1. 想检测零部件产品内部结构和缺陷,哪些设备可以检测
无损检测设备是工业发展必不可少的有效工具,在一定程度上反映了一个国家的工业发展水平,其重要性已得到公认。无损检测设备的最大特点就是能在不损坏试件材质、结构的前提下进行检测,所以实施无损检测后,产品的检查率可以达到100%。但是,并不是所有需要测试的项目和指标都能进行无损检测,无损检测技术也有自身的局限性。某些试验只能采用破坏性试验,因此,在目前无损检测还不能代替破坏性检测。也就是说,对一个工件、材料、机器设备的评价,必须把无损检测的结果与破坏性试验的结果互相对比和配合,才能作出准确的评定。
1、在线测厚仪
在线测厚仪是指在测厚过程中将测量结果实时的显示给使用者或者控制系统,以便使用者或者控制系统能够及时的对异常数据作出反应,为自动化生产一个重要环节。随着二十世纪八十年代激光技术和CCD技术的发展而研制的新一代在线、非接触式的测厚仪,它是利用激光光源,光电检测和计算机工业控制技术三者相结合,实现在线测厚的应用仪器,可广泛用于生产线上对各种材料的厚度、宽度、轮廓的实时测量, 具有非接触测量、不损伤物体表面、无环境污染、抗干扰能力强、精度高、数据采集、处理功能全等特点, 是我国工业生产线产品质量控制的重要设备。在线测厚仪有激光在线测厚仪和涂布在线测厚仪等。
2、X射线测厚仪
X射线测厚仪利用X射线穿透被测材料时,X射线的强度的变化与材料的厚度相关的特性,从而测定材料的厚度,是一种非接触式的动态计量仪器。它以PLC和工业计算机为核心,采集计算数据并输出目标偏差值给轧机厚度控制系统,已达到要求的轧制厚度。
3、电涡流式测厚仪
电涡流式测厚仪,是一种小型仪器,采用涡电流测量原理,可以方便无损地测量有色金属基体上的油漆、塑料、橡胶等涂层,或者是铝基体上的阳极氧化膜厚度等。该仪器广泛应用于机械、汽车、造船、石油、化工、电镀、喷塑、搪瓷、塑料等行业。
4、激光测厚仪
激光测厚仪一般是由两个激光位移传感器上下对射的方式组成的,上下的两个传感器分别测量被测体上表面的位置和下表面的位置,通过计算得到被测体的厚度。激光测厚仪的优点在于它采用的是非接触的测量,相对接触式测厚仪更精准,不会因为磨损而损失精度。相对超声波测厚仪精度更高。相对X射线测厚仪没有辐射污染。
5、实时成像
实时成像,是一种X射线无损检测方法。是通过屏幕实时显示检测结果图像的方法,利用该图像对检测对象材料进行定性、定量的分析、判断和评估,从而获得检测对象材料的均匀性和一致性,或对象结构、装配、材料密度、厚度等信息,达到无损检测的目的。实时成像方法因其检测图像直观清晰、检测速度快和成本低的优势,受到业界高度的关注和日新月异地高速发展。在早期因得到的图像为模拟图像,因此称其为实时成像,也被称做工业电视。随着数字技术尤其是数字图像技术的迅猛发展,实时成像更向数字化方向发展的趋势,越来越多地被称为数字成像,二者其实表示的是同一种概念,同一种方法。
6、工业内窥镜——现在市面上用的最广泛的一种
工业内窥镜可用于高温、有毒、核辐射及人眼无法直接观察到的场所的检查和观察,主要用于汽车、航空发动机、管道、机械零件等,可在不需拆卸或破坏组装及设备停止运行的情况下实现无损检测,广泛应用于航空、汽车、船舶、电气、化学、电力、煤气、原子能、土木建筑等现代核心工业的各个部门。工业内窥镜还可与照相机、摄像机或电子计算机耦接,组成照相、摄像和图象处理系统,从而进行视场目标的监视、记录、贮存和图象分析。
7、探伤机
探伤机一般为无损探伤,探伤机专供造船、石油、化工、机械、航天、交通和建筑等工业部门检查船体、管道、高压容器、锅炉、飞机、车辆和桥梁等材料、零部件加工焊接质量,以及各种轻金属、橡胶、陶瓷等加工件的质量。
8、超声波探伤
超声波探伤是利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷的一种方法,当超声波束自零件表面由探头通至金属内部,遇到缺陷与零件底面时就分别发生反射波,在荧光屏上形成脉冲波形,根据这些脉冲波形来判断缺陷位置和大小。
2. 轮廓测量仪如何实现的表面缺陷检测
轮廓测量仪采用激光测量原理进行在线检测,4个激光传感器均匀分布于被测物四周,这样的结构组成方式使其能从四个方位进行检测,360°无死角的进行检测。下面具体看一下检测原理。
智能轮廓测量仪(简称“轮廓仪”)采用进口3D线激光测量传感器对被测物的外部轮廓进行扫描测量。传感器发射一束线性激光,当激光照射到物体时其漫反射光返回至传感器的接收系统,通过对返回光束的处理可以测量出被测表面X轴和Z轴方向的尺寸。当被测物沿Y方向运动时,传感器可扫描获得被测物表面的三维轮廓。可形成被测物表面密集的点云数据及图形。
3. 无损检验都有哪些方法原理
无损检验通常包括五大类常规方法:超声波检验、射线检验、磁粉检验、渗透检验、涡流检验。
超声波检验:超声波在被检材料中传播时,根据材料的缺陷所显示的声学性质对超声波传播的影响来探测其缺陷的方法。通常用超声波检验内部缺陷和表面缺陷。
X射线检验:利用X射线等射线对金属内部缺陷进行的无损检验方法。
磁粉检验:利用漏磁和合适的检验介质发现试件表面和近表面的不连续性的无损检验方法。
渗透检验:通过施加渗透剂,用洗净剂除去多余的部分,然后再施加显像剂以得到零件上开口于表面的缺陷显示。
涡流检验:利用在试件中的涡流,分析试件中质量状况的无损检测方法。
超声波检验和射线检验是应用最广泛的检测方法,只要应用于内部缺陷检验,对于表面检验,主要应用磁粉检验,只要是铁磁性材料就要优选磁粉检验。
工业上超声波检验以金属为主,也可以用于其它检验对象;射线检验的对象也很广泛,以金属为主;磁粉检验只能适用于铁磁性材料;渗透检验既可以用于金属,也可以用于非金属材料;涡流检验只能应用于导电材料。
在不损伤被测材料的情况下,检查材料的内在或表面缺陷,或测定材料的某些物理量、性能、组织状态等的检测技术。广泛用于金属材料、非金属材料、复合材料及其制品以及一些电子元器件的检测。常用的无损检测技术有:
①射线探伤。
利用X射线或γ射线在穿透被检物各部分时强度衰减的不同,检测被检物的缺陷。
若将受到不同程度吸收的射线投射到X射线胶片上,经显影后可得到显示物体厚度变化和内部缺陷情况的照片。如用荧光屏代替胶片,可直接观察被检物体的内部情况。
②超声检测。
利用物体自身或缺陷的声学特性对超声波传播的影响,来检测物体的缺陷或某些物理特性。在超声检测中常用的超声频率为0.5~5兆赫(MHz)。最常用的超声检测是脉冲反射式探伤。
③磁粉探伤。
通过磁粉在物体缺陷附近漏磁场中的堆积来检测物体表面或近表面处的缺陷,被检测物体必须具有铁磁性。
④渗透探伤。
利用某些液体对狭窄缝隙的渗透性来探测表面缺陷。常用的渗透液为含有有色染料或荧光的液体。
⑤涡流检测
由于涡流的大小随工件内有没有缺陷而不同,所以线圈电流变化的大小能反映有无缺陷。
此外,中子射线照相法、激光全息照相法、超声全息照相法、红外检测、微波检测等无损检测新技术也得到了发展和应用。
4. 钢材表面缺陷各检测方法优缺点有哪些
钢材缺陷检测的主要方法有:人工检测法,漏磁检测法,涡流检测法等。其中人工检测法主要通过有经验的技术人员对钢材缺陷进行识别,检测结果易受主观因素的影响;漏磁检测法是将被测钢材磁化,钢材在无缺陷的情况下,磁力线分布均匀,遇到缺陷时,磁力线路径被缺陷改变,磁敏元件可以检测出从钢材表面溢出的漏磁场,若缺陷过大,对检测效果不理想;涡流检测是由于交流电磁线圈在钢材表面感应形成涡流,遇到缺陷时,涡流会发生改变,这种检测方式受环境影响较大。激光检测法,不受被测轧材材质、温度、环境等诸多方面的影响,能更好的完成缺陷检测。
轮廓测量仪主要在检测设备的非人工性、图像处理方法、实时和分时系统的结合、分类识别几方面做了深入的研究。这有利于提高检测水平,保证产品质量,从而提高钢材的市场竞争力。
5. 铸件表面及近表面缺陷怎么检测
1)液体渗透检测
液体渗透检测用来检查铸件表面上的各种开口缺陷,如表面裂纹、表面针孔等肉眼难以发现的缺陷。常用的渗透检测是着色检测,它是将具有高渗透能力的有色(一般为红色)液体(渗透剂)浸湿或喷洒在铸件表面上,渗透剂渗入到开口缺陷里面,快速擦去表面渗透液层,再将易干的显示剂(也叫显像剂)喷洒到铸件表面上,待将残留在开口缺陷中的渗透剂吸出来后,显示剂就被染色,从而可以反映出缺陷的形状、大小和分布情况。需要指出的是,渗透检测的精确度随被检材料表面粗糙度增加而降低,即表面越光检测效果越好,磨床磨光的表面检测精确度最高,甚至可以检测出晶间裂纹。除着色检测外,荧光渗透检测也是常用的液体渗透检测方法,它需要配置紫外光灯进行照射观察,检测灵敏度比着色检测高。
2)涡流检测
涡流检测适用于检查表面以下一般不大于6~7MM深的缺陷。涡流检测分放置式线圈法和穿过式线圈法2种。当试件被放在通有交变电流的线圈附近时,进入试件的交变磁场可在试件中感生出方向与激励磁场相垂直的、呈涡流状流动的电流(涡流),涡流会产生一与激励磁场方向相反的磁场,使线圈中的原磁场有部分减少,从而引起线圈阻抗的变化。如果铸件表面存在缺陷,则涡流的电特征会发生畸变,从而检测出缺陷的存在,涡流检测的主要缺点是不能直观显示探测出的缺陷大小和形状,一般只能确定出缺陷所在表面位置和深度,另外它对工件表面上小的开口缺陷的检出灵敏度不如渗透检测。
3)磁粉检测
磁粉检测适合于检测表面缺陷及表面以下数毫米深的缺陷,它需要直流(或交流)磁化设备和磁粉(或磁悬浮液)才能进行检测操作。磁化设备用来在铸件内外表面产生磁场,磁粉或磁悬浮液用来显示缺陷。当在铸件一定范围内产生磁场时,磁化区域内的缺陷就会产生漏磁场,当撒上磁粉或悬浮液时,磁粉被吸住,这样就可以显示出缺陷来。这样显示出的缺陷基本上都是横切磁力线的缺陷,对于平行于磁力线的长条型缺陷则显示不出来,为此,操作时需要不断改变磁化方向,以保证能够检查出未知方向的各个缺陷。
6. 检验缺陷分成哪三种
检验缺陷分成哪三种:一类危急缺陷、二类严重缺陷、三类一般缺陷。
检验缺陷原理:对于检查对象的工件表面,同时驱动同轴反射照明用的照明部和斜入射照明用的照明部,并在该照明下用照相机进行拍摄。在照明部中分别设置有发出各色彩光的光源,并且,在照明部仅点亮这些三种光源中的一种,而在照明部点亮在照明部没有点亮的一种或两种光源。
检验缺陷装置原理:
其可相应于图案的密度自动地设定具有相应于缺陷部分的尺寸的缺陷检测灵敏度的尺寸判定区域,进行缺陷检查。
检验该缺陷检查方法包含:其基于参照图像数据,于复数个方向计测图案的宽度,并将上述参照图像数据变换为相应于上述图案于上述各方向的宽度的亮度。
制作对应于上述各方向的复数个扫描图像数据;其比较上述复数个扫描图像数据,并自该等扫描图像数据选出最小的亮度的最小亮度,制作宽度图像数据。
其基于被检查图像数据与上述参照图像数据抽出缺陷部分,并将于上述图案的宽度成为最小亮度的方向测定的尺寸变换为亮度,制作缺陷尺寸图像数据。
以及,其基于上述缺陷尺寸图像数据与上述宽度图像数据,进行对于上述缺陷部分的缺陷判定。
7. 无损检测的新技术都有哪些
随着科学技术的发展,无损检测的新技术也越来越多,例如激光全息无损检测、声振检测、微波无损检测、声发射检测技术等。
1、激光全息无损检测
激光全息无损检测是在全息照相技术的基础上发展起来的一种检测技术。
激光全息检测是利用激光全息照相来检测物体表面和内部缺陷的,因为物体在受到外界载荷作用下会产生变形,这种变形与物体是否含有缺陷直接相关,在不同的外界载荷作用下,物体表面的变形程度是不相同的。激光全息照相是将物体表面和内部的缺陷,通过外界加载的方法,使其在相应的物体表面造成局部的变形,用全息照相来观察和比较这种变形,并记录在不同外界载荷作用下的物体表面的变形情况,进行观察和分析,然后判断物体内部是否存在缺陷。
激光全息检测对被检对象没有特殊要求,可以对任何材料、任意粗糙的表面进行检测。这种检测方法还具有非接触检测、直观、检测结构便于保存等特点。但如果物体内部的缺陷过深或过于微小,激光全息检测这种方法就无能为力了。
2、声振检测
声振检测是激励被测件产生机械振动,通过测量被测件振动的特征来判定其质量的一种无损检测技术。
3、微波无损检测
微波能够贯穿介电材料,能够穿透声衰很大的非金属材料,所以微波检测技术在大多数非金属和复合材料内部的缺陷检测及各种非金属测量等方面获得了广泛的应用。
4、声发射检测
技术声发射是一种物理现象,大多数金属材料塑性变形和断裂是有声发射产生,但其信号的强度很弱,需要采用特殊的具有高灵敏度的仪器才能检测到。各种材料的声发射频率范围很宽,从次声频、声频到超声频。利用仪器检测、分析声发射信号并利用声发射信息推断声发射源的技术称为声发射技术。
声发射检测必须有外部条件的作用,使材料或构件发声,使材料内部结构发生变化。因此声发射检测是一种动态无损检测方法,即结构、焊接接头或材料的内部结构、缺陷处于运动变化的过程中,才能实施检测。
5、红外无损检测
红外无损检测是利用红外物理理论,把红外辐射特性的分析技术和方法,应用于被检对象的无损检测的一个综合性应用工程技术。
红外无损检测具有操作安全、灵敏度高、检测效率高等优点。但是红外无损检测也存在确定温度值困难,难以确定被检物体的内部热状态,价格昂贵等问题。
8. 常用的无损检测是什么
1射线探伤检测技术
射线探伤检测技术是射线在通过被检测物体时的强度衰减,来检测出结构的缺陷。常用的射线是x射线和γ射线。该方法的具体点来讲就是射线在穿过被检物体后,受到不同程度的衰减,被投射到x或γ射线的胶片上,通过显影技术,得到物体厚度的变化和内部缺陷情况的图像,然后就可以根据图像上的缺陷尺寸大小、形状以及数量,对结果进行评价。
射线探伤检测技术随着电子成像技术的发展,在钢结构质量检测中的应用优势非常明显。通过成像技术,能够直截了当地反映出钢结构材料、焊缝缺陷的物理性质,形状、大小、数量,还可以直接获得永久性记录,供日后检查。但是该方法的最大缺点就是危害人体健康,射线具有放射性,设备投入较大,携带不方便。
X-射线探伤检测
2超声无损探测技术
超声无损探测技术是利用超声波在钢结构焊缝缺陷中的传播受到不同程度的影响而使得声时、振幅、波形等参数改变,来检测材料和焊缝缺陷的性质,超声检测的常用频率是0.5-5MHz,常用的超声检测是A型脉冲反射法。
超声检测技术的优点是对平面型缺陷的检测敏感,能够非常迅速的检测出未焊透、未熔合等缺陷。检测速度快,超声检测仪器方便携带、价格优势使得成本低廉。该检测对材料焊缝表面的粗糙程度有一定的要求,且只适合厚度在8mm以上的板材、管材对接焊缝,缺陷的表达没有射线探伤直观,同时受到检测人员的操作水平和熟练程度影响,对焊缝根部的缺陷检测比较困难,主要受表面焊缝的形状影响。
3磁粉探伤检测技术
磁粉探伤检测技术是根据被检铁磁性材料在磁化后内部产生强烈的磁感应强度,当钢结构材料中有缺陷或者材质、形状造成非连续性时,磁力线会发生变化,而透出材料本身的范围,形成漏磁场,此时磁粉受到磁力线的作用在材料表面或近表面进行重新堆积,可以宏观现实出缺陷的情况。
该方法的优点是检测速度迅速、稍微有点缺陷或者裂缝就能检测出来,灵敏度高,检测的投资成本较低。该技术只能对表面或者近表面缺陷进行检测,要求被检测材料为铁磁性,对一些材料的内部或者较深的缺陷无法检测出来。只适合8mm以下的板材和管材对接焊缝的外观检测。另外,对某些要求严格的钢结构材料还需要进行检测后消磁。
磁粉探伤检测
4渗透探伤检测技术
渗透探伤检测技术是在一些零部件表面进行涂抹含有荧光材料或者染色材料的渗透液体,待一段时间就能渗透到表面具有开口的缺陷中,一直渗满整个缺陷。待去除材料表面的渗透液后,再利用涂抹的显像剂的吸引作用,将缺陷内的渗透液反吸回显像剂中。通过光源的照射,可以是紫外线也可用白光,显示出缺陷的形状和大小尺寸。
该渗透探伤检测技术的优点是检测设备简单、方便携带,在没有电源的情况下就可以进行探伤检测,适合于各种金属和非金属材料,材料作用范围比较广泛,对缺陷的显示比较直观。但是,对于比较微小的缺陷,渗透液难以渗入和吸出,缺陷的深度就难以检测出来,所以只适合表面缺陷的检测以及近表面的缺陷检测。检测后的清洁工作也是必须进行的,然而有相当的部分的检测人员忽略此操作步骤。