‘壹’ 糖化血红蛋白快速检测仪哪种检验方法好
1.HbA1c一滴血样检测糖化:适用反映糖尿病患者2-3个月左右的糖代谢情况。监测糖尿病并发在微细血管病变。
2.D-Dimer:适用静脉血栓,肺栓塞和动脉血栓塞的诊断。
3.DIC的诊断:纤溶作用机制的早期检测—血栓前危评价,妊娠与分娩复杂性评价,血栓形成过程及溶栓治疗的监测,肿瘤辅助诊断。
4.U-Albumin:观察入微,快速检测,适用检测病人尿液中的低浓度的微量蛋白的体外快速诊断。具体哪种方法好,依据不同人的检测需求。
‘贰’ 糖化血红蛋白的检测方法
1、阳离子交换色谱法
原理:糖化导致血红蛋白分子表面阳离子丢失。在弱的阳离子交换剂中,例如Biorex70,伴有增加的离子浓度和(或)pH下降,糖化血红蛋白在非糖化血红蛋白前先洗脱。这现象产生了糖化血红蛋白最初的术语“快速血红蛋白”。阳离子交换色谱法可用于小型、微型或大型柱层析方法或部分或全自动的PHLC/FPLC方法。因为,其他翻译后修饰血红蛋白,例如醛亚胺型、甲酰化、乙酰化、乙醛加合物、降解物、老化人工物品和异常血红蛋白电荷交换也不同于正常的HbA0,所以已经列出了许多阳离子交换层析法的干扰因素。使用常规HPLC的方法。分离糖化血红蛋白亚组分是能达到满足需求的临床精密度。然而,已知HbA1c的峰不是均一的而是包含一重要的非糖化血红蛋白部分。少数糖化血红蛋白也整合到HbA0主峰中。通过使用特殊的柱原料(poly-CATA)和30~40 min分离时间可以改善分离效果。这些方法可以作为参考步骤但不适合常规使用。所有的阳离子交换色谱法对pH和温度的变化敏感,因此要控制pH和温度。
说明:根据红细胞代谢动力学推测初始HbA1c值大约每日破坏1/120(≈0.83%)。因为糖化在合适的治疗下甚至健康人也产生,故这个理论值在体外不能达到。控制不理想的糖尿病患者通过加强治疗而达到血糖量正常,可以发现HbA1c值最大下降率以大约每10 d下降正常血糖的1%(绝对的)。由于测定糖化血红蛋白方法的精确性,两次测定值HbA1c的差异大约1%就可认为具有临床相关性。因为这些原因,在HbA1c两次测定间至少有2周的时间,推荐4~6周的间隔。
因为升高的糖化血红蛋白值是长期高糖血症的糖尿病患者相当可靠的指示剂,因而是可能诊断糖尿病的。在未治疗的个体,正常的糖化血红蛋白值临床上可以排除明显的糖尿病。但由于它不能检测糖耐量受损,所以作为诊断和(或)筛选目的唯一的参数,使用糖化血红蛋白是存在问题的。
2、电泳法
原理:相比于非糖化血红蛋白,因糖化而变化的总电荷和糖化血红蛋白的等电点变化是琼脂糖凝胶或者pH梯度5.0~6.5的凝胶等电聚焦电泳分离的基础。琼脂糖凝胶电泳的血红蛋白亚组分分辨率很小,而等电聚焦可以更好地使亚组分分离。可能由于试验的自动化程度不足,重要性已经下降。
3、亲和层析法
原理:硼酸结合顺式-羟基。商品化的m-氨基苯硼酸琼脂糖共价结合的亲和柱已可用于微柱分析检测。将血样本中的血红蛋白加到层析柱后,所有的糖化血红蛋白(HbA1和旁链糖化的血红蛋白;总糖化血红蛋白)与硼酸结合而非糖化血红蛋白通过层析柱可被测量。在加入高浓度也包含顺式-羟基的多羟基复合物,例如山梨醇后,糖化血红蛋白与硼酸的结合被替换而从柱子上洗脱下来。亲和层析法对经翻译以后修饰的血红蛋白和病理血红蛋白的影响相对不敏感。利用亲和层析法,仅能测定总糖化血红蛋白。广泛使用的亲和层析方法,允许用经验算法从总糖化血红蛋白值计算出“标准的HbA1c”。
4、免疫分析法
在缬氨酸β-N-末端糖化的血红蛋白提供了一个容易被抗体识别的抗原表位。可以用单克隆抗体或多克隆抗体进行放射免疫分析和免疫酶学分析测定,抗体特异识别β链N-末端糖化的血红蛋白最后4~8个氨基酸组成的抗原表位。异常的血红蛋白或翻译后经修饰的血红蛋白无干扰。
目前的免疫化学试验不仅检测HbA1c,通常也同时检测HbA2c,因为血红蛋白A2糖化δ链的表位是相同的。抗体直接抗β-链的最后四个氨基酸的糖化表位的免疫化学试验也可用进行检测,例如HbS1c。在大多数情况下HbA2c意义不大,虽然镰刀细胞病时可以准确地测定缬氨酸β-N-氨基末端糖化程度,但它仍不能100%代表HbA1c。
5、离子层析法
离子层析法精密度高、重复性好且操作简单, 被临床广泛采用。检测原理由于血红蛋白β-链N 末端缬氨酸糖化后所带电荷不同, 在偏酸溶液中总糖化血红蛋白( GH b) 及H bA 均具有阳离子的特性, 因此经过阳离子交换层析柱时可被偏酸的缓冲液平衡过的树脂来吸附, 但二者吸附率不同, GH b正电荷较少吸附率较低, H bA 正电荷较多吸附率较高。用不同pH 的磷酸盐缓冲液可以分次洗脱出GH b 和H bA, 用KCN 可将H b转化为高铁氰化血红蛋白, 用分光光度计测定。或者得到相应的H b层析谱, 其横坐标是时间, 纵坐标是百分比。HbA1c值以百分率来表示。现在大部分都用全自动测定仪测定。
6、等电点聚集法
是测定GH b的新技术, 它是在聚丙烯酞凝胶中加人载体两性介质的薄板上形成一个由阳极到阴极逐渐增加的pH 梯度, 溶血液中各个组份将移动到各自的等电点的pH 位置上, 这样就得到比一般电泳法更好的分划效果和比较集中的色带, 通过分辨率高的微量光密度仪扫描, 可以准确地测定出各自组份的含量。由于它能够分辨出一级结构不同的HbA、HbAc、HbF、HbS 及HbC等, 可完全避开各种物质的干扰。
7、化学发光法
采用离子捕捉免疫分析法, 应用抗原抗体反应原理, 联以荧光标记物, 通过连接带负电的多阴离子复合物, 吸附到带正电的纤维表面, 经过一系列彻底清洗等步骤后, 测定荧光强度变化率, 计算浓度。采用专用试剂包和免疫发光分析仪,其检测系统易于规范和重复, 可减少操作技术误差, 检测的灵敏度和特异性高, 批内、批间变异系数小, 回收率高, 准确度高, 交叉污染率小, 影响因素少。
8、酶法
原理为用特殊蛋白酶分解Hb, 3~ 5 min内果糖基氨基酸从H b分离, 果糖基氨基酸氧化酶( FAOD )从果糖基氨基酸产生H2O2, H2O2经POD与DA- 64反应, 选择751 nm 测吸光度改变求得GHb浓度。
‘叁’ 较简单的制糖方法
可以用红薯制糖!(特地再过来补充一句:你男朋友好幸福!)
而且原材料易得,且操作简单!
方法如下:
1.红薯制作饴糖
(1)工艺流程:原料选择-洗薯-制淀粉-糊化-糖化-加热浓缩-成品。
(2)工艺操作要点:①原料选择:应选择新鲜、无霉烂、无病虫害的红薯为原料。用于生产饴糖的红薯,所含淀粉转化糖的量对熬糖的产量来说是不受影响的。但如果红薯贮藏的时间过长,会使制成的饴糖颜色较深,使饴糖的成品质量下降。鲜薯最适宜加工饴糖。②洗薯:取红薯装入洗薯机中,装入量约为机容积的1/3,将该机的门扣扣好,即用力摇转洗薯机。)同时上面不断淋下清水。因红薯在机内互相冲击,薯皮上附着的泥沙被清水洗去。洗得愈净愈佳,如不洗净,则将来成品中有泥沙混入,影响质量。必须一直摇洗到红薯表皮大部分除去,即可停止摇洗,打开机门,将红薯取出。③制淀粉:将已洗 好的红薯放于石碾槽沟内或石磨上,加适量水可开始碾磨。碾子、磨子与红薯接触的部件,不得含有铁质,否则影响产品的色泽、气味和外观。把红薯碾磨成浆状:愈细愈好,如碾磨不细,将有一部分淀粉损失。取细竹或木棒捆一十字架,另取0.8米见方的稀白布,四端拴于十字架上,下接一盛水桶。将碾磨后的浆状物用瓢移人此布袋中,用人力摇动布袋,淀粉即随水穿过稀布面流入桶中,直至摇干为止。把浆全部摇完,再在残渣中加以适量桶中澄清的薯水,碾磨十次,务必使其完全成为浆状。这样才能把淀粉完全提出,以免造成损失。再如上法摇动过滤,所得滤液与上述滤液合并,残渣即可作为猪的饲料,或作酱油、甜酱等。将滤出的薯浆静置1小时左右,待上面液已澄清,即可倾出上清液,沉在桶底的白色浆即是淀粉,用布袋滤干水分,即为粗淀粉。一般每100千克红薯,可制得淀粉16-17千克。④糊化:取已滤干的红薯淀粉放人夹层锅中,按100千克生红薯制得的淀粉加入清水1.50千克左右,配成约10%的淀粉浆液。煮约半小时,同时不断搅拌夕至成糊状,淀粉已被煮熟,糊化即算终了。⑤大麦芽的制取:用大麦芽作为制作饴糖的糖化剂,需对大麦进行处理。先将大麦授于冷水中,水温约为23摄氏度,浸渍约1-2小时。如冬季水温较低,浸渍时间必须延长。用作原料的大麦必须清理杂物,并经浸渍后分离掉污水。麦粒浸渍不能太过,否则发芽力消失。麦粒浸渍含水以40%-45%为宜。经浸渍后,大麦送去发芽。发芽开始时由于呼吸,作用而使温度升高,可翻动散热。另外每天还要撒水2-3次。在室温25-30摄氏度时,4天可完成发芽,当芽长2厘米时即可使用。⑥糖化:将已糊化的淀粉冷却至 60-63摄氏度可加入麦芽汁,搅拌均匀:臼麦芽汁可用挤压机压扁麦芽而锅得。麦芽用量为鲜红薯原料的8%,压挤时必须使麦芽汁完全流出。糖化温度应保持在55-60摄氏度。淀粉在麦芽汁的作用下,逐渐糖化,变成麦芽糖和糊精,此时淀粉糊也逐渐变稀薄广糖化8小时,即取样用碘试液检查有无淀粉反应。加碘试液摇动后显蓝色、黑色或紫红色时,证明尚有淀粉未被糖化,故应保持温度继续糖化。如此每隔1小时取样检查一次,直到检查液呈现淡红色或近似碘试液的颜色时,即糖化完全,淀粉已变成麦芽糖或糊精。同时取半个试管的糖化液,在酒精灯上加热,煮沸1二-2分钟,注意观察,如试管内的混悬物逐渐聚成较大的絮状物,并能与液体分离,静置1-2分钟后试管上部的液体能够澄清,则证明糖化已达终点。达到这个程度的糖化时间一般需要重2-14小时。糖化达终点后,即可升温煮沸糖化液,既可将糖化酶制剂杀死,又可将混悬物凝聚;便于过滤操作。⑦加热浓缩:糖化过程结束后,用板框压滤机或布袋制得澄清的稀糖液,然后进行浓缩。浓缩一般采用加热蒸发水分酌方法浓缩,加热的初始温度可以高些,在加热过程中要不断进行充分搅拌。糖液逐渐蒸浓时,温度高了,易发生焦化而使颜色加深,影响质量。故糖液愈浓,加热温度愈应降低。在加热浓缩过程中,在液面上有一层沫;要不断将这些浮沫除去。这些浮沫为蛋白质等物,而且浮在糖液表面也会妨碍水分蒸发,易出现溢锅现象。全部浓缩过程所需时间取决于糖液的含水量、加热温度小当糖液浓度为40波美度时,即为饴糖成品。
(3)成品规格:①化学质量:成品含糖量(以还原糖计)应在50%以上。②物理外观指标:比重:在40摄氏度测定,比重为l38 (波美40度)为合格;色泽气味:应为独淡黄色的半透明浓稠液体,无不良气昧和异味,昧甜香。
2.红薯制作葡萄糖
(1)工艺流程:红薯淀粉-调和-糖化-中和-脱色-蒸发-结晶-分蜜轧糖-结晶精制啼-烘干碾粉-包装。
(2)工艺操作要点:①调和淀粉浆:取红薯淀粉25干克置于糖化锅中,然后取浓硫酸2.1千克缓缓加入2千克水中搅匀,再将此稀酸液倒入糖化锅中搅匀。另取沸水75千克迅速加入其中,搅成浆糊状。②糖化:将淀粉浆温度升至98摄氏度并保持-4小时,然后吸取少量糖化液,滴人碘液检验糖化终点。糖化结束后;停止加热,滤去残渣,滤液待下一步处理。③中和:在滤液中约加3.8千克碳酸钙,对其进行中和,边加边搅动(不宜加得过快,否则产生大量,泡沫乙易将糖液溢出,直至试纸试验中和至 ph值为5-6,然后将糖液再加热至85摄氏度,保持半小时,用布过滤,除去硫酸钙。④脱色:取上面已中和好的澄清滤液,加热至85摄氏度,然后按滤液重量加入0.3%的活性炭(活性炭称好后装入布袋扎紧,先放人糖液锅中煮至全部吸湿后才打开布袋,倾入糖液中),保持85摄氏度半小时,然后乘热过滤除去活性炭。起初流下来的带有微量活性炭,另器接滤,至滤清再用清洁之容器接存。未滤清的糖液,可重新过滤,把滤液又加热至85摄氏度,加滤液重量 0.3%的活性炭脱色,混匀后保持85摄氏度半小时,再用布过滤。⑤蒸发:蒸发过程即是糖液浓缩过程号将糖液的部分水分蒸去,至25摄氏度测定比重为1.3时,即可进行结晶。⑥结晶:按已蒸浓的糖,液重量加入0.5%-l.0%的葡萄糖晶种。在44摄氏度时加入(晶种须预先过筛,不得有小块),边加边搅动,至搅拌均匀。然后在30-35摄氏度下静止结晶,每天搅拌三次,开始结晶时即停止搅拌,结晶3天即可取出。⑦分蜜轧糖:将葡萄糖精粥放人布袋中,置木制压干机中进行分蜜。上好榨后保持2小时,取下干块;再压碎加入10%冷开水,搅匀,过细筛后再装入布袋中,置木制压榨机中压干(方法、时间同上)。然后取下打成碎块;置烘箱内,在 50摄氏度下进行烘干,即得粗制葡萄糖(可作食糖用)。⑧结晶精制:取粗制葡萄糖加水加温溶解,湿糖:冷开水1:2,保持75摄氏度至全部溶化,加入滤液重量0.3%的活性炭,置水锅上加热。待温度升至85摄氏度,保温半小时,进行过滤,滤液蒸浓,测定比重达1.34,不足时可继续蒸浓。再按照上述⑥的条件放置结晶,在上述⑦的条件下分蜜洗晶,压干烘干,打粉过筛歹即得药用口服葡萄糖。再取湿晶如上法进行重结晶二次,即可得注射葡萄糖(最后在分蜜时可加适量酒精洗晶体1-2次,但酒精必须预先经过澄明,除去铁锈异物)。⑨烘干碾粉:取已分去母液的结晶葡萄糖并碎成小块,分别装入预垫好的竹筛中,然后再甩厚布盖好,放在干燥架上。于50摄氏度以下进行干燥烘干后放石碾中进行粉碎,再通过40-50目筛即得。
3.红薯制果葡糖浆
果葡糖浆是由植物淀粉水解和异构化制成的淀粉糖晶,具有独特风味,是一种重要的甜味剂。因为它的组成主要是果糖和葡萄糖;故称为“果葡糖浆”。生产果葡糖浆不受地区和季节限制,设备比较简单,投资费用较低。
(1)工艺流程:红薯淀粉-调浆-糖化-中和-脱色-过滤-树脂处理-蒸发-异构化-脱色-树脂处理-蒸发-成品。
(2)工艺操作要点:①调浆:在调粉桶内先加部分水,在搅拌情况下加入红薯淀粉,投料完毕,继续加水使淀粉乳达到规定浓度(40%),然后加入盐酸调节至ph值为18。②糖化:调好的淀粉乳,用耐酸泵送水糖化罐;进料完毕打开蒸汽阀升压力至 2.8千克/平方厘米左右,保持该压力3-5分钟。取样;用20%碘液检查糖化终点。糖化液遇碘呈酱红色时即可放料中和。③中和糖化液转入中和桶进行中和,开始搅拌时加入定量废炭作助滤剂,逐步加入10%碳酸钠溶液中和,当ph为4.6-4.8时,打开出料阀,用泵将糖液送人过滤机广滤出的清糖液随即冷却至60摄氏度,冷却后糖液进行脱色。④脱色:清糖液放入脱色桶内,加入定量活性炭随加随拌,脱色搅拌时间不得少于5分钟,然后再送至过滤机,滤出清液盛放在贮桶内备用。⑤树脂交换:将第一次脱色滤清液送至离子交换滤床进行脱盐提纯及脱色。糖液通过,阳-阴-阳-阴四个树脂滤床后,在贮糖桶内调正ph值至3.8-4.2。⑥蒸发:树脂交换后,准确调好ph值的糖液,利用泵送至蒸发罐,保持真空度在500毫米汞柱以上。加热蒸汽压力不得超过1千克/平方厘米,当糖液浓度在42%-50%左右,即可出料。⑦异构化:将固相异构酶装填于竖立的保温反应柱内,反应温度控制在65摄氏度,精制的糖液由柱顶进料,流过酶柱,进行异构化反应,再从柱底出料,连续操作,也可由柱底进料,经过酶柱,从柱顶出料。因酶活力处于最佳ph值时,能充分发挥催化作用,反应速度快,时间短,糖分分解副反应发生的程度低,所得的异构糖液的颜色浅,容易精制,所以,异构化时糖液的ph值大小应由所用的异构酶的型号而决定。⑧二次脱色:异构化反应后,所得糖液含有色物质,并在贮存期间能产生颜色及灰分等杂质,所以,需二次脱色。将糖液送人脱色桶,加入定量新鲜活性炭,操作与第一次脱色相同。⑨二次树脂交换:经二次脱色的糖液需再进行一次树脂交换,方法同前。最后流出的糖液ph值较高,可用盐酸调节ph值至4.0-4.5。⑩蒸发浓缩;精制的糖液经真空蒸发罐浓缩到需要的浓度,即得果葡糖浆。由于葡萄糖易于结晶,为了防止糖浆在贮存期间出现结晶析出,不能让糖液蒸发到过高浓度,一般要求在70%-75%(干物质浓度)之间。
4.红薯制软糖
软糖是一种柔软和微存弹性的糖果,有透明的和半透明的。软糖的含水量较高;一般为10%-20%。绝大多数软糖都制成水果味型的,也有一部分制成奶味和清凉味型的,其外形随成型工艺不同分为长方形或不规则形。
(1)工艺流程:调淀粉乳-冲浆-熬糖-冷却-成型-包装。
(2)配料:淀粉12千克,淀粉糖浆40千克,白糖50千克、柠檬酸25克,香料0.25千克。
(3)工艺操作要点:①调淀粉乳:做软糖可用红薯淀粉和玉米淀粉各半。如果成品按50千克计算,可用混合淀粉6千克,过筛,加入重2.5千克白糖、12克柠檬酸和8千克水,搅拌均匀,慢火加热至60摄氏度,不要超过60摄氏度。②冲浆:用沸腾的清水约17千克冲人已调好的淀粉乳中,将淀粉乳冲熟成浆状,急速搅拌,搅至无疙瘩,将已经加热至沸、完全溶化和过滤的12.5千克白糖和20千克淀粉糖浆的棍合液,分三次加入已冲熟搅匀的浆糊中,边加边搅拌。第一次加入1/5,搅匀后第二次加入2/5,再搅匀后第三次全部加入,搅拌均匀后即可熬糖。在调淀粉乳和冲浆的过程中,要注意加水量。如水量过少,制品坚硬;如加水过多,熬糖费时较长,也浪费燃料,且使制品色深,因配方中使用淀粉糖浆,需把淀粉糖浆中的水分计算在内。③熬糖:将冲好、搅匀的糖浆放在火上熬糖,边熬边搅拌,约需1个多小时。出锅温度为115-120摄氏度;冬季可低些,夏季可高些。离火后加入香料搅拌均匀。④冷却:冷却的方法有两种:一是在铁板上铺一层淀粉,以防出锅后的糖坯粘在铁板上;另一种是在铁板上擦一些植物油作为润滑剂。⑤成型、包装:糖坯在铁板上冷却至软硬适中时,即可分块、压片,继续冷却至成型所要求的适宜软硬度时,可用切块机切块成型。一般可切成长方形或不规则形块,质量好的软糖可拉长12厘米以上。成型后,稍经冷却可用除粉机除去糖块表面粘附的淀粉粒,用糯米纸为内衬,外包商标纸,扭结紧密。
5.红薯制粉糖
(1)工艺流程:制麦芽-薯粉糊化-糖化-熬糖-加工成糖。
(2)工艺操作:①制麦芽:将大麦或小麦用水浸泡3-4小时后取出沥干,并在20-24摄氏度条件下发芽,5-7天后,待麦芽现青长到3厘米长即为鲜麦芽。将鲜麦芽干制,即为干麦芽。将鲜麦芽或干,麦芽兑水,用石磨或磨浆机磨成麦芽浆,要随磨随用,磨得越细越好。②薯粉糊化:按干红薯淀粉10千克加冷水15千克的比例调化,湿红薯淀粉加水量要适当减少,再加入1千克鲜麦芽或0.75千克干麦芽调成薯粉麦芽乳,倒入45千克沸水中搅匀,并加热煮开,一定要煮熟透。麦芽不易过多或过少,多者颜色发黄,少者熬不成糖。③糖化:将煮熟后的薯粉麦芽乳退火降温至50摄氏度左右,再加入1千克鲜麦芽或0.75千克干麦芽,让乳液在锅中充分糖化。一般2小时后;糖渣就会全部沉淀,上面现一层清水。此时再烧火煮开,用布过滤。滤出液即为糖液,糖渣可作饲料。④熬糖:将糖液盛人锅内,烧大火煎熬,使水分蒸发,中途不得停火,经4-6小时后,糖液即成浓稠状,取少许滴人冷水中,冷却后一敲即成碎块时,熄火取糖。不要熬过,否则会炭化,味变苦。1千克干红薯淀粉可熬糖0.8-0.9千克。⑤加工成糖:红薯糖可加工成块糖、豆丝糖和米花糖。块糖:从锅中取出来的糖冷至35摄氏度时,加少许熟芝麻和橘子皮粉拌匀,拉成条,一端放在洁净的木桩上,另一端用圆棒穿起,双手来回扯动,直到颜色由黄变白为止,就成为块糖;豆丝糖:将冷至35摄氏度的糖,粘上熟豆粉,并加倍挽圈拉扯,由细条拉成细丝时,就成为豆丝糖;米花糖:先在锅中放50克食用油煎熟,取3千克糖加温火溶化,加入3千克炒米花,再撒一点熟芝麻和橘子皮。待全部拌匀后,从锅内趁热取出放在干净的木板上,再用另一木板加压成长条形,压得愈紧愈好,并立即用锋利快刀块成小块,即为米花糖。
‘肆’ 在双酶法制备葡萄糖生产上,怎样判断液化,糖化的终点
液化终点 碘反应呈棕红色
糖化终点 无水酒精检验无糊精存在,取糖化液数滴,滴入无水乙醇中,看是否生成白色絮状物。若无白色絮状物生成,表明糖化比较彻底。
‘伍’ 糖化酶活力测定
糖化酶活力测定
1.定义
1g固体酶粉(或1ml液体酶),于40℃、pH值为4.6的条件下,1h分解可溶性淀粉产生1mg葡萄糖,即为1个酶活力单位,以u/g(u/ml)表示。
2.原理
糖化酶有催化淀粉水解的作用,能从淀粉分子非还原性末端开始,分解α-1,4-葡萄糖苷键生成葡萄糖。葡萄糖分子中含有醛基,能被次碘酸钠氧化,过量的次碘酸钠酸化后析出碘,再用硫代硫酸钠标准溶液滴定,计算酶活力。
3.试剂和溶液
(1)乙酸-乙酸钠缓冲溶液(pH为4.6)。
称取乙酸钠(CH3COONa·3H2O)6.7g,溶于水中,加冰乙酸(CH3COOH)2.6ml,用水定容至1000ml。配好后用pH计校正。
(2)硫代硫酸钠标准溶液(Na2S2O3,0.05mol/L)。
(3)碘溶液(1/2I2,0.1mol/L)。
(4)氢氧化钠溶液(NaOH,0.1mol/L)。
(5)200g/L可溶性氢氧化钠溶液。
(6)硫酸溶液(2mol/L)。
(7)20g/L可溶性淀粉溶液。
(8)10g/L淀粉指示液。
4.仪器和设备
恒温水浴锅、秒表、比色管、玻璃仪器。
5.步骤
(1)待测酶液的制备 称取酶粉1~2g,精确至0.0002g(或吸取液体酶1.00ml),先用少量的乙酸缓冲液溶解,并用玻璃棒捣研,将上清液小心倾入容量瓶中。沉渣部分再加入少量缓冲液,如此捣研3~4次,最后全部移入容量瓶中,用缓冲液定容至刻度(估计酶活力在100~250u/ml范围内),摇匀。通过4层纱布过滤,滤液供测定用。
(2)测定 于甲、乙两支50ml比色管中,分别加入可溶性淀粉25ml及缓冲液5ml,摇匀后,于40℃恒温水浴中预热5min。在甲管(样品)中加入待测酶液2ml,立刻摇匀,在此温度下准确反应30min,立刻各加入氢氧化钠溶液0.2ml,摇匀,将两管取出迅速冷却,并于乙管(空白)中补加待测酶液2ml,吸取上述反应液与空白液5ml,分别置于碘量瓶中,准确加入碘溶液10ml,再加氢氧化钠溶液15ml,摇匀,密塞,于暗处反应15min。取出,加硫酸溶液2ml,立即用硫代硫酸钠标准溶液滴定,直至蓝色刚好消失为其终点。
(3)计算
X=(A-B)c×90.05×32.2/5×1/2×n×2=579.9×(A-B)c×n
式中 X——样品的酶活力(u/g或u/ml)
A——空白消耗硫代硫酸钠溶液的体积(ml)
B——样品消耗硫代硫酸钠溶液的体积(ml)
c——硫代硫酸钠溶液的浓度(mol/L)
90.05——与1ml硫代硫酸钠标准溶液(1mol/L)相当的以克表示的葡萄糖的质量
32.2——反应液的总体积(ml)
5——吸取反应液的体积(ml)
1/2——吸取酶液2ml,换算为1ml
n——稀释倍数
2——反应30min,换算成1h的酶活力系数所得的结果表示至整数
‘陆’ 如何判断发酵的终点
最终结果是产生酒精,二氧化碳以及其它代谢的产物。
现代发酵的定义应该是:通过对微生物(或动植物细胞)进行大规模的生长培养,使之发生化学变化和生理变化,从而产生和积累大量人们发酵所需要的代谢产物的过程。
其也是生物工程的基本过程,即发酵工程。对于其机理以及过程控制的研究,还在继续。
(6)检测糖化终点的方法扩展阅读
食品发酵类型众多,若不加以控制,就会导致食品腐败变质。控制食品发酵过程的主要因素有酸度、酒精含量、菌种的使用、温度、通氧量和加盐量等。这些因素同时还决定着发酵食品后期贮藏中的微生物生长的类型。
随着科学技术的进步,发酵技术发生了划时代的变革,已经从利用自然界中原有的微生物进行发酵生产的阶段进入到,按照人的意愿改造成具有特殊性能的微生物以生产人类所需要的发酵产品的新阶段。
参考资料来源:网络-发酵
‘柒’ 测定糖的含量的方法有哪些
糖的测定方法
一般有四种方法:
1、 直接滴定法。
原理为 糖还原天蓝色的氢氧化铜为红色的氧化亚铜。缺点:水样中的还原性物质能对糖的测定造成影响。
2、 高锰酸钾滴定法。
所用原理同直接滴定法。缺点:水样中的还原性物质能对糖的测定造成影响,过程较为复杂,误差大。
3、硫酸苯酚法。
糖在浓硫酸作用下,脱水形成的糠醛和羟甲基糠醛能与苯酚缩合成一种橙红色化合物,在10-100mg范围内其颜色深浅与糖的含量成正比,且在485nm波长下有最大吸收峰,故可用比色法在此波长下测定。苯酚法可用于甲基化的糖、戊糖和多聚糖的测定,方法简单,灵敏度高,实验时基本不受蛋白质存在的影响,并且产生的颜色稳定160min以上。
缺点:如果水样呈橙红色(大部分水样为黄色),会对比色法造成较大的干扰。
4、蒽酮法
糖在浓硫酸作用下,可经脱水反应生成糠醛和羟甲基糠醛,生成的糠醛或羟甲基糠醛可与蒽酮反应生成蓝绿色糠醛衍生物,在一定范围内,颜色的深浅与糖的含量成正比,故可用于糖的测定。
缺点:,不同的糖类与蒽酮试剂的显色深度不同,果糖显色最深,葡萄糖次之,半乳糖、甘露糖较浅,五碳糖显色更浅。
综合比较;采用蒽酮法能将最为准确地测定尾水中糖的含量。
(一) 直接滴定法
Ⅰ、原理
v 一定量的碱性酒石酸铜甲、乙液等量混合,立即生成天蓝色的氢氧化铜沉淀,这种沉淀很快与酒石酸钠反应,生成深蓝色的可溶性酒石酸钾钠铜络合物。在加热条件下,以次甲基蓝作为指示剂,用标液滴定,样液中的还原糖与酒石酸钾钠铜反应,生成红色的氧化亚铜沉淀,待二价铜全部被还原后,稍过量的还原糖把次甲基蓝还原,溶液由蓝色变为无色,即为滴定终点。根据样液消耗量可计算出还原糖含量。
样品经除去蛋白质后,在加热条件下,以次甲基蓝做指示剂,滴定标定过的碱性酒石酸铜溶液(用还原糖标准溶液标定碱性酒石酸铜溶液),根据样品溶液消耗体积计算还原糖量。
Ⅱ、仪器和试剂
1.仪器
酸式滴定管,可调电炉(带石棉板),250ml容量瓶。
2.试剂
1. 盐酸。
2. 碱性酒石酸铜甲液:称取15g硫酸铜(CuSO4·5H2O)及0.05g次甲基蓝,溶于水中并稀释至1000mL。
3. 碱性酒石酸铜乙液:称取50g酒石酸钾钠与75g氢氧化钠,溶于水中,再加入4g亚铁氰化钾,完全溶解后,用水稀释至1000 ml,贮存于橡胶塞玻璃瓶内。
4. 乙酸锌溶液:称取21.9 g乙酸锌,加3ml冰乙酸,加水溶解并稀释至100ml。
5. 亚铁氰化钾溶液:称取10.6g亚铁氰化钾,用水溶解并稀释至100ml。
6. 葡萄糖标准溶液:准确称取1.0000g经过96℃±2℃干燥2h的纯葡萄糖,加水溶解后加入5ml盐酸,并以水稀释至1000L。此溶液相当于1mg/ml葡萄糖(注:加盐酸的目的是防腐,标准溶液也可用饱和苯甲酸溶液配制)。
7. 果糖标准溶液:按⑹操作,配制每毫升标准溶液相当于1mg的果糖。
8. 乳糖标准溶液:按⑹操作,配制每毫升标准溶液相当于1mg的乳糖。
9. 转化糖标准溶液:准确称取1.0526g纯蔗糖,用100ml水溶解,置于具塞三角瓶中加5ml盐酸(1+1),在68℃~70℃水浴中加热15min,放置至室温定容至1000ml,每ml标准溶液相当于1.0mg转化糖。
Ⅲ、实验步骤
1.样品处理
⑴ 乳类、乳制品及含蛋白质的食品:称取约2.50~5.00g固体样品(吸取25~50ml液体样品),置于250 ml容量瓶中,加50 ml水,摇匀。边摇边慢慢加入5ml乙酸锌溶液及5ml亚铁氢化钾溶液,加水至刻度,混匀。静置30 min,用干燥滤纸过滤,弃去初滤液,滤液备用。(注意:乙酸锌可去除蛋白质、鞣质、树脂等,使它们形成沉淀,经过滤除去。如果钙离子过多时,易与葡萄糖、果糖生成络合物,使滴定速度缓慢;从而结果偏低,可向样品中加入草酸粉,与钙结合,形成沉淀并过滤。)
⑵ 酒精性饮料:吸取100ml样品,置于蒸发皿中,用1 mol/L氢氧化钠溶液中和至中性,在水浴上蒸发至原体积1/4后,移入250ml容量瓶中,加水至刻度。
⑶ 含多量淀粉的食品:称取10.00~20.00g样品,置于250ml容量瓶中,加200ml水,在45℃水浴中加热1h,并时时振摇(注意:此步骤是使还原糖溶于水中,切忌温度过高,因为淀粉在高温条件下可糊化、水解,影响检测结果。)。冷后加水至刻度,混匀,静置,沉淀。吸取200ml上清液于另一250ml容量瓶中,慢慢加入5ml乙酸锌溶液及5ml亚铁氢化钾溶液,加水至刻度,混匀,沉淀,静置30 min,用干燥滤纸过滤,弃去初滤液,滤液备用。
⑷ 汽水等含有二氧化碳的饮料:吸取100ml样品置于蒸发皿中,在水浴上除去二氧化碳后,移入250ml容量瓶中,并用水洗涤蒸发皿,洗液并入容量瓶中,再加水至刻度,混匀后备用。(注意:样品中稀释的还原糖最终浓度应接近于葡萄糖标准液的浓度。)
2. 标定碱性酒石酸铜溶液:吸取5.0ml碱性酒石酸铜甲液及5.0ml乙液,置于150ml锥形瓶中(注意:甲液与乙液混合可生成氧化亚铜沉淀,应将甲液加入乙液,使开始生成的氧化亚铜沉淀重溶),加水10 ml,加入玻璃珠2粒,从滴定管滴加约9 ml葡萄糖标准溶液或其他还原糖标准溶液,直至溶液兰色刚好褪去为终点,记录消耗的葡萄糖标准溶液或其他还原糖标准溶液总体积,平行操作三份,取其平均值,计算每10 ml(甲、乙液各5 ml)碱性酒石酸铜溶液相当于葡萄糖的质量或其他还原糖的质量(mg)。(注意:还原的次甲基蓝易被空气中的氧氧化,恢复成原来的蓝色,所以滴定过程中必须保持溶液成沸腾状态,并且避免滴定时间过长。)
3. 样品溶液预测:吸取5.0 ml碱性酒石酸铜甲液及5.0 ml乙液,置于150 ml锥形瓶中,加水10 ml,加入玻璃珠2粒,控制在2 min内加热至沸,趁沸以先快后慢的速度,从滴定管中滴加样品溶液,并保持溶液沸腾状态,待溶液颜色变浅时,以每两秒1滴的速度滴定,直至溶液蓝色褪去,出现亮黄色为终点。如果样品液颜色较深,滴定终点则为兰色褪去出现明亮颜色(如亮红),记录消耗样液的总体积。(注意:如果滴定液的颜色变浅后复又变深,说明滴定过量,需重新滴定。) 当试样溶液中还原糖浓度过高时应适当稀释,再进行正式测定,使每次滴定消耗试样溶液的体积控制在与标定碱性酒石酸酮溶液时所消耗的还原糖标准溶液的体积相近,约在10ml左右。当浓度过低时则采取直接加入10ml样品溶液,免去加水10ml,再用还原糖标准溶液滴定至终点,记录消耗的体积与标定时消耗的还原糖标准溶液体积之差相当于10ml试样溶液中所含还原糖的量。
4. 样品溶液测定:吸取5.0 ml碱性酒石酸铜甲液及5.0 ml乙液,置于150 ml锥形瓶中,加水10 ml,加入玻璃珠2粒,在2 min内加热至沸,快速从滴定管中滴加比预测体积少1 ml的样品溶液,然后趁沸继续以每两秒1滴的速度滴定直至终点。记录消耗样液的总体积,同法平行操作两至三份,得出平均消耗体积。
5. 计算
样品中还原糖的含量(以某种还原糖计)按下式计算。
X=〔A/(m×V/250×1000)〕×100
式中:X--样品中还原糖的含量(以某种还原糖计),单位 g/100g;
A—碱性酒石酸铜溶液(甲、乙液各半)相当于某种还原糖的质量,单位 mg;
m--样品质量,单位 g;
V--测定时平均消耗样品溶液的体积,单位 ml;
计算结果保留小数点后一位。
注意:
滴定结束,锥形瓶离开热源后,由于空气中氧的氧化,使溶液又重新变蓝,此时不应再滴定。
(二)高锰酸钾滴定法
v 原理 将样液与一定量过量的碱性酒石酸铜溶液反应,还原糖将二价铜还原为氧化亚铜,经过滤,得到氧化亚铜沉淀,加入过量的酸性硫酸铁溶液将其氧化溶解,而三价铁盐被定量地还原为亚铁盐,用高锰酸钾标准溶液滴定所生成的亚铁盐,根据高锰酸钾溶液消耗量可计算出氧化亚铜的量,再从检索表中查出氧化亚铜量相当的还原糖量,即可计算出样品中还原糖含量。
(三)硫酸苯酚法
Ⅰ、原理
糖在浓硫酸作用下,脱水形成的糠醛和羟甲基糠醛能与苯酚缩合成一种橙红色化合物,在10-100mg范围内其颜色深浅与糖的含量成正比,且在485nm波长下有最大吸收峰,故可用比色法在此波长下测定。苯酚法可用于甲基化的糖、戊糖和多聚糖的测定,方法简单,灵敏度高,实验时基本不受蛋白质存在的影响,并且产生的颜色稳定160min以上。
多糖在硫酸的作用下先水解成单糖,并迅速脱水生成糖醛衍生物,然后与苯酚生成橙黄色化合物。再以比色法测定。
Ⅱ、试剂
1. 浓硫酸:分析纯,95.5%
2. 80%苯酚:80克苯酚(分析纯重蒸馏试剂)加20克水使之溶解,可置冰箱中避光长期储存。
3. 6%苯酚:临用前以80%苯酚配制。(每次测定均需现配)
4. 标准葡聚糖(Dextran,瑞典Pharmacia),或分析纯葡萄糖。
5. 15%三氯乙酸(15%TCA):15克TCA加85克水使之溶解,可置冰箱中长期储存。
6. 5%三氯乙酸(5%TCA):25克TCA加475克水使之溶解,可置冰箱中长期储存。
7. 6mol/L 氢氧化钠:120克分析纯氢氧化钠溶于500ml水。
8. 6mol/L 盐酸
Ⅲ、操作。
1.制作标准曲线:准确称取标准葡聚糖(或葡萄糖)20mg于500ml容量瓶中,加水至刻度,分别吸取0.4、0.6、0.8、1.0、1.2、1.4、1.6及1.8ml,各以蒸馏水补至2.0ml,然后加入6%苯酚1.0ml及浓硫酸5.0ml,摇匀冷却,室温放置20分钟以后于490nm测光密度,以2.0ml水按同样显色操作为空白,横坐标为多糖微克数,纵坐标为光密度值,得标准曲线。
2.样品含量测定:
①取样品1克(湿样)加1ml 15%TCA溶液研磨,再加少许5%TCA溶液研磨,倒上清液于10毫升离心管中,再加少许5%TCA溶液研磨,倒上清液,重复3次。最后一次将残渣一起到入离心管。注意:总的溶液不要超出10毫升。(既不要超出离心管的容量)。
②离心,转速3000转/分钟,共三次。第一次15分钟,取上清液。后两次各5分钟取上清液到25毫升锥形比色管中。最后滤液保持18毫升左右。(测肝胰腺样品时,每次取上清液时应过滤。因为其脂肪含量大容易夹带残渣。)
③水浴,在向比色管中加入2毫升6mol/L 盐酸之后摇匀,在96℃水浴锅中水浴2小时。
④定容取样。水浴后,用流水冷却后加入2毫升6mol/L 氢氧化钠摇匀。定容至25毫升的容量瓶中。吸取0.2 ml的样品液,以蒸馏补至2.0ml,然后加入6%苯酚1.0ml及浓硫酸5.0ml,摇匀冷却室温放置20分钟以后于490nm测光密度。每次测定取双样对照。以标准曲线计算多糖含量。
Ⅳ、注意
(1)此法简单、快速、灵敏、重复性好,对每种糖仅制作一条标准曲线,颜色持久。
(2)制作标准线宜用相应的标准多糖,如用葡萄糖,应以校正系数0.9校正μg数。
(3)对杂多糖,分析结果可根据各单糖的组成比及主要组分单糖的标准曲线的校正系数加以校正计算。
(4)测定时根据光密度值确定取样的量。光密度值最好在0.1——0.3之间。比如:小于0.1之下可以考虑取样品时取2克,仍取0.2ml样品液,如大于0.3可以减半取0.1ml的样品液测定。
(四)蒽酮法
Ⅰ、实验原理
糖在浓硫酸作用下,可经脱水反应生成糠醛和羟甲基糠醛,生成的糠醛或羟甲基糠醛可与蒽酮反应生成蓝绿色糠醛衍生物,在一定范围内,颜色的深浅与糖的含量成正比,故可用于糖的测定。
该法的特点是几乎可以测定所有的碳水化合物,不但可以测定戊糖和己糖,而且可以测所有的寡糖类和多糖类,其中包括淀粉、纤维素等(因反应液中的浓硫酸可以把多糖水解成单糖而发生反应。所以,用蒽酮法测出的碳水化合物含量,实际上是溶液中全部可溶性碳水化合物总量。在没有必要细致划分各种碳水化合物的情况下,用蒽酮法可以一次测出总量。此外,不同的糖类与蒽酮试剂的显色深度不同,果糖显色最深,葡萄糖次之,半乳糖、甘露糖较浅,五碳糖显色更浅。故测定糖的混合物时,常因不同糖类的比例不同造成误差,但测定单一糖类时,则可避免此种误差。
Ⅱ、试剂:
蒽酮试剂,0.20 g蒽酮溶入100 mL 95%浓硫酸中,冰箱保存;
Ⅲ、方法:
样品2.0 mL加5.0 mL蒽酮试剂,混匀,然后水浴煮沸10 min,取出冷却至室温,在620 nm处测定其吸光度,根据标准曲线计算水样中糖的浓度。(标线以葡萄糖为标样)
‘捌’ 糖化血红蛋白仪的检测方法
糖化血红蛋白检测方法很多,常用的有微柱法离子交换层析、亲和层析、高压液相、免疫凝集、离子捕获法、电泳法等。 如毛细管电泳也能分离检测糖化血红蛋白和血红蛋白质的变异体,但目前尚无商品化,具有批量样本通过能力的仪器面世,相当程度地限制了该方法的临床应用。
金标法的糖化血红蛋白仪,CV值小于5%。
综上所述,糖化血红蛋白是糖尿病患者疾病控制程度一项良好的指标,糖尿病患者应定期检测糖化血红蛋白,并据此制定,修正相关治疗方案。各医院可根据自身标本的多少,选择使用有关糖化血红蛋白的检测仪器,开展该项目的检测。