⑴ PID气体探测器的PID检测与其它检测方式对比
很多VOC确实是易燃物质并且可以被应用于很多多气体检测器中配备的LEL (Lower Explosive Limit)或称易燃易爆气体检测器所检测到。但是,由于LEL传感器的较低的灵敏度还不足以确认毒性而无法应用于应急事故之中。
换句话说,LEL传感器检测的是爆炸性而非毒性。
(1)LEL传感器检测的是爆炸性而非毒性。
LEL传感器测量的是爆炸下限的百分比,例如,汽油的爆炸下限是1.4%,因而, 100% LEL 就是14,000 ppm 的汽油。10% LEL 是1,400 ppm的汽油,1% LEL是140 ppm的汽油。140 ppm是LEL传感器可以检测到的最小的汽油蒸气量。汽油的TWA值(时间加权平均值)是300 ppm 而其STEL(短期暴露水平)是500 ppm,这些,再加上LEL传感器的较差的分辨率都说明LEL不适合于检测汽油泄露。LEL传感器测量的是爆炸性而不是毒性。实际上,很多VOC(有机化合物)即使在其浓度远远低于LEL传感器灵敏度时就已经具有了很大的毒性。
(2)LEL 传感器是专用于测量甲烷气体的
最初,LEL传感器是专门用于解决测量煤矿中甲烷浓度问题的。大多数的LEL传感器都采用测量易燃气体在催化极上燃烧产生热量的惠斯通电桥的原理。此时,温度升高引起电阻的变化,仪器对其进行测量并转化为% LEL。
(3)LEL传感器的局限性
两种基理影响着LEL传感器的性能并影响着它们有效地测量非甲烷气体:
气体在燃烧时的热量输出不同: 较重的” 碳氢化合物蒸气更难一些扩散到LEL传感器上所以其热量输出也低一些。
有些气体燃烧产生热量较多而另一些可能相对小一些。这些物理性质的不同导致了使用LEL传感器时的不便。比如100% LEL甲烷(5%体积甲烷) 产生的热量就相当于100%LEL丙烷(2.0%体积)的两倍。
有些“较重的”碳氢化合物可能很难扩散通过LEL传感器的防火屏蔽金属网。在LEL传感器上,这个网是用来避免传感器本身回火引燃环境并允许象甲烷、丙烷和乙烷等通过到达传感器的惠斯通桥的电极表面。然而,象汽油、煤油、溶剂等扩散通过这个网的速度较慢,因而到达电桥的量也少,也即输出较低。
(4)惠斯通电桥式的LEL传感器的灵敏度是以甲烷为代表的。
根据下表,汽油在惠斯通电桥上产生的热量大约是甲烷的一半。因此,其产生的信号也是甲烷的一半。如果用甲烷标定的LEL检测汽油蒸气,仪器显示的读数就是实际浓度的一半。例如,在甲烷标定的情况下,如果LEL显示空气中汽油混合物的50% LEL,实际的由于一半输出,LEL就大约是100% 气体 LEL(%vol) 灵敏度(%) 丙酮 2.2 45 柴油 0.8 30 MEK 1.8 38 甲苯 1.2 40 苯 1.2 40 甲烷 5.0 100 丙烷 2.0 53 当然,LEL的读数可以用你所测量的气体进行校正。比如,上表表明,丙烷的响应更接近于大多数的VOC,因此也可用丙烷校正他们的仪器。也可以在仪器用甲烷校正后使用校正系数进行待测气体校正,即以软件方法使得仪器得到正确的读数。然而,即使使用了合适的校正系数,LEL传感器还是因为缺乏足够的测量PPM量级的灵敏度而无法进行VOC的毒性测量。
PPM量级的测量——气体传感器的新奉献
目前,有以下几种方法可以测量PPM级的VOC:
比色管:缺乏精密度,还有其它一些缺点。
金属氧化物传感器:缺乏精密度和灵敏度。
便携式气相色谱/质谱:选择性和精密度均佳,但无法连续测定并且价格昂贵。
FID(火焰离子化检测器):局限性在于体积重量较大,并且需要瓶装氢气。
PID: 最为适用,一个PID是在很多应急事故中最佳选择,它可以提供可信的响应。
为什么不使用比色管。
以前比色管一直是应急事故中气体检测中基本部件,它们被广泛接受,并证明可以以PPM水平测量很多的有毒有害气体。比色管的价格不高,但它也有很多的局限性:
比色管只能提供“点测”,它们无法提供定量分析以及连续的警报检测。只用一个检测管无法提供给操作者一个危险状况的警报。“点测”的本质更易于发生测量错误。因为它们的采样量较小,并且现场还存在着空气流动等等因素。只有采用100-500 cc/min的连续监测,才不至于被一时的高或低的读数蒙蔽。
比色管的响应比较慢,它们大概需要几分钟而不是几秒钟给出结果。
比色管的最好的测量精度大约是25%,
比色管的读数更倾向于间断采样。
废弃的比色管容易产生玻璃和化学污染。
用户需要大量储备比色管以备使用,同时,比色管还可能存在过期的问题。
比色管仅局限于常见化合物,许多特定化合物还没有特殊的解决办法。
为什么不用MOS传感器?
半导体或称MOS传感器是一种早期的不是很贵的便携式测量仪器。它也可以检测大多数的化学物质。但它们的局限性还是限制了它们在应急事故中的广泛应用。
灵敏度度很差,一般的检出限度大约是10PPM。
输出是非线性的,这样就会影响它们的精确度。MOS仅仅是一种各种有毒气体和蒸气的粗略检测器。
相对于PID,MOS的响应时间要慢一些。
MOS传感器更易受到温度和湿度的影响。
很容易被中毒并且不容易清洗。
MOS传感器是一种“宽带”检测器,它们会对各种不同类型的化合物产生反应。
便携式GC/MS
气相色谱/质谱(GC/MS)具有很高的选择性,但是非连续测量。它也是“点测”,无法提供连续的警报测量。因为它们的采样量较小,并且现场还存在着空气流动等等因素。
同时,目前还没有可以由工作人员带在身上的便携式GC/MS仪器,同时,GC/MS还仅是一个即时而非预防手段, 它仅仅能报告发生了什么。一个色谱更多地提供了“点测”的照片结果而不是一个连续的、即时的影像。最后一点,GC/MS在仪器价格上也比较贵。
火焰离子化检测器(FID)
火焰离子化检测器(FID)是一种宽带有机化合物检测器,不具备选择性。它们的线性非常好。FID用于现场检测的主要局限在于它们较大的重量和体积,以及需要配置一个氢气瓶,这样一来,就很难保证它们在危险环境中仪器本身的本质安全。FID相对较贵、维护繁琐也限制了它在工业领域的应用。PID和FID都是常见的有机化合物检测器,它们都可以有效地测量同一种物质,但是,由于PID更小巧一些,更容易使用和更安全,它要比FID更加普遍地应用于工业领域。
光离子化检测器(PID)
一个PID可以看成是没有分离柱的气相色谱仪,因而PID可以提供极佳的精确度。许多人认为:尽管PID对很多PPM级的有毒化合物具有很好的灵敏度和准确度,但它由于缺乏选择性而用途不大。其实,大多数的其它方法,包括:比色管、MOS传感器和FID检测器的选择性也不是很好。PID的优势正在于它没有选择性,它是一种小巧的、连续测量的检测器,它可以为工作人员提供实时的信息反馈。这种反馈可以使工作人员确认他们处于没有暴露于危险化学品之中的安全状态而更好地完成他们的任务。就如同摄像机一样,PID是连续测量的,并且它的结果还可以记录(采集数据)或者立即“回放”(浏览数据)。
为什么PID还不是那么普遍?
1970年,PID已经开始从实验室中走到现场用于化学品污染调查。但此时,它使用起来还很麻烦,但此时PID可以不需费钱费时的实验室测试就能定义污染物质的存在的能力还是使得PID成为很多环境清理工业不可缺少的工具。正是因为它的极佳的检测能力,某些应急事故处理队也认定PID对他们非常重要。但是此时PID的缺点:比如购置和维护费用较高、承受力较差、体积重量较大、对湿度和辐射较为敏感等都限制了PID在应急事故处理中的更为广泛的应用。
PID现在已经成为最为有利的有机化合物检测的工具:
PID可以0.1ppm的分辨率测量0-1000 ppm的有机物质,所以它是测量可以在很低浓度即可致癌的汽油(还有其它有毒气体和蒸汽)的最为合适的方法。PID提供了预防长期中毒的最好保护。PID技术上的突破克服了原有PID的缺点从而为应急事故处理提供了迄今最为有力工具。
PID可以在各种情况提供精确测量的能力可以在以下的有机化合物测量过程中发
挥重要作用:
初始个人防护确定
泄漏检测
事故区域确认
泄漏物确认
清除污染
初始个人防护确认
在接近可能事故发生地之时,救援人员必须首先确认个人防护设备,有些“可能”的事件也许并不是事故而无须任何个人防护;而有些事故开始并没有任何污染迹象,但却需要特别的个人防护。还没有哪个检测器可以为救援人员提供所有的答案,但PID却可为此提供圆满解决。对于很多事故,PID可以让救援人员确定自己周围是否存在有毒气体或蒸气。 一个铁路工作人员向应急救援中心报告:一个在湿热环境(35℃,95%RH)中,一辆罐车发生泄漏。根据描述,这个罐车装载的是液苯。由于苯的毒性(个人暴露水平为1 ppm),救援人员决定采用A级防护。但是,由于现在的温度很高,穿带如此装备会给救援人员带来更多伤害。 最后经过各种努力,确认“泄漏”的罐车下面的滴液是冷凝下来的水滴而不是泄漏出来的苯。原来,该罐车曾存放在20℃的库房中,内部液苯的低温加上外面的高温和高湿出现了水的冷凝。 实际上,使用PID就可以帮助救援人员很容易确认是否有“可离子化”蒸气存在。因为根据记录,已知罐车中装的是苯,而苯是非常容易“离子化”的。救援人员就可以用PID判断是否有苯蒸气存在。这样一来,不仅减少了确定泄漏的费用,而且避免由于穿带A级防护服带来的高热伤害。
用PID进行泄漏检测
通常,泄漏并不是很容易看得到,而在有效制止泄漏之前,一定要确定泄漏的地点。任何情况下,任何气体或蒸气都是从其源头扩散出来的,而在扩散以后,则会被周围的空气稀释直到某些地方检测不到该物质的存在,这样一来,就建立了一个浓度梯度,即当气体完全扩散后,由浓度最高的源头到稀释为零,也就是的浓度变化。
只要我们可以检测到,用PID可以测量并且“看到”很多气体和蒸气的浓度梯度。我们用PID,就象用“盖革计数器”那样“看”到浓度梯度,并且跟随浓度的增加发现源头。PID泄漏检测能力不仅可以快速找到危险源头,而且可以节省很多时间和费用。
使用PID进行危险范围确认
当应急事故人员接近了事故地点后,就要根据气体或蒸气的毒性、温度、风向和其它因素决定危险范围。然而,危险范围的确认通常是由没有很多经验的人员人为设定的。当条件变化时,由于外围人们没有识别条件变化的经验而无法随时调整危险范围。而此时,经验丰富的应急事故处理人员还在集中力量于漏液本身。这样一来,外围人员就有可能由于条件的变化而处于危险状态,因为此时危险范围已经需要外围人员撤退出来了。对于大多数的事故,使用PID就可以随时根据条件的变化改变危险范围的划定。PID可以随时为外围人员提供实时的警报从危险地带撤退。 下图是一个实际事故的解释:在清晨,由于温度不高,风力不大,所有倾覆的有毒液体罐车的泄漏范围还不是很大。但到了中午,由于温度和风向的变化,原来认为是安全的地方,现在已经处于十分危险的境地。而这种时时的变化,用PID是很容易随时加以检测的。
数据采集的工具:
利用PID的数据采集功能,应急救援人员可以得到现场暴露水平的记录以及确认事故起因的判据。一旦事故发生,工作人员就可以进行记录。
PID作为漏液确认
在事故现场可能会有各种各样的液体存在,比如水、燃料、机器油、以及灭火泡沫等等,此时,使用PID就可以迅速判断液体的种类而节省很多时间。PID可以迅速反映漏液是危险物质还是仅仅是水或其它非挥发性物质。
使用PID进行污染情况判断
危险物质对人的危害是不言而喻的,在事故现场工作后,要迅速确认工作人员是否受到危险物质的沾污,或者该污染已被彻底消除。同时,工作人员还需要迅速判断那些防护服未被污染而可以继续使用。用PID就可以快速解决这些问题。对于受到污染的地方,PID会立即给出正响应,而对那些已清理干净或未被污染的地方则没有反应。在燃料泄漏事故中,消防人员经常会遇到防护服沾污很多汽油的情况,这对于消防人员自身是非常危险的。用PID就可以快速判断这种危险是否存在。
使用PID进行善后工作
任何应急事故处理的最终目的都是对漏液进行控制和清除。危险物质通常是对周围的水和土壤产生污染。相关单位(社区、州、县)都要确认这些污染的浓度以便决定是否进行进一步的善后工作。如果仅仅是油料泄漏而且又已经被道路完全吸收的话,就没有必要再进行处理了。然而,如果油料已经污染,并且已经沾污了周围的土壤和水体,情况就不同了。有些当局要求如果TPH (Total Petroleum Hydrocarbons全石油碳氢物)在100 ppm以上就需要做进一步处理,而如果低于该值则无需处理。此时,PID就成为了对当局和应急事故人员的一个最为有效的工具,他们就可以迅速对土壤进行测定而作出决定而不会失去更好的时机。
⑵ 怎么查看U盘的PID和VID信息
查看方法:
打开设备管理器,右键USB设备--属性--详细信息--设备范例id。
根据USB规范的规定,所有的USB设备都有供应商ID(VID)和产品识别码(PID),主机通过不同的VID和PID来区别不同的设备,VID和PID都是两个字节长,其中,供应商ID(VID)由供应商向USB执行论坛申请,每个供应商的VID是唯一的,PID由供应商自行决定,理论上来说,不同的产品、相同产品的不同型号、相同型号的不同设计的产品最好采用不同的PID,以便区别相同厂家的不同设备。
VID和PID通常情况下有两种存储方式,
第一种是主控生产商的VID和PID,存储在主控的bootcode中;
第二种是设备生产商的VID和PID,该VID和PID存储在主控外部的非易失性存储设备中(EEPROM或Flash)的设备固件中,当USB设备连接主机时,如果固件中有设备生产商的VID和PID,会将该VID和PID报告给主机,而忽略主控生产商的VID和PID。
所以理论上一个USB存储设备的VID应该是设备生产商的VID,而不是主控生产商的VID,这两个VID应该是不同的(主控生产商自己生产的设备除外)。
由于VID和PID重复并不会对产品的使用带来严重影响,很多USB设备生产商(山寨厂居多)为了方便,并不会向USB执行论坛申请自己的VID,而是依然沿用主控生产商的VID或随便向产品写入VID和PID;
同时,正规厂家只需要申请VID,PID由厂家自行确定,所以存在相同型号的产品,可能采用了不同的主控(商业需要,很正常),而的PID是一样的,基于上述原因通过VID和PID就不能准确识别USB设备的主控型号,这个问题大家在使用USB设备的过程中需要注意。
⑶ 什么是PID检测仪,什么是VOC检测仪,以及VOC的测量原理
PID检测仪即光离子气体检测仪,检测原理为光离子技术,是一种简洁、易用和方便的监视器,它是一种光电离(PID)检测器,可以检测30多种挥发性有机化合物(VOCS),其中包括苯、甲苯、二甲苯。具有快响应和高灵敏度,光电离是检测挥发性有机化合物(VOCS)的有效方法。
⑷ PID和FID检测技术的区别
PID和FID的区别:
光离子化检测器(简称PID)和火焰离子化检测器(简称FID)是对低浓度气体和有机蒸汽具有很好灵敏度的检测器,优化的配置可以检测不同的气体和有机蒸汽。这两种技术都能检测到ppm水平的浓度,但是它们所采用的是不同的检测方法。每种检测技术都有它的优点和不足,针对特殊的应用就要选用最适合的检测技术来检测。总的来说,PID体积小巧、重量轻、使用简单,因此它具有很好的便携性能。
⑸ (VOCs)六种检测方法中,PID是否可行,那种更好
从学者们争相提出“VOCs在特定气象条件下(如光照,温度等)能生产以臭氧为主的光化学烟雾“以来,VOCs的热度直线上升。从最初的试点,到可以安装,再到工厂必须安装 TVOC,VOC和VOCs的详细含义简单来说TVOC是检测VOCs中主要的几个成分,具有一定针对性,检测仪器只有气相色谱分析仪。如果是说发挥性有机物那就应该是VOCs,只检测总量,不区分具体成分。 (VOCs)检测方法主要有气相色谱-火焰离子化检测法(GC-FID)、傅里叶红外法(FTIR)、光离子化检测法(PID),非色散红外、固态电化学,半导体这6种方法。 目前国家标准认可的VOCs检测方法只有气相色谱法,但是根据不同的检测要求,检测目的,不同的预算选择不同检测原理的产品是没有问题的。一来环境VOCs检测的最终目的是督促治理,并不是实验室研究中需要的精准分析。二来国家,地方的环保部门对于VOCs的检测也都是“重点区域、重点行业、重点企业VOCs排放总量控制”。所以小编认为价格高昂的气相色谱是不会被普遍推广和要求安装的。 厂界VOCs的检测,最常用的就是光离子原理PID传感器。如海格通江BQK系列,PID传感器价格合理,灵敏度高,检测主要就针对挥发性有机物,但是寿命短,对工作环境要求较高。其次推荐非色散红外原理。红外原理VOCs价格和PID传感器相当,灵敏度不高,寿命长,可以拆卸维护,这方面海格通江有深入的研究,另外就是固态电化学VOCs传感器,价格很便宜,灵敏度不及PID却高于非色散红外,寿命高于PID却低于红外。最后是半导体,半导体灵敏度高,但是考虑到原理特征,想用好比较难,需要很多补偿和数据处理。
⑹ pid测voc如何校准
VOCs是挥发性有机物英文名“Volatile Organic Compounds”的缩写,有时也称做VOC,此时专指一种VOC,或者表示挥发性有机物这样一个集合概念。无论是中文的挥发性有机物还是英文的Volatile Organic Compounds均比较长,因此习惯上常用VOCs或者VOC来简称。
不同的机构和组织出于不同的管理、控制或研究需要,对VOCs的定义不尽相同,目前尚没有统一、公认的定义。美国ASTM d3960-98标准将VOC定义为任何能参加大气光化学反应的有机化合物。美国联邦环保署(EPA)的定义:挥发性有机化合物是除一氧化碳、二氧化碳、碳酸、金属碳化物、金属碳酸盐和碳酸铵外,任何参加大气光化学反应的碳化合物。世界卫生组织(WHO,1989)对总挥发性有机化合物(TVOC)的定义为,熔点低于室温而沸点在50-260℃之间的挥发性有机化合物的总称。我国国家标准《室内空气质量标准》(GB/T 18883-2002)中对总挥发性有机化合物(Total Volatile Organic Compounds TVOC)的定义是:利用Tenax GC和Tenax TA采样,采用非极性色谱柱(极性指数小于10)进行分析,保留时间在正己烷和正十六烷之间的挥发性有机化合物的总称。
空气中存在的有机物不仅仅是VOCs。有些有机物在常温下可以在气态和颗粒物中同时存在,而且随着温度变化在两相中的比例会发生改变,这类有机物叫做半挥发性有机物,简称SVOCs。还有些有机物在常温下只存在于颗粒物中,它们属于不挥发性有机物,简称NVOCs。无论是VOCs、SVOCs还是NVOCs,在大气中都参与大气化学和物理过程,一部分可直接危害人体健康,它们带来的环境效应包括影响空气质量、影响天气气候等。
大气污染的加重,引起了人们对挥发性有机物污染的重视。
⑺ PID在检测氨气方面的优势有哪些
氨气的离子化能量为10.18电子伏特,因而采用10.6电子伏特的紫外灯激发,就能轻易的检测到它。便携式PID在检测氨气浓度的时间加权平均值(TWA/25ppm)和短期暴露极限值(STEL/35ppm)方面有相当大的优势。
·PID的光学传感器是不会因为超出量程而遭到破坏的。
·用PID来测量10000ppm的氨气在多数情况下是可以适应的,因此可以用它来为PPE做现场决策并且进行泄露探测。
·PID用的异丁烯校准气既稳定又廉价。
·氨气作为校准气,贵而不稳定
·一个氨气传感器要只有一年的使用期限,当它暴露在高浓度氨气环境中很快会失效,正常使用情况下,氨气检测器最多只能维持三个月。
·由于高浓度氨气对PID没有什么损害,因此它能准确的进行泄漏检测并快速定位泄露位置,争取时间,减少工作人员在高浓度氨气中的暴露并可快速进行维修。
·PID几乎能立刻检验出氨气的浓度,而普通氨传感器需要150秒才能给出现场情况。
·PID和EC传感器2年的使用成本对比,PID在购买时,比氨电化学传感器花费要高,但在2年的使用过程中却比氨电化学传感器的使用成本要低得多。
一款PID不仅能检测单一的氨气,而且能检测许多其它的化合物。举例来说,有氨气和其它浓缩溶剂同时泄漏的事件发生,PID能够提供所有泄漏化合物的组成成分。可是当一个以氨泄漏为主的事件发生时,由于氨气的特殊味道使我们轻易地确定现场只有氨气的泄漏。在这些案例中,PID提供了一种准确可靠而有效的检测氨气的方法,帮助我们在个人保护上做出现场的决策,具体情况有如下三种:
1.采取呼吸器保护(15分钟内超过35ppm)
2.采取强制通风或采用自给式呼吸设备保护(浓度在250-300ppm)
3.采取A级密闭防护(浓度在250-5000ppm)
当然,氨气用户可以采用以下多种技术来检测它们:检测管,电化学传感器,光离子化(PID)传感器和LEL传感器。选择哪种技术最好是根据氨气的实际浓度和采用什么样的解决方法而确定。PID技术结合廉价的氨检测管来实现实时检测是一个很好的方法。
⑻ 如何衡量PID调节系统质量好坏
1.一般情况下,仪表是输出一个4-20mA的PID控制电流到变频器,通过电流的大小改变变频器的转速,从而使被控设备达到工艺要求
2.该仪表首先有一个检测对象,如料速,控制对象的压力,流量,高度等等.仪表通过测量对象的实时值与设定值进行比较,再通过对偏差进行PID补偿计算,从而改变控制电流大小,改变变频器频率输出,改变电机等转速,从而达到了被测量值向设定值接近,满足工艺.
3.这是一个闭环控制系统,某一环节出现故障会导致系统失控,而P,I,D的参数能否设置合理,反应在系统能否即时,稳定的达到设定目标.
⑼ 以温度100度为例。请举例PID是如何应用的。谢谢。我是新手
控制一个加热器的恒温100度,当开始加热时,离目标温度相差比较远,这时我们通常会加大加热,使温度快速上升,当温度超过100度时,我们则关闭输出,通常我们会使用这样一个函数:
e(t) = SP – y(t);
u(t) = e(t)*P
SP——设定值
e(t)——误差值
y(t)——反馈值
u(t)——输出值
P——比例系数
滞后性不是很大的控制对象使用比例控制方式就可以满足控制要求,但很多被控对象中因为有滞后性。
也就是如果设定温度是100度,当采用比例方式控制时,如果P选择比较大,则会出现当温度达到100度输出为0后,温度仍然会止不住的向上爬升,比方说升至130度,当温度超过100度太多后又开始回落,尽管这时输出开始出力加热,但温度仍然会向下跌落一定的温度才会止跌回升,比方说降至170度,最后整个系统会稳定在一定的范围内进行振荡。
(9)pid检测正规方法扩展阅读:
能够检测极低浓度挥发性有机化合物和其它有毒气体的仪器。尤其是对VOC的灵敏检测使其在应急事故检测中具有无可替代的作用,VOC是许多气体事故中的有害物质,对它的有效监测对于防灾减灾具有重要作用。
PID使用了一个紫外灯(UV)光源将有机物打成可被检测器检测到的正负离子(离子化)。检测器测量离子化了的气体的电荷并将其转化为电流信号,电流被放大并显示出“PPM”浓度值。在被检测后,离子重新复合成为原来的气体和蒸气。
PID是一种非破坏性检测器,它不会“燃烧”或永久性改变待测气体,这样一来,经过PID检测的气体仍可被收集做进一步的测定。