1. 数学家们是怎么认识方程的
方程(equation)是指含有未知数的等式。是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。求方程的解的过程称为“解方程”。
通过方程求解可以免去逆向思考的不易,直接正向列出含有欲求解的量的等式即可。方程具有多种形式,如一元一次方程、二元一次方程、一元二次方程等等,还可组成方程组求解多个未知数。
在数学中,一个方程是一个包含一个或多个变量的等式的语句。 求解等式包括确定变量的哪些值使得等式成立。 变量也称为未知数,并且满足相等性的未知数的值称为等式的解。
早在3600年前,古埃及人写在草纸上的数学问题中,就涉及了方程中含有未知数的等式。
公元825年左右,中亚细亚的数学家阿尔·花拉子米曾写过一本名叫《对消与还原》的书,重点讨论方程的解法。
方程中文一词出自古代数学专着《九章算术》,其第八卷即名“方程”。“方”意为并列,“程”意为用算筹表示竖式。
在定义中,方程一定是等式,但是等式可以有其他的,比如1+1=2,100×100=10000,都是等式,显然等式的范围大一点。
2. 一元二次方程的详细解法
解一元二次方程
知识点:
一元二次方程和线性方程是整式方程,它是初中数学内容的一个重点,但也是今后学习数学的基地的基础上,应该引起学生的注意。 2 />一个二次方程式的一般形式:AX2(2 X-平方数)+ BX + = D(A≠0),它仅包含一个未知的,数量最多的未知数
整式方程。
求解一元二次方程的基本思路是“停机时间”分为两个线性方程。一元二次方程四个解决方案:1,开平方法2与方法3,公式法,因式分解法。
二,简洁的方法例如:
1,开平直接的方法:
直接开平方法解一元二次方程的平方根是直接使用。直接状如喜解决方案(XM)2 = N(N≥0)
方程为x =±
例1的解决方案。求解方程组(1)(3×1)2 = 7(2)9X2-24倍16 =
分析:(1)这个方程是明显的直接开平方法好做,(2)的左方面的方程是完全平坦的方法(3×4)= 11> 0时,在右侧,那么
这个方程也可以用直接开平方法解。
(1)方案:(3X +1)= 7×
∴(3X +1)2 = 5
∴的3x +1 =±(注意不要把解决方案)<BR / ∴X =
∴原方程X1 = X2 =
(2)解决方案:9X2-24X +16 = 11
∴(3-4)2 = 11
∴3 -4 =±
∴X =
的∴原方程X1 = X2 =
2。 :解决方法方程组Ax 2 + BX + C = 0(≠0)
第一常数c等式的右边:AX + BX-C
二次项系数1:X2 + X = -
两侧,分别与方程系数半方:X2 + X +()2 = - +()2
方程的左边成为一个完美的正方形: (+)2 =
当B2-4AC≥0,X + =±
∴X =(求根公式)
例2。的方法解方程3X2-4-2 = 0
解决方案:移动到右边的方程3X2-4X = 2
二次项系数常数项:X2-X =
两侧的方程和系数的一半面积的2倍-+()= +()2 />式:(x)的2 =直接平方根的x =±∴X =
∴原方程X1 = X2 =
3。公式法:化成二次方程的一般形式,然后计算判别式△= B2-4AC价值,当B2-4AC≥0,每
系数a,B,C的值代入根调查的公式=(B2-4AC≥0),可以是方程的根。
案件3。公式法解方程的2x2-8X = -5
解决方法:进入一般形式的方程:2X2-8X +5 = 0
∴= 2,B = -8,C = 5
>β2-4ac时=(-8)2-4×2×5 = 64-40 = 24> 0
∴= [(-B±(二^ 2-4ac时)^(1/2)/ (2 *)
的∴原方程对于x1 = 2倍= />分解法:方程变形侧为零,另一侧的第二个不同的产品分解成两个因子的形式/>两个一旦因子等于零,两个两个一次性方程获取根,原方程一个/>根此解决方案的一个二次方程式被称为分解法的线性方程组的解。
例4的分解方法来解决公式如下:
(1)(X +3)(X-6)= -8(2)2×2 +3 X = 0
( 3)6X2 +5 X-50 = 0(选择),(4)X2-2(+)×4 = 0(选择学校)
(1)解决方案:(X + 3)(- 6)= -8简单的精加工
的2倍到3倍-10 = 0(方程左侧的第二个三,右零)
(5)第(x +2)= 0(方程因子分解的左侧)
∴-5 = 0或x 2 = 0(为两个线性方程)
∴X1 = 5 2 = -2的溶液中
原方程(2)的解决方案:2×2 3 = 0 ×(2×3)= 0(提公共方程的系数的方法分解因子的左侧)
∴ X = 0或2x +3 = 0(分为两个线性方程)
∴X1 = 0,X2 = - 是解决原方程
注:有些学生对这个问题容易失去x = 0的该溶液中,应该记住的二次方程有两种解决方案。
(3)的解决方案:6×2 5 X-50 = 0
(2×5)(3×10)= 0(交叉乘以分解,要特别注意的符号不出差错)
∴2X-5 = 0或3x +10 = 0
∴X1 = X2 = - 是原方程的解决方案。 />(4)溶液的2倍-2(+)×4 = 0(∵可以被分解成2·2,∴此标题因子分解法)
(2)(- 2)= 0 ∴X1 = 2,X2 = 2是解决原方程
总结:
一般解决方案的二次,或分解方法在应用程序中最常用的方法时,分解方法,船舶必须写在方程船舶
形式,而二次项系数为正数。
开平直接的方法是最基本的方式
公式法和方法的完成公式法的最重要途径是一元二次方程的(有人称之为普遍规律),使用公式
法律,必须采取原方程为一般形式,以确定的系数,计算公式应该在前面的价值判别
以确定方程解。“
配方法是推导公式的工具,主公式法后可以直接使用公式法求解一元二次方程,它是一般的方法
求解一元二次方程,但与方法,具有广泛的应用在其他数学知识的学习,初中需掌握三个重要的数学方面 BR />法律,我们必须掌握三个重要的数学方法替代方法,待定系数法。
5例。解下列方程,使用适当的方法(可选) />(1)4(2)2-9(3)2 = 0(2)X +(2 - )×+ -3 = 0 >(3)的2倍,2× = - (4)4MX 4X2-10X + M2 +5 M +6 = 0
分析:(1)第一个主题应该观察是否特点,不盲目先做乘法观察发现,左>(3方面的方程可以是平方差/>式分解成两个,由于不同的产品。
(2)可以使用十字相乘法分解的等式的左侧。方程4×2-2(3219米5)的变形)到公式法的一般形式的解。
(4)X +(2米)(米3)= 0,则可以是使用十字相乘法分解。
(1)解决方案:第(x +2)2-9(X-3)2 [2(X +2)+3(X = 0
-3 )] [2(2)-3(3)] = 0
(5×5)(-13)= 0
5倍-5 = 0或-13 = 0∴X1 = 1,χ2= 13 <br解决方案(2):2 +(2 - )×+ -3 = 0
[ - (-3)](- 1)= 0
-(-3)= 0或x-1 = 0
∴X1 = -3,2倍= 1
(3)溶液的2倍-2 = -
X2-2 X + = 0(成一般形式)
△=(-2)2-4 = 12-8 = 4> 0
∴X =
>∴X1,X2 =
(4)解决方案:4X2-4MX-10X + M2 +5 M +6 = 0
4X2-2(3219米+5)+(M +2)(米3)[2倍(米2)] [2倍(米3)] = 0 /> 2倍(米2)= 0或2x-(米3)= 0 = 0 BR />∴X1 = X2 =
例6方程3(X +1)2 +5(X +1)(X-4)+2(X-4)2 = 0两个(选择)
:如果你做的第一和复旧,乘法,这个方程的一般形式合并同类项将更加复杂,仔细观察的主体,我
发现,如果在x + 1 X-4,分别作为一个整体,然后在左边的方程可以被用于交叉相位乘法因子分解(实际使用
)溶液:3( X +1)2(4)] [(1)+(4)] = 0 />(5×5)(2×3)= 0
∴5(的x 1)∴-1 = 0或2x - 3 = 0,(2×3)= 0 (1)(2×3)= 0
∴X1 = 1,2倍=原来的方程是解决。
相对于x的一个二次方程式的求解方法与例7中的2倍+ + Q = 0
溶液:X2 +像素像素+ q = 0时,可以变形为/>的2倍+像素=-q(无的右手侧的方程的常数项)
的2倍+像素+(2)=-Q +(2) (方程的系数的一半的平方)
(+)=(公式)
当P2-4q的≥0,≥0(P2 4q的必须分类讨论的两侧)
∴X = - + =
∴X1 = X2 =
当P2-4Q <0,<0原方程没有实根。
说明:字母系数方程,P,Q标题不附带任何条件,因此,解决问题的过程中的问题,应该注意字母
值?要求,必须分类讨论。
做法:
(a)是适当的方式来解决以下公式:
6X2-X-2 = 0 2(5)(X-5)= 3
3。X2-X = 0 4 X2-4X +4 = 0
5。为3x2 + 1 = 2×(2 +3)2 +5(2 +3)-6 = 0
(二)解决了以下的x方程
1.x2-AX + B2 = 0 2。X2-(+)AX + A2 = 0
做法。参考答案:
(一)1.x1 = - X2 = 2.x1 = 2,X2 = -2
3.x1 = 0,X2 = 4.x1 = X2 = 2 5.x1 = X2 =
6。解决方案:(2X +3整体而言,方程因子分解的左侧)
[(2×3)6] [(2×3)-1] = 0
(2×9)(2×2)= 0
∴2个+9 = 0或2x +2 = 0 ∴X1 = - ,X2 = -1是原方程的解决方案。
(二)1。解决方案:2倍斧+(+)( - )= 0的解决方案:-(+)斧+一·一= 0
[(+)] [-(二)] = 0( XA)(XA)= 0
∴-(+)= 0或x-( - )= 0× - 一= 0或XA = 0 ∴,X1 = X2 =-B是∴X1 = 2 = a是原方程
原方程的解。
测试
多项选择题
方程×(X-5)= 5 (X-5)根(多项式A2 +4 A-)
A X = 5 B,X = -5°C,X1 = X2 = 5 D,X1 = X2 = -5
2。 10值等于11,则值() A,B,C 3 -3或7或-7,-3,-7
如果一元二次方程AX2 + BX + C = 0在第二系数,系数和常数项为零,则方程一定是
根()。
A,B,1 C,-1 D±1
> 4。二次方程ax 2 + BX + C = 0有一个根是零()。
A,B≠0和c = 0,B,B = 0和c≠0
C B = 0,C = 0 D C = 0
5。方程X2-3X = 10两个根()
A -2,5 B,2,-5℃,2,5,-2 ,-5
6。方程x2-3X +3 = 0解()。
A,B,C,D,有没有真正的根
7方程2X2-0.15 = 0解决方案()
A X =宽x = -
C,X1 = 0.27,X2 = -0.27 D,X1 = X2 = -
8。方程X2-X-4 = 0左边配成完全平方式,所得到的方程是()。
A(X-)= B(X)2 = - C,()2 = D,没有
已知一元二次方程X2-2X-M = 0,解方程公式方程()的方法。
A,(X-1)2 = M2 +1上述答案B,(X-1)2 = m-1的C,(X-1)2 = 1-M D(X-1)2 = m +1个
答案解析
回答:1 。2.C 3.B 4.D 5.A 6.D 7.D 8.C 9.D
解析:BR /> 1:移:(X-5)= 0,则X1的= X2 = 5,/>附注:方程两侧不容易划分由郑氏的二次方程必须有两个实根。
分析:从问题是:A2 +溶液是4-10 = 11 = 3或= -7。
分析:为每个问题:一个+ b的+ c的= 0时,等式左侧的一个+ B + C,且具只当x = 1,AX2 + BX + C = A + B + C,这意味着,当x = 1
等式成立,必须铲除X = 1
4:一元二次方程式AX2 + BX + = 0,如果根为零,/>斧2 + bx + c的存在一个因子x,只有c = 0时,有一个共同的x的除数,使C = 0。 BR />此外,您也可以取代x = 0处取得C = 0,更简单!分析:原方程变为X2-3X-10 = 0,
(5 )第(x +2)= 0
X-5 = 0或x + 2 = 0
X1 = 5,X2 = -2。
6:Δ= 9-4×3。 = -3 <0时,原方程没有实根。
7。:2×2 = 0.15
X2 =
=±
请注意,彻底简化,并支付注意直接的平方根,不要失去了根。
8。:两边乘以3:X2-3X-12 = 0,然后按照系数公式X2-3X +( - )2 = 12 + ( - )2,
整理为:( - )2,=
方程的可以用公式变形性质,X2-BX配方,配方的产品为第一系数的一半的平方-B
9。分析:X2-2X = M,那么X2-2X +1 =(M +1)
(X-1)= M +1。
测试解决
考试评论
1(河南)由于XA二次方程的根 - 2,那么K = __________
评论:K = 4到x = -2代入原方程是构造一个二次方程K,然后解决。
2(西安的直接开平市),解方程的方法(X-3)2 = 8是方程的根()
( A)X = 3 +2(B)X = 3-2
(C)X1 = 3 +2,X2 = 3-2(D)X1 = 3 +2,X2 = 3-2
a>评论:解方程的方法可以直接解决,或者不计算使用一元二次方程的解决方案,那么就必须有两个解决方案和8平方米
根,你可以选择一个答案。
课外的一元二次方程,一元二次方程扩张
(一元二次方程的一个变量)是含有最高长期是一个未知的未知
整式方程。一般形式
AX2 + BX + C = 0中,(a≠0)
大约在公元前第二个千年,一元二次方程,其解决方案已经出现在了古巴比伦人挡泥板仪器:找到一个数字使
倒数的数量等于一,得到X,这样
= 1 X + = b的,/>的2倍-BX 1 = 0,
(2);使然后得出答案:+ - 可见巴比伦人已经知道二次的
方程求根公式,但他们不接受否定,所以负根不提。
埃及纸莎草纸文书还涉及最简单的一元二次方程,例如:AX2 = B。
公元前4,5世纪,中国已经掌握了一元二次方程的求根公式希腊丢番图(246 - 330),但只有采取积极的二次方程根,即使在面对两个正根的情况下,他只是其中之一。
公元628年,来自印度的婆罗摩笈多书面婆罗洲山校正系统,二次方程x2 + PX + Q = 0根公式中的“代数”阿拉伯的Al花拉子米方程的解,并讨论解决二次方程式,其中涉及到六种不同的形式,订购,B,C为正数,如铝AX2 = BX,AX2 = C,AX2 + C = BX,斧头2 + BX = C,AX2 = bx + c的,依此类推。二次方程分为不同形式的讨论,按照不定实践的。花拉子米除了给定的一元二次方程,一些特殊的解决方案,第一
二次方程的一般解,认识到方程有两个根,无理根存在,但她并没有虚根了解16世纪意大利数学家谁知道三次方程应用到复杂的根。
3. 解一元一次方程的方法有3种
一元二次方程的解法
一、知识要点:
一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基
础,应引起同学们的重视。
一元二次方程的一般形式为:ax2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2
的整式方程。
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解
法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。
二、方法、例题精讲:
1、直接开平方法:
直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的
方程,其解为x=m± .
例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11
分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以
此方程也可用直接开平方法解。
(1)解:(3x+1)2=7×
∴(3x+1)2=5
∴3x+1=±(注意不要丢解)
∴x=
∴原方程的解为x1=,x2=
(2)解: 9x2-24x+16=11
∴(3x-4)2=11
∴3x-4=±
∴x=
∴原方程的解为x1=,x2=
2.配方法:用配方法解方程ax2+bx+c=0 (a≠0)
先将常数c移到方程右边:ax2+bx=-c
将二次项系数化为1:x2+x=-
方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2
方程左边成为一个完全平方式:(x+ )2=
当b2-4ac≥0时,x+ =±
∴x=(这就是求根公式)
例2.用配方法解方程 3x2-4x-2=0
解:将常数项移到方程右边 3x2-4x=2
将二次项系数化为1:x2-x=
方程两边都加上一次项系数一半的平方:x2-x+( )2= +( )2
配方:(x-)2=
直接开平方得:x-=±
∴x=
∴原方程的解为x1=,x2= .
3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项
系数a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
例3.用公式法解方程 2x2-8x=-5
解:将方程化为一般形式:2x2-8x+5=0
∴a=2, b=-8, c=5
b2-4ac=(-8)2-4×2×5=64-40=24>0
∴x= = =
∴原方程的解为x1=,x2= .
4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让
两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个
根。这种解一元二次方程的方法叫做因式分解法。
例4.用因式分解法解下列方程:
(1) (x+3)(x-6)=-8 (2) 2x2+3x=0
(3) 6x2+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学)
(1)解:(x+3)(x-6)=-8 化简整理得
x2-3x-10=0 (方程左边为二次三项式,右边为零)
(x-5)(x+2)=0 (方程左边分解因式)
∴x-5=0或x+2=0 (转化成两个一元一次方程)
∴x1=5,x2=-2是原方程的解。
(2)解:2x2+3x=0
x(2x+3)=0 (用提公因式法将方程左边分解因式)
∴x=0或2x+3=0 (转化成两个一元一次方程)
∴x1=0,x2=-是原方程的解。
注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。
(3)解:6x2+5x-50=0
(2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)
∴2x-5=0或3x+10=0
∴x1=, x2=- 是原方程的解。
(4)解:x2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)
(x-2)(x-2 )=0
∴x1=2 ,x2=2是原方程的解。
小结:
一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般
形式,同时应使二次项系数化为正数。
直接开平方法是最基本的方法。
公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式
法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程
是否有解。
配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法
解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方
法之一,一定要掌握好。(三种重要的数学方法:换元法,配方法,待定系数法)。
例5.用适当的方法解下列方程。(选学)
(1)4(x+2)2-9(x-3)2=0 (2)x2+(2-)x+ -3=0
(3) x2-2 x=- (4)4x2-4mx-10x+m2+5m+6=0
分析:(1)首先应观察题目有无特点,不要盲目地先做乘法运算。观察后发现,方程左边可用平方差
公式分解因式,化成两个一次因式的乘积。
(2)可用十字相乘法将方程左边因式分解。
(3)化成一般形式后利用公式法解。
(4)把方程变形为 4x2-2(2m+5)x+(m+2)(m+3)=0,然后可利用十字相乘法因式分解。
(1)解:4(x+2)2-9(x-3)2=0
[2(x+2)+3(x-3)][2(x+2)-3(x-3)]=0
(5x-5)(-x+13)=0
5x-5=0或-x+13=0
∴x1=1,x2=13
(2)解: x2+(2- )x+ -3=0
[x-(-3)](x-1)=0
x-(-3)=0或x-1=0
∴x1=-3,x2=1
(3)解:x2-2 x=-
x2-2 x+ =0 (先化成一般形式)
△=(-2 )2-4 ×=12-8=4>0
∴x=
∴x1=,x2=
(4)解:4x2-4mx-10x+m2+5m+6=0
4x2-2(2m+5)x+(m+2)(m+3)=0
[2x-(m+2)][2x-(m+3)]=0
2x-(m+2)=0或2x-(m+3)=0
∴x1= ,x2=
例6.求方程3(x+1)2+5(x+1)(x-4)+2(x-4)2=0的二根。 (选学)
分析:此方程如果先做乘方,乘法,合并同类项化成一般形式后再做将会比较繁琐,仔细观察题目,我
们发现如果把x+1和x-4分别看作一个整体,则方程左边可用十字相乘法分解因式(实际上是运用换元的方
法)
解:[3(x+1)+2(x-4)][(x+1)+(x-4)]=0
即 (5x-5)(2x-3)=0
∴5(x-1)(2x-3)=0
(x-1)(2x-3)=0
∴x-1=0或2x-3=0
∴x1=1,x2=是原方程的解。
例7.用配方法解关于x的一元二次方程x2+px+q=0
解:x2+px+q=0可变形为
x2+px=-q (常数项移到方程右边)
x2+px+( )2=-q+()2 (方程两边都加上一次项系数一半的平方)
(x+)2= (配方)
当p2-4q≥0时,≥0(必须对p2-4q进行分类讨论)
∴x=- ±=
∴x1= ,x2=
当p2-4q<0时,<0此时原方程无实根。
说明:本题是含有字母系数的方程,题目中对p, q没有附加条件,因此在解题过程中应随时注意对字母
取值的要求,必要时进行分类讨论。
练习:
(一)用适当的方法解下列方程:
1. 6x2-x-2=0 2. (x+5)(x-5)=3
3. x2-x=0 4. x2-4x+4=0
5. 3x2+1=2x 6. (2x+3)2+5(2x+3)-6=0
(二)解下列关于x的方程
1.x2-ax+-b2=0 2. x2-( + )ax+ a2=0
练习参考答案:
(一)1.x1=- ,x2= 2.x1=2,x2=-2
3.x1=0,x2= 4.x1=x2=2 5.x1=x2=
6.解:(把2x+3看作一个整体,将方程左边分解因式)
[(2x+3)+6][(2x+3)-1]=0
即 (2x+9)(2x+2)=0
∴2x+9=0或2x+2=0
∴x1=-,x2=-1是原方程的解。
(二)1.解:x2-ax+( +b)( -b)=0 2、解:x2-(+ )ax+ a· a=0
[x-( +b)] [x-( -b)]=0 (x- a)(x-a)=0
∴x-( +b)=0或x-( -b) =0 x- a=0或x-a=0
∴x1= +b,x2= -b是 ∴x1= a,x2=a是
原方程的解。 原方程的解。
测试
选择题
1.方程x(x-5)=5(x-5)的根是( )
A、x=5 B、x=-5 C、x1=x2=5 D、x1=x2=-5
2.多项式a2+4a-10的值等于11,则a的值为( )。
A、3或7 B、-3或7 C、3或-7 D、-3或-7
3.若一元二次方程ax2+bx+c=0中的二次项系数,一次项系数和常数项之和等于零,那么方程必有一个
根是( )。
A、0 B、1 C、-1 D、±1
4. 一元二次方程ax2+bx+c=0有一个根是零的条件为( )。
A、b≠0且c=0 B、b=0且c≠0
C、b=0且c=0 D、c=0
5. 方程x2-3x=10的两个根是( )。
A、-2,5 B、2,-5 C、2,5 D、-2,-5
6. 方程x2-3x+3=0的解是( )。
A、 B、 C、 D、无实根
7. 方程2x2-0.15=0的解是( )。
A、x= B、x=-
C、x1=0.27, x2=-0.27 D、x1=, x2=-
8. 方程x2-x-4=0左边配成一个完全平方式后,所得的方程是( )。
A、(x-)2= B、(x- )2=-
C、(x- )2= D、以上答案都不对
9. 已知一元二次方程x2-2x-m=0,用配方法解该方程配方后的方程是( )。
A、(x-1)2=m2+1 B、(x-1)2=m-1 C、(x-1)2=1-m D、(x-1)2=m+1
答案与解析
答案:1.C 2.C 3.B 4.D 5.A 6.D 7.D 8.C 9.D
解析:
1.分析:移项得:(x-5)2=0,则x1=x2=5,
注意:方程两边不要轻易除以一个整式,另外一元二次方程有实数根,一定是两个。
2.分析:依题意得:a2+4a-10=11, 解得 a=3或a=-7.
3.分析:依题意:有a+b+c=0, 方程左侧为a+b+c, 且具仅有x=1时, ax2+bx+c=a+b+c,意味着当x=1
时,方程成立,则必有根为x=1。
4.分析:一元二次方程 ax2+bx+c=0若有一个根为零,
则ax2+bx+c必存在因式x,则有且仅有c=0时,存在公因式x,所以 c=0.
另外,还可以将x=0代入,得c=0,更简单!
5.分析:原方程变为 x2-3x-10=0,
则(x-5)(x+2)=0
x-5=0 或x+2=0
x1=5, x2=-2.
6.分析:Δ=9-4×3=-3<0,则原方程无实根。
7.分析:2x2=0.15
x2=
x=±
注意根式的化简,并注意直接开平方时,不要丢根。
8.分析:两边乘以3得:x2-3x-12=0,然后按照一次项系数配方,x2-3x+(-)2=12+(- )2,
整理为:(x-)2=
方程可以利用等式性质变形,并且 x2-bx配方时,配方项为一次项系数-b的一半的平方。
9.分析:x2-2x=m, 则 x2-2x+1=m+1
则(x-1)2=m+1.
中考解析
考题评析
1.(甘肃省)方程的根是( )
(A) (B) (C) 或 (D) 或
评析:因一元二次方程有两个根,所以用排除法,排除A、B选项,再用验证法在C、D选项中选出正确
选项。也可以用因式分解的方法解此方程求出结果对照选项也可以。选项A、B是只考虑了一方面忘记了一元
二次方程是两个根,所以是错误的,而选项D中x=-1,不能使方程左右相等,所以也是错误的。正确选项为
C。
另外常有同学在方程的两边同时除以一个整式,使得方程丢根,这种错误要避免。
2.(吉林省)一元二次方程的根是__________。
评析:思路,根据方程的特点运用因式分解法,或公式法求解即可。
3.(辽宁省)方程的根为( )
(A)0 (B)–1 (C)0,–1 (D)0,1
评析:思路:因方程为一元二次方程,所以有两个实根,用排除法和验证法可选出正确选项为C,而A、
B两选项只有一个根。D选项一个数不是方程的根。另外可以用直接求方程根的方法。
4.(河南省)已知x的二次方程的一个根是–2,那么k=__________。
评析:k=4.将x=-2代入到原方程中去,构造成关于k的一元二次方程,然后求解。
5.(西安市)用直接开平方法解方程(x-3)2=8得方程的根为( )
(A)x=3+2 (B)x=3-2
(C)x1=3+2 ,x2=3-2 (D)x1=3+2,x2=3-2
评析:用解方程的方法直接求解即可,也可不计算,利用一元二次方程有解,则必有两解及8的平方
根,即可选出答案。
课外拓展
一元二次方程
一元二次方程(quadratic equation of one variable)是指含有一个未知数且未知数的最高次项是二
次的整式方程。 一般形式为
ax2+bx+c=0, (a≠0)
在公元前两千年左右,一元二次方程及其解法已出现于古巴比伦人的泥板文书中:求出一个数使它与它
的倒数之和等于 一个已给数,即求出这样的x与,使
x=1, x+ =b,
x2-bx+1=0,
他们做出( )2;再做出 ,然后得出解答:+ 及 - 。可见巴比伦人已知道一元二次
方程的求根公式。但他们当时并不接受 负数,所以负根是略而不提的。
埃及的纸草文书中也涉及到最简单的二次方程,例如:ax2=b。
在公元前4、5世纪时,我国已掌握了一元二次方程的求根公式。
希腊的丢番图(246-330)却只取二次方程的一个正根,即使遇到两个都是正根的情况,他亦只取其中
之一。
公元628年,从印度的婆罗摩笈多写成的《婆罗摩修正体系》中,得到二次方程x2+px+q=0的一个求根公
式。
在阿拉伯阿尔.花拉子米的《代数学》中讨论到方程的解法,解出了一次、二次方程,其中涉及到六种
不同的形式,令 a、b、c为正数,如ax2=bx、ax2=c、 ax2+c=bx、ax2+bx=c、ax2=bx+c 等。把二次方程分成
不同形式作讨论,是依照丢番图的做法。阿尔.花拉子米除了给出二次方程的几种特殊解法外,还第一 次
给出二次方程的一般解法,承认方程有两个根,并有无理根存在,但却未有虚根的认识。十六世纪意大利的
数学家们为了解三次方程而开始应用复数根。
韦达(1540-1603)除已知一元方程在复数范围内恒有解外,还给出根与系数的关系。
我国《九章算术.勾股》章中的第二十题是通过求相当于 x2+34x-71000=0的正根而解决的。我国数学
家还在方程的研究中应用了内插法。
4. 如何利用方程思想来解决问题
如果说数学起源于人类生存的需要,或者起源于人类理智探索真理的需要,那么数学思想方法就是伴随着数学的产生而产生,伴随着数学的发展而发展的,它不仅是数学的精髓,也是数学教学的灵魂,更是体现数学本质的重要方面和评价数学教学的主要依据。因此,在小学数学教学过程中,加强数学思想方法的渗透,会有利于教师深刻地认识数学内容,有利于增强学生的数学观念和数学意识,形成学生良好的思维品质。下面从教学过程的角度关注数学思想方法,来交流自己一些不成熟、不全面的认识和看法。
1.在知识的呈现过程中,适时渗透数学思想方法
对于数学而言,知识的发生过程,实际上也就是思想方法的发生过程。因此,象概念的形成过程、结论的推导过程、方法的思考过程、问题的发现过程、规律的被揭示过程等等,都蕴含着向学生渗透数学思想方法、训练思维的极好机会。对于学生来说,最常见的困难之源是:一项工作、一个发现、一个规律、……很少以创始人当初所用的形式出现,它们已经被浓缩了,隐去了曲折、复杂的思维过程,呈现出整理加工的严密、抽象、精炼的结论,而导致其诞生的那些思想方法却往往隐为内在形式,成为数学结构系统的具有潜在价值的“内河流”。我们教学工作的一项重要任务,就是揭开数学这种严谨、抽象的面纱,将发现过程中的活生生的教学“反朴归真”地交给学生,让学生亲自参与“知识再发现”的过程,经历探索过程的磨砺,汲取更多的思维营养。例如,在教学圆的面积时,先引导学生回忆以往在推导平行四边形、三角形、梯形等图形面积计算时的方法,再把圆转化成长方形,进而推导出圆的面积计算公式。我们从方法人手,将待解决的问题,通过某种途径进行转化,归纳成已解决或易解决的问题,最终使原问题得到解决。这样的教学活动让学生经历了知识的形成过程,渗透了化归、极限的数学思想,为后继学习起到了非常重要的作用。
2.在解题思路的探索中,恰当渗透数学思想方法
课堂教学中,学生是学习的主人。在学习过程中,要引导学生积极主动地参与,亲自去发现问题、解决问题、掌握方法,其实,对于数学思想方法的学习也不例外,在数学教学中,解题思路的探索过程是最基本的活动形式之一,数学问题的解答过程是对数学思想方法亲身体验和获得的过程,也是通过运用对其加深认识和理解的过程。例如,在解决“鸡兔同笼”问题时,学生初读题目,有些无从下手。这时就需要教师引导学生用容易探究的小数量代替《孙子算经》原题中的大数量让学生探究整理,渗透了转化的思想方法;用列表法解决问题,渗透了函数的思想方法;用算术法解决问题,渗透了假设的思想方法;用方程法解决问题,渗透了代数的思想方法;在梳理方法时,利用课件出示简笔画,帮助学生理解各种算法等,渗透了数形结合的思想方法,这样将数学思想方法的渗透和知识教学紧密地结合,帮助学生掌握正确的解题方法,提高发散思维能力。
3.在实际问题的解决中,灵活渗透数学思想方法
解题是数学的心脏,学生不仅通过解题掌握和巩固数学基础知识,而且由于数学解题重在解题的整个过程,所以还能培养和发展学生的数学能力,而教师应对学生的解题活动加以指导,不能为了解题而解题,而忽视对思维过程的展示,要在解题过程中揭示后续解题活动中解决类似问题的通用思想方法。因此,加强数学应用意识,鼓励学生运用数学思想方法去分析解决生活实际问题,引导学生抽象、概括、建立数学模型,探求问题解决的方法,使学生把实际问题抽象成数学问题,在应用数学知识解决实际问题的过程中进一步渗透和领悟数学思想方法。例如,客车和货车同时从甲、乙两镇的中点向相反的方向行驶。3小时后客车到达甲镇,而货车离乙镇还有30千米。已知货车的速度是客车的3/4,求甲、乙两镇相距多少千米?分析:由题意知,客车3小时行完全程一半,货车3小时行完全程的一半少30千米。如设甲乙两镇相距z千米,依据“货车的速度是客车的3/4”,可得方程:多数学生都选用了这种方法。教学时不能停留在此,继续引导学生变换一种方式思考:将已知条件“货车的速度是客车的3/4”改变一种叙述方式“货车与客车的速度比是3:4”,因行车时间相同,所以货车与客车所行路程比是3:4,即货车行3份,客车行了4份,货车比客车少行1份少行30千米,因此易知客车行了4份行了120千米,货车行了90千米,甲乙两镇相距240千米。这样,通过转化,使学生体会到分数应用题也可采用整数解法,即可采用比例应用题的方法进行解答,从而巩固与提高学生解答分数应用题的能力,更重要的是让学生感受到转化的方法能变繁为简、化难为易,有助于培养思维的灵活性,克服思维的呆板性。实际上,在数学解题中经常用到的还有诸如数形结合、化归、符号化等思想方法,恰当运用这些思想方法不仅能提高解题效率,还能激发学生强烈的求知欲与创造精神。
总之,在教学过程中,加强数学思想方法的渗透,在知识的呈现过程中,让学生感知数学
5. 我对方程的认识
我对方程的认识
“哎,在五年级的下学期其中最让我头痛的是数学的方程了,方程有两种。、 一种也就是我最不会的列方程了就是让你看着题目在看看相关的数字和词语等等,可是我就丈二和尚——摸不着头脑。有时候数学老师生气的话就会用死神一般的眼神盯着你然后就大声说:“你上课到底在课堂上干什么呀!我再说一遍。”要么就是老师讲的太快了。我根本就没有听到老师就讲完了。
第二种,就是既要解决问题也要列方程。这就更难了。加上我又不会解方程。就会偶然的瞎猫碰到死老鼠碰对的要么就是老师苦口婆心的和我说我才会略懂一二。
其实老师讲的是对的的只要上课听了的话就一定不会错的方程就和语文是一样的只要用心的去读就可以了。
这就是我的方程的理解.
6. 初一年级一元一次方程解的方法。
含字母系数的一元一次方程
教育重点和难点
重点:含有字母系数的一元一次方程和解法.
难点:字母系数的条件的运用和公式变形.
教学过程设计
一、导入新课
问:什么叫方程?什么叫一元一次方程?
答:含有未知数的等式叫做方程,含有一个未知数,并且未知数的次数是1的方程叫做一元一次方程.
例 解方程2x-1 3-10x+1 6=2x+1 4-1
解 去分母,方程两边都乘以12,得
4(2x-1)-2(10x+1)=3(2x+1)-12,
去括号,得
8x-4-20x-2=6x+3-12
移项,得
8x-20x-6x=3-12+4+2,
合并同类项,得
-18x=-3,
方程两边都除以-18,得
x=3 18 ,即 x=1 6.
二、新课
1.含字母系数的一元一次方程的解法.
我们把一元一次方程用一般的形式表示为
ax=b (a≠0),
其中x表示未知数,a和b是用字母表示的已知数,对未知数x来说,字母a是x的系数,叫做字母系数,字母b是常数项.
如果一元一次方程中的系数用字母来表示,那么这个方程就叫做含有字母系数的一元一
次方程.
以后如果没有特别说明,在含有字母系数的方程中,一般用a,b,c等表示已知数,用x,y,z等表示未知数.
含字母系数的一元一次方程的解法与只含有数字系数的一元一次方程的解法相同.按照解
一元一次方程的步骤,最后转化为ax=b(a≠0)的形式.这里应注意的是,用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零.如(m-2)x=3,必须当m-2≠0时,即m≠2时,才有x=3 m-2 .这是含有字母系数的方程和只含有数字系数的方程的重要区别.
例1 解方程ax+b2=bx+a2(a≠b).
分析:这个方程中的字母a,b都是已知数,x是未知数,是一个含有字母系数的一元一次方程.这里给出的条件a≠b,是使方程有解的关键,在解方程的过程中要运用这个条件.
解 移项,得
ax-bx=a2-b2,
合并同类项,得
(a-b)x=a2-b2.
因为a≠b,所以a-b≠0.方程两边都除以a-b,得
x=a2-b2 a-b=(a+b)(a-b) a-b,
所以 x=a+b.
指出:
(1)题中给出a≠b,在解方程过程中,保证了用不等于零的式子a-b去除方程的两边后所得的方程的解是原方程的解;
(2)如果方程的解是分式形式时,一般要化成最简分式或整式.
例2 x-b a=2-x-a b(a+b≠0).
观察方程结构的特点,请说出解方程的思路.
答:这个方程中含有分式,可先去分母,把方程转化成含有字母系数的一元一次方程
的一般形式.在方程变形中,要应用已知条件a+b≠0.
解 去分母,方程两边都乘以ab得
b(x-b)=2ab-a(x-a),
去括号,得
bx-b2=2ab-ax+a2,
移项,得
ax+bx=a2+2ab+b2
合并同类项,得
(a+b)x=(a+b)2.
因为a+b≠0,所以x=a+b.
指出:ab≠0是一个隐含条件,这是因为字母a,b分别是方程中的两个分式的分母,因此a≠0,b≠0,所以ab≠0.
例3 解关于x的方程
a2+(x-1)ax+3a=6x+2(a≠2,a≠-3).
解 把方程变形为,得
a2x-a2+ax+3a=6x+2,
移项,合并同类项,得
a2x+ax-6x=a2-3a+2,
(a2+a-6)x=a2-3a+2,
(a+3)(a-2)x=(a-1)(a-2).
因为a≠2,a=-3,所以a+3≠0,a-2≠0.方程两边都除以(a+3)(a-2),得
x=a-1 a+3.
2.公式变形.
在物理课中我们学习了很多物理公式,如果q表示燃烧值,m表示燃料的质量,那么完全燃烧这些燃料产生的热量W,三者之间的关系为W=qm,又如,用Q表示通过异体横截面的电量,用t表示时间,用I表示通过导体电流的大小,三者之间的关系为I=Qt.在这个公式中,如果用I和t来表示Q,也就是已知I和t,求Q,就得到Q=It;如果用I和Q来表示t,也就是已知I和Q,,求t,就得到t=QI.
像上面这样,把一个公式从一种形式变换成另一种形式,叫做公式变形.
把公式中的某一个字母作为未知量,其它的字母作为已知量,求未知量,就是解含字母
系数数的方程.也就是说,公式变形实际就是解含有字母系数的方程.公式变形不但在数学,而且在物理和化学等学科中非常重要,我们要熟练掌握公式变形的技能.
例4 在公式υ=υo+at中,已知υ,υo,a,且a≠0,求t.
分析:已知υ,υo和a,求t,也就是把υ,υo和a作为已知量,解关于未知量t的字母系数的方程.
解 移项,得
υ-υ0=at.
因为a≠0,方程两边都除以a,得
t=υ-υo a.
例5 在梯形面积公式s=12(a+b)h中,已知a,b,h为正数.
(1)用s,a,b表示h;(2)用S,b,h表示a.
问:(1)和(2)中哪些是已知量?哪些是未知量;
答:(1)中S,a,b是已知量,h是未知量;(2)中s,b,h都是知已量,a是未知量.
解 (1)方程两边都乘以2,得
2s=(a+b)h.
因为a与b都是正数,所以a≠0,b≠0,即a+b≠0,方程两边都除以a+b,得
h=2sa+b.
(2)方程两边都乘以2,得
2s=(a+b)h,
整理,得
ah=2s-bh.
因为h为正数,所以h≠0,方程两边都除以h,得
a=2s-bh h.
指出:题是解关于h的方程,(a+b)可看作是未知量h的系数,在运算中(a+b)h不要展开.
三、课堂练习
1.解下列关于x的方程:
(1)3a+4x=7x-5b; (2)xa-b=xb-a(a≠b);
(3)m2(x-n)=n2(x-m)(m2≠n2);
(4)ab+xa=xb-ba(a≠b);
(5)a2x+2=a(x+2)(a≠0,a≠1).
2.填空:
(1)已知y=rx+b r≠0,则x=_______;
(2)已知F=ma,a≠0,则m=_________;
(3)已知ax+by=c,a≠0,则x=_______.
3.以下公式中的字母都不等于零.
(1)求出公式m=pn+2中的n;
(2)已知xa+1b=1m,求x;
(3)在公式S=a+b2h中,求a;
(4)在公式S=υot+12t2x中,求x.
答案:
1.(1)x=3a+5b 3; (2)x=ab; (3)x=mn m+n; (4)x=a2+b2 a-b (5)x=2a.
2.(1)x=y-b r; (2)m=Fa; (3)x=c-by a.
3.(1)n=p-2m m; (2)x=ab-am bm; (3)a=2s-bh h;
(4)x=2s-2υott2.
四、小结
1.含字母系数的一元一次方程与只含有数字系数的一元一次方程的解法相同,但应特别注意,用含有字母的式子去乘或除方程的两边时,这个式子的值不能为零.我们所举的例题及课堂练习的题目中所给出的条件,都保证了这一点.
2.对于公式变形,首先要弄清公式中哪些是已知量,哪个是未知量.把已知量作为字
母系数,求未知量的过程就是解关于字母系数的方程的过程.
五、作业
1.解下列关于x的方程
(1)(m2+n2)x=m2-n2+2mnx(m-n≠0);
(2)(x-a)2-(x-b)2=2a2-2b2 (a-b≠0);
(3)x+xm=m(m≠-1);
(4)xb+b=xa+a(a≠b);
(5)m+nx m+n=a+bx a+b(mb≠na).
2.在公式M=D-d 2l中,所有的字母都不等于零.
(1)已知M,l ,d求D; (2)已知M,l D,求d.
3.在公式S=12n[a1+(n-1)d]中,所有的字母都是正数,而且n为大于1的整数,求d.
答案:
1.(1)x=m+n m-n; (2)x=-a+b 2; (3)x=m2 m+1; (4)x=ab; (5)x=1.
2.(1)D=2lM+d; (2)d=D-2lM.
3.d=2S-na1 n(n-1).
课堂数学设计说明
1.学生对含有字母系数的方程的认识和解法以及公式变形,接受起来有一定困难.含字
母系数的方程与只含数字系数的方程的关系,是一般与特殊的关系,当含有字母系数的方程
中的字母给出特定的数字时,就是只含数字系数的方程.所以在教学设计中是从复习解只含
数字系数的一元一次方程入手,过渡到讨论含字母系数的一元一次方程的解法和公式变形,
体现了遵循学生从具体到抽象,从特殊到一般的思维方式和认识事物的规律.
2.在代数教学中应注意渗透推理因素.在解含有字母系数的一元一次方程和公式变形的过程中,引导学生注意所给题中的已知条件是什么,在方程变形中要正确运用题中的已知条件.如在解方程中,常用含有字母的式子乘(或除)方程的两边,并要论述如何根据已知条件,保证这个式子的值不等于零,从中有意识地训练和提高学生的逻辑推理能力,把代数运算和推理蜜切结合.
7. 如何让学生用方程解决问题 草之梦
一、了解方程重要性
在讲课前先要让学生明白方程在学生生活、社会生产中有着广泛的应用,是小学数学中重要的基础知识之一。了解方程所要学习的内容和要解决的问题,就必须让学生明确教学目标。
1、知道用字母表示数和用方程表示数量关系的优越性,会用字母和含未知数的式子表示数和常见的数量关系。
2、认识等式和方程,理解等式的性质和方程的解法。初步学会根据字母的取值求含有字母的式子的值,比较熟练地解答含有一个或两个未知数的方程。
3、研究简单的情景关系和数形联系,明确含字母的式子、等量及等量关系的意义。建构含字母的式子、等式和方程的数学模型,探究等式的特性和方程的特点。
4、感受用字母表示数和构建方程在生活中的应用价值,强化应用意识,培养分析能力和归纳概括能力。
5、学会按时间发生的基本顺序进行数量关系的提取和思维模型的加工,将生活事理关系与数学逻辑思维有机地结合。
6、用方程的基本思想解决简单的实际问题。
二、学会建立方程模型
方程思想在现实中是普遍的,但却难以直接与学生的生活联系起来,因为人们习惯于运用已知条件构建数学模型。而方程思想不是从局部入手思考问题的,而是从宏观角度把整个事件的存在因素综合考虑的,找出各因素之间存在的等量关系,构建数学模型,但有些数学问题数量关系复杂,学生一时不易找出隐含的等量关面引导学生寻找等量关系:
1、训练找等量关系的能力,可以从数量关系比较简单的问题开始,再过渡到关系较复杂的问题,可以组织找等量关系的专项练习。
例如:(1)、小明x岁,爸爸比他大28岁,爸爸40岁,列式x+28=40。
(2)、小红身高152厘米,小丽比她矮8厘米,小丽身高y厘米,列式152-8=y。
(3)、邮递员叔叔小李每天投报a份,30天共投报600份,列式30a=600。
(4)、一盒糖b颗,一共分给25个小朋友,每人3颗,列式b÷25=3。等量关系可以选择用各种运算。
一般来说,含有除法的等量关系式,较之含有乘法的等量关系式无论在列方程还是在解方程等各方面都要麻烦些。所以,我们一般选择含有乘法的等量关系式。
2、代数式法:在正确分析题意的基础上,将题目中的数量及各种数量之间的关系,用代数式依次表示出来,再根据各代数式之间的内在联系,找出等量关系,列出方程。此法多用于工程问题、按比例分配问题、数字问题、社会热点问题等。
例:一件工程,由甲乙两队完成,若单队单独干5小时方可完成;若乙队单独干需2.5小时就能干完。
(1)如果甲乙两队合作,多长时间干完这件工程?
(2)如果甲队先干2小时,剩下的再由乙队来干,那么还需要多长时间才能干完?
分析: 此题中 : 甲队的工作效率是1 / 5;乙队的工作效率是 1/2.5 ;第(1)问若设两队同时干X时能把这池水抽完,那么甲完成的工作量是 X/5 ;乙完成的工作量是 X/2.5 ; 等量关系是:甲完成的工作量+ 乙完成的工作量=1 ;第(2)问若设乙队再开X时才能抽完,那么甲完成的工作量是 2/5 ;乙完成的工作量是X/2.5 ;等量关系是:甲完成的工作量+ 乙完成的工作量=1(由这道题我们可以体会出,只要熟记工作效率、工作时间、工作量之间的等量关系,然后根据题目的表述,把各部分工作量用代数式表示出来,找到各部分工作量与总工作量之间的等量关系列出方程即可。一般等量关系为:各部分工作量之和等于总工作量)
3、图示法:对于一些直观的问题(如行程问题)可将题目中的条件以及它们之间的关系,用简明的示意图表示出来。这样便于分析,然后根据图示中的有关数量的内在联系,列出方程。例如常用线段表示距离,箭头表示前进方向等,此法多用于行程问题、劳动力调配问题、面积、体积问题等。
例:小丽和小红每天早晨坚持跑步,小红每秒跑4米,小丽每秒跑6米。
(1)如果他们从100米跑道的两端相向跑,那么几秒后两人相遇?
(2)如果小丽站在百米跑道起跑处,小红站在她前面10米处,两人同时同向起跑,几秒后小丽追上小红?
分析问题:
(1)找出题目中的已知量、未知量?
(2)题目中有何等量关系?你是怎样表示的?
(1)小丽所跑的路程+小红所跑的路程=100米。
设经过x秒后两人相遇,则可画得线段图为:
小丽所跑的路程 小红所跑的路程
100米
(2)小丽所跑的路程-小红所跑的路程=10米设x秒后小丽追上小红,则可画得线段图为
小丽所跑的路程
10米 小红所跑的路程
解:(1)设经过x秒后两人相遇,则小丽跑的路程为6x米,小红跑的路程为4x米,由此可得方程
6x+4x=100。
解得 x=10。
答:经过10秒后两人相遇。
(2)设x秒后小丽追上小红,则小丽跑的路程为6x米,小红跑的路程为4x米,由此可得方程
6x-4x=10。
解得 x=5。
答:经过5秒钟后小丽追上小红。
由这道题我们可以看出,在审题过程中,如果能把文字语言变成图形语言――线段图,即可使问题更加直观,等量关系更加清晰。我们只要设出未知数,并用代数式表示出来,便可得到方程。)
以上三种分析方法,在教学时要由浅入深、由易到难、先单一后综合的引导,,通过具体题目,教给学生具体的分析方法,增强学生主动思考的意识,提高学生观察问题,借助于图表分析问题的能力,通过训练,使学生做到具体问题具体分析,并能灵活应用
三、形成方程思想
从学生的课堂表现看:他们非常专注和投入。在“这些不同情景中的问题都有一个共同的特点,想一想是什么?”“仔细想想解方程和我们平时讲的四则运算,有什么不同?”等,在这些有力度的问题的挑战下,学生的思维被真正激活了,他们调动起已有的经验,在课堂上观察、思考、比较、抽象,课堂时而热闹,时而安静,呈现出动静相间的美妙图景。因为是经过自身的努力使问题获得了解决,学生脸上洋溢着成功的喜悦。
从课后的访谈看:学生非常喜欢上这样的课。用他们的话说:“这节课时间过得真快!”“在这节课上,我就是想开小差都没有机会,虽然课本我早预习了,但是没想到里面却有那么多的知识,所以很想弄明白,就不去想其他的事了!”……。
从练习反馈的情况看:正确率很高。学生对方程的含义和解方程的简单方法已经很清晰,学生显得轻松,有的复杂问题也可以自己独立解决。
如何通过“以学定教”实现“以教促学” 是“教”与“学”的永恒话题,是我们应为之不懈努力的理想状态!
总之,在方程的教学中应通过多种途径培养学生建模思想,启发、引导学生从题意中寻找等量关系,提高学生分析问题和解决问题的能力和化实际问题为数学问题以及初步的建构数学模型的能力,形成良好的学习方式,促进学生创造性思维的发展,使每一位学生都能学到有价值的数学,使不同的学生在数学上得到不同的进步。
8. 怎么能让小学生明白解方程求快啊!
用记忆的方法解方程,就记移项,从左移到右,或从右移到左,都可变成相反的运算符号,如加变减,乘变除。能计算的先计算再移项,本着先移一级运算(加减)再移二级运算(乘除)。小学生基本就够用了。
从理解上的角度,要与天平平衡原理结合在一起,等号两边同时加或减去一个相同的数,等式依然成立。等号两边同时乘或除以一个不为0的数,等式依然成立。也本着如果一边能计算就先计算的原则。
9. 解方程有几种方法如何才能轻松求解
在我们学习的生涯中,其实很多人对于数学都是非常恐惧的,尤其是对于大部分的女生来说,她们在学习数学这方面就感觉到没有天赋,而且学起来是非常吃力的。因此他们就会经常对数学上面的问题产生很大的困惑,所以有些人就会产生这样的疑问,就是解方程有几种方法呢?如何才能轻松求解?对这个问题的回答,在我个人看来,比如说有公式法,十字相乘法配方法,以及因数分解法等,我们要根据方程的具体形式来确定,下面我们具体来了解一下。
所以我们在平时的生活中,也应该要更多的去关注这方面的问题,对于每个人而言,了解这方面的问题都我们都是有一定的好处的,而且现在如果我们学会更多的求职方向的方法的话,那么我们在今后遇到什么数学难题的话,他可以给我们带来很大的帮助。以上就是我总结的一些对于这一问题的认识。