烟尘浓度相当于0.25克/立方米,2度相当于 0.7克/立方米,3度相当于1.2克/立方米,4度约为2.3克/立方米,5度约为4~5克/立方米。在使用时,将浓度表竖立在与观测者眼睛大致相同的高度上,然后在离开纸板16米、离烟囱40米的地方注视此纸板,与离烟囱口30~45厘米处的烟尘浓度作比较。观测时,观测者应与烟气流向成直角,不可面向太阳光线,烟囱出口的背景上不要有建筑物、山等障碍物。除林格曼煤烟浓度表外,还有其他形式的浓度表和进行浓度比较的测定仪器,如望远镜式煤烟浓度测定仪和烟尘透视筒等。浓度规格表比较法的优点是简便易行,缺点是易产生误差。
光度测定法
用一定强度的光线通过受测气体,或用水洗涤一定量的受测气体,使气体中的尘粒进入水中,然后用一定强度的光线通过含尘水,气体或水中的尘粒就对光线产生反射和散射现象,用光电器件测定透射光或散射光的强度,并与标准的光度比较,即可换算成含尘浓度。
粒子计算法
将已知空气体积中的粉尘沉降在一透明表面上,然后在显微镜下数出尘粒数目,测量结果用每立方厘米内的粒子数表示,必要时可换算成含尘浓度,其换算的近似值为:每立方厘米有500个尘粒,相当于在标准状态下含尘浓度每立方米约2毫克,2000个尘粒约为每立方米10毫克,20000个尘粒约为每立方米100毫克。⑤间接测量法:含尘气流以湍流状态通过测量管,由于粉尘粒子和管内壁之间的摩擦而使尘粒带电,测量电流量,即可根据标准曲线换算出含尘浓度。此外,用热电偶测定尘粒吸收特定光源的辐射热,可间接测出含尘浓度。在离子化室内,测出空气中尘粒对离子流的衰减。此法也可算出含尘浓度。测定下限可到每立方厘米 200个尘粒。
㈥ 颗粒饲料的含粉率一般都是多少怎样测定
可以取一整包,用自制的筛子,我们是用16目,筛下物和总重的百分比就是含粉率,颗粒料小于3%。
㈦ HIAC-8012自动颗粒计数器的检测方法(详细)
1、方法概述
在液压润滑系统中,油液的污染程度直接影响着液压系统的性能和可靠性。这就要求我们必须将油液的污染度等级控制在系统许可的范围内。以光阻法原理工作的颗粒检测设备已成为广为人们接受的一种测定油液污染度的主要工具。颗粒计数的准确性与操作技术有着很大的关系。本文详细介绍颗粒检测设备的正确操作规范。
2、设备简介
(1)颗粒检测设备
颗粒检测设备由传感器、计数器及自动取样器或类似允许液体直接通过传感器,然后进入测量容器而并不改变污染物尺寸分布的仪器组成。若颗粒检测设备利用气体将液体压入传感器,则气体应先通过一个0.45μm的过滤器,且应无油无水。建议采购:PLD-0201 0203等型号。
(2)玻璃量器
符合一定标准的一套带刻度的移液管和量筒。这些玻璃仪器应根据ISO3722进行清洗和检验。
(3)样液搅拌装置
用来重新分散样液中污染物的装置。该装置的使用不应改变污染物的基本尺寸分布。
(4)超声浴池
超声浴池既可以分散开液体中的颗粒结块,又可以除去手工摇动带来的气泡。但经验表明,样液在超声浴池中停留时间不应超过30s,否则瓶壁上的颗粒会脱落到样液中,这对清洁度高的样液有一定影响。通常使用的超声浴池为4000W/m2。建议采购:PS-3200 超声波振荡器 商标:PULL。
(5)取样瓶
取样瓶通常为柱状玻璃容器或聚丙烯瓶,瓶壁应光滑,且为平底广口以利清洗。可以使用不泄漏的螺纹帽作瓶盖,也可以使用带内部密封的瓶盖。瓶的尺寸视计数器操作方便而定,通常为250mL。取样瓶也应根据ISO3722进行清洗和检验。建议采购:PS-8011 清洁瓶 商标:PULL。
(6)电子天平
一台已校准好的电子天平,读数精度为0.01mg。
(7)光学显微镜
当样液中含有水或其它二相液体时,不要利用颗粒检测设备来分析样液,这时,需利用光学显微镜,根据国际标准ISO4407来测定样液。
(8)真空抽滤装置
该装置用于过滤各种清洗溶剂。过滤一般通过0.45μm的过滤器,该过滤器应与所过滤的各种溶剂相容。建议采购:PSD-350 清洁过滤装置 商标:PULL。
3、材料
(1)溶剂
清洗传感器、取样瓶及玻璃仪器所用溶剂,包括蒸馏水/去离子水、洗涤剂、石油醚或乙醇,其中石油醚和乙醇应由0.45μm的滤膜过滤,并用真空过滤装置。
(2)稀释液
稀释样品所用液体。可用0.8μm滤膜过滤,也可用滤筒形式的过滤器(过滤效率β1≥75)过滤,稀释液应与样液及使用装置相容,一般采用ISOVG5基矿物油或10号航空液压油。
4、注意事项
(1)仪器应放置在干净的环境中,以防在分析过程中,空气中的灰尘进入样液。合格的环境要求:
≥0.3μm颗粒≤100000个/m3
≥0.5μm颗粒≤35000个/m3
≥5μm颗粒≤200个/m3
≥10μm颗粒≤1个/m3
(2)由于液体自动颗粒计数器是一个灵敏度较高的精密仪器,所以应避免使它受到射频干扰或电磁干扰。此外,应使用稳压器以供给其稳定的电压。
(3)在操作计数器过程中可能用到一些有害、有毒或易燃的化学药品,所以必须有目的、有准备地测定颗粒,并保证化学药品与所用仪器的兼容性。
(4)在测定样液前,应先将仪器接通电源一段时间以使其稳定后再进行工作。测样时,样液的浓度不要超过厂家规定传感器浓度极限的50%,最低阈值为仪器噪声电平的1.5倍。
(5)当样液中含有铁磁性颗粒时,不宜使用磁力搅拌棒。
(6)颗粒检测设备应每6个月标定一次。对刚购买或刚维修后的计数器和传感器都应该进行标定。标定方法可根据现有的ISO4402利用ACFTD粉尘或根据修改后的ISO11171利用ISOMTD粉尘进行标定。建议:PS-4402或PS-11171 标准粒子比对液 容积:250ml。
5、样液分析系统的操作规范
(1)系统清洗:
在利用传感器和颗粒检测设备对油液进行分析时,必须保证所用传感器以及相连管路的清洁度,也即样液分析系统必须先用事先过滤好的溶剂来清洗。清洗流量可采用比工作流量高50%的流量。可以通过分析一定量的清洁溶剂或稀释液来检验系统的清洁度。合理的系统清洁度要求:粒径≥2μm的颗粒数≤10个/mL,粒径≥5μm的颗粒数≤2个/mL。
(2)样液准备:
先用不起毛的绸布擦去取样瓶外的可见污染物,然后视觉检查样液。如果样液中含有水或其它二相液体时,不要利用颗粒检测设备来分析样液,因为这会影响颗粒检测设备的正常工作,这时应根据ISO4407利用光学显徽镜进行计数;如果样液光密度较大(指透不过光的深黑色样液),或者粘度、颗粒污染度较大时,也不要直接在颗粒检测设备上进行计数,而应先进行稀释;当样液不具有上述情况时,便可以直接利用颗粒检测设备进行分析,但要求样液的颗粒浓度必须低于厂家所推荐的传感器浓度极限值的50%,如果不能确定这一点,可以先取出一部分样液,然后按一个比较高的稀释比,例如20:1将其稀释。通过分析该稀释液就可以确定样液能否直接分析以及最佳稀释比是多少。
(3)污染物的再分散:若样液已放置了一段时间,则会产生颗粒沉降、结块,这时就需要在分析样液前使污染物能够均匀地分散在样液中。具体方法为:
①先用手充分摇动样液至少1min,也可以利用样液搅动装置或超声浴池来使污染物再分散。如果使用的是超声浴池,那么应将取样瓶垂直放置在浴池中,浴池中的水应恰低于取样瓶中的液体刻线,浴振时间不应超过30s;
②将样液瓶放入密封的玻璃罩内,在至少53.5kPa的真空下,将瓶盖除去来脱气,直到全部气泡释出为止;也可以将取样瓶用盖子盖好后放置在超声浴池内脱气,直至外观看不见气泡为止。
(4)样液分析
①样液脱气后应立即进行分析。在分析前,应先用少量被测样液冲洗传感器至少两次。
②应在仪器厂商所规定的传感器标定流量下分析样液。
③每种样液应至少计数3次,最小尺寸的颗粒计数误差应小于10%,否则应分析误差产生的原因,采取相应措施后重新计数。
㈧ 各种粒度测试方法的优缺点有哪些
1)筛分 原理:以来筛孔大小的机械分离作用。
优点:简单直观。动态范围较小,常用于大于40mm的颗粒测定。
缺点:速度慢,一次只能测量一个筛余值,不足以反映粒度分布;微小筛孔制作困 难;误差大,通常达到10%~20%;小颗粒由于团聚作用通过筛孔困难;有人为误 差,导致可信度下降。
2)沉降 原理:斯托克斯定律。
优势:可测试。
缺点:动态范围窄;小粒子沉降速度很慢,对非球型粒子误差大;由于密度一致性 差,不适用于混合物料;重力沉降仪适用于10微米以上的粉体,如果颗粒很细则 需要离心沉降。
3)库尔特电阻法 原理:颗粒通过小孔时产生的电阻脉冲计数。
优点:可以测定颗粒总数,等效概念明确;操作简便。
缺点:动态范围小,1:20左右;对介质的电性能有严格要求;容易出现 堵塞小孔现象。
4)显微镜法 原理:光学成像。
优点:简单直观;可作部分形貌分析。
缺点:动态范围窄,1:20;测量时间长,约20分钟;样品制备操作较复杂; 采样的代表性差;对超微细粒分散有一定的难度,受衍射极限的限制,无法检测超 细颗粒。
5)电镜 原理:电子成像。
优点:直观;分辨率高。
缺点:取样量少,没有代表性,样品杂;仪器价格昂贵。
6)激光粒度仪 原理:激光衍射/散射。
优点:测量速度快,约1分钟;动态范围大,约1:1000以上;重复型号; 准确度高,分辨率高;操作简便;客队动态颗粒群进行跟踪测试分析,是目 前最先进的粒度仪,也是粒度仪发展方向。
以上是微纳总结
㈨ 粒度测试的基本方法
粒度测试的方法很多,据统计有上百种。目前常用的有沉降法、激光法、筛分法、图像法和电阻法五种,另外还有几种在特定行业和领域中常用的测试方法。 沉降法是根据不同粒径的颗粒在液体中的沉降速度不同测量粒度分布的一种方法。它的基本过程是把样品放到某种液体中制成一定浓度的悬浮液,悬浮液中的颗粒在重力或离心力作用下将发生沉降。不同粒径颗粒的沉降速度是不同的,大颗粒的沉降速度较快,小颗粒的沉降速度较慢。那么颗粒的沉降速度与粒径有怎样的数量关系,通过什么方式反映颗粒的沉降速度呢?
① Stokes定律:在重力场中,悬浮在液体中的颗粒受重力、浮力和粘滞阻力的作用将发生运动,其运动方程为:
这就是Stokes定律。
从Stokes 定律中我们看到,沉降速度与颗粒直径的平方成正比。比如两个粒径比为1:10的颗粒,其沉降速度之比为1:100,就是说细颗粒的沉降速度要慢很多。为了加快细颗粒的沉降速度,缩短测量时间,现代沉降仪大都引入离心沉降方式。在离心沉降状态下,颗粒的沉降事度与粒度的关系如下:
这就是Stokes定律在离心状态下的表达式。由于离心转速都在数百转以上,离心加速度ω2r远远大于重力加速度g,Vc>>V,所以在粒径相同的条件下,离心沉降的测试时间将大大缩短。
② 比尔定律:
如前所述,沉降法是根据颗粒的沉降速度来测试粒度分布的。但直接测量颗粒的沉降速度是很困难的。所以在实际应用过程中是通过测量不同时刻透过悬浮液光强的变化率来间接地反映颗粒的沉降速度的。那么光强的变化率与粒径之间的关系又是怎样的呢?比尔是律告诉我们:
设在T1、T2、T3、……Ti时刻测得一系列的光强值I1<I2<I3……<Ii,这些光强值对应的颗粒粒径为D1>D2>D3>……>Di,将这些光强值和粒径值代入式(5),再通过计算机处理就可以得到粒度分布了。 激光法是根据激光照射到颗粒后,颗粒能使激光产生衍射或散射的现象来测试粒度分布的。由激光器的发生的激光,经扩束后成为一束直径为10mm左右的平行光。在没有颗粒的情况下该平行光通过富氏透镜后汇聚到后焦平面上。如下图所示:
当通过适当的方式将一定量的颗粒均匀地放置到平行光束中时,平行光将发生散现象。一部分光将与光轴成一定角度向外传播。如下图:
那么,散射现象与粒径之间有什么关系呢?理论和实验都证明:大颗粒引发的散射光的角度小,颗粒越小,散光与轴之间的角度就越大。这些不同角度的散射光通过富姓氏透镜后在焦平面上将形成一系列有不同半径的光环,由这些光环组成的明暗交替的光斑称为Airy斑。Airy斑中包含着丰富粒度信息,简单地理解就是半径大的光环对应着较小的粒径;半径小的光环对应着较大的粒径;不同半径的光环光的强弱,包含该粒径颗粒的数量信息。这样我们在焦平面上放置一系列的光电接收器,将由不同粒径颗粒散射的光信号转换成电信号,并传输到计算机中,通过米氏散理论对这些信号进行数学处理,就可以得到粒度分布了。 电阻法又叫库尔特法,是由美国一个叫库尔特的人发明的一种粒度测试方法。这种方法是根据颗粒在通过一个小微孔的瞬间,占据了小微孔中的部分空间而排开了小微孔中的导电液体,使小微孔两端的电阻发生变化的原理测试粒度分布的。小孔两端的电阻的大小与颗粒的体积成正比。当不同大小的粒径颗粒连续通过小微孔时,小微孔的两端将连续产生不同大小的电阻信号,通过计算机对这些电阻信号进行处理就可以得到粒度分布了。如图所示:
用库尔特法进行粒度测试所用的介质通常是导电性能较好的生理盐水。 光阻法(Light Blockage),又称为光障碍法或光遮挡法,是利用微粒对光的遮挡所发生的光强度变化进行微粒粒径检测的方法,检测范围从1μm到2.5mm。
工作原理:当液体中的微粒通过一窄小的检测区时,与液体流向垂直的入射光,由于被不溶性微粒所阻挡,从而使传感器输出信号变化,这种信号变化与微粒的截面积成正比,光阻法检查注射液中不溶性微粒即依据此原理。 显微图像法包括显微镜、CCD摄像头(或数码像机)、图形采集卡、计算机等部分组成。它的基本工作原理是将显微镜放大后的颗粒图像通过CCD摄像头和图形采集卡传输到计算机中,由计算机对这些图像进行边缘识别等处理,计算出每个颗粒的投影面积,根据等效投影面积原理得出每个颗粒的粒径,再统计出所设定的粒径区间的颗粒的数量,就可以得到粒度分布了。
由于这种方法单次所测到的颗粒个数较少,对同一个样品可以通过更换视场的方法进行多次测量来提高测试结果的真实性。除了进行粒度测试之外,显微图像法还常用来观察和测试颗粒的形貌。 除了上述几种粒度测试方法以外,目前在生产和研究领域还常用刮板法、沉降瓶法、透气法、超声波法和动态光散射法等。
(1) 刮板法:把样品刮到一个平板的表面上,观察粗糙度,以此来评价样品的粒度是否合格。此法是涂料行业采用的一种方法。是一个定性的粒度测试方法。
(2) 沉降瓶法:它的原理与前后讲的沉降法原理大致相同。测试过程是首先将一定量的样品与液体在500ml或1000l的量筒里配制成悬浮液,充分搅拌均匀后取出一定量(如20ml)作为样品的总重量,然后根据Stokes定律计算好每种颗粒沉降时间,在固定的时刻分别放出相同量的悬浮液,来代表该时刻对应的粒径。将每个时刻得到的悬浮液烘干、称重后就可以计算出粒度分布了。此法目前在磨料和河流泥沙等行业还有应用。
(3) 透气法:透气法也叫弗氏法。先将样品装到一个金属管里并压实,将这个金属管安装到一个气路里形成一个闭环气路。当气路中的气体流动时,气体将从颗粒的缝隙中穿过。如果样品较粗,颗粒之间的缝隙就大,气体流边所受的阻碍就小;样品较细,颗粒之间的缝隙就小,气体流动所受的阻碍就大。透气法就是根据这样一个原理来测试粒度的。这种方法只能得到一个平均粒度值,不能测量粒度分布。这种方法主要用在磁性材料行业。
(4) 超声波法:通过不同粒径颗粒对超声波产生不同的影响的原理来测量粒度分布的一种方法。它可以直接测试固液比达到70%的高浓度浆料。这种方法是一种新的技术,目前国内外都有人进行研究,据说国外已经有了仪器,国内目前还没有。
(5) 动态光散射法:前面所讲的激光散射法可以理解为静态光散射法。当颗粒小到一定的程度时,颗粒在液体中受布朗运动的影响,呈一种随机的运动状态,其运动距离与运动速度与颗粒的大小有关。通过相关技术来识别这些颗粒的运动状态,就可以得到粒度分布了。动态光散射法,主要用来测量纳米材料的粒度分布。国外已有现成的仪器,国内目前还没有。