排水构筑物给排水管道的质量检测方法有很多
② 检漏的供水管道检漏
音听检漏法分为阀栓听音和地面听音两种,前者用于查找漏水的线索和范围,简称漏点预定位;后者用于确定漏水点位置,简称漏点精确定位。
漏点预定位是指听漏棒、电子听漏仪或噪声自动记录仪来探测供水管道漏水范围的方法,根据使用仪器的不同,操作的方法也不尽相同。实用的,有效诉,成本低的预定位技术主要有阀栓听音法,当然类同于GPL99、GPL95,包括PARMALOGA等方法,虽然也能用当其综合效果不好,而且成本高。
(1)阀栓听音法
阀栓跌间法是用听漏棒或电子放大听漏仪直接在管道暴露点(如消火检、阀门及暴露的管道等)听测由漏水点产生的漏水声,从而确定漏水管道,缩小漏水检测范围。金属管道漏水声频率一般在300~2500Hz之间,而非金属管道漏水声频率在100~700Hz之间。听测点距漏水点位置越近,听测到漏水声越大;反之,越小。
(2)地面听音法
当通过预定位方法确定漏水管段后,用电子放大听漏仪在地面听测地下管道的漏水点,并进行精确定位。听测方式为沿着漏水管道走向以一定间距逐点听测比较,当地面拾音器靠近漏水点时,听测到的漏水声越强,在漏水点在上方达到最大。
拾音器放置间距与管道材质有关,一般说来,金属管道间距为1~2米,而非金属管道为0.5~1米,水泥路面间距为1~2米,土路面为0.5米。 相关检漏法是第三代技术,是世界上包括中国用的最多的先进、有效的一种精确确定漏点的检漏方法,特别适用于环境干扰噪声大、管道埋设深或不适宜用地面听漏法的区域。用相关仪可快速准确地测出地下管道漏水点的准确位置。
一套完整的相关仪主要是由一台相关仪主机(无线电接收机和微处理器等组成)、二台无线电发射机(带前置放大器)和二个高灵敏度振动传感器组成。其工作原理为:当管道漏水时,在漏口处会产生漏水声波,并沿管道向远方传播,当把传感器放在管道或连接件的不同位置时,相关仪主机可测出由漏口产生的漏水声波传播到不同传感器的时间差Td,只要给定两个传感器之间管道的实际长度L和声波在该管道的传播速度V,漏水点的位置Lx就可按下式计算出来。
Lx=(L-V×Td)K2
式中的V取决于管材、管径和管道中的介质,单位为mKms,并全部存入相关仪主机中。
相关仪也经历了从低到高性能的发展过程,现代高性能的相关仪具有时间域和频率域(FFT)时实相关处理功能,同是具有高分辨率(0.1ms)、频谱分析及陷波、自动滤波、测管道声速和距离等功能,如德国SEBA的相关仪SEBADYNACORR,新型相关仪CORRELUXPL都具备这些功能。 以德国SEBA泄漏噪声自动记录仪为例,德国SEBA的GPL99是由多台数据记录仪和一台控制器组成的整体化声波接收系统。当装有专用软件的计算机对数据记录仪进行编程后,只要将记录仪放在管网的不同位置,如消火检、阀门及其他管道暴露点等,按预设时间(如深义2∶00~4∶00)同时自动开K关记录仪,可记录管道各处的漏水声信号,该信号经数字化后自动存入记录仪中,并通过专用软件在计算机上进行处理,从而快速探测装有记录仪的管网区域内是否存在漏水。人耳通常能听到30dB以上的漏水声,而泄漏噪声自动记录仪可探测到10dB以上的漏水声。
数据记录仪放置距离视管材、管径等情况而定,一般说来,金属管道可选200~400米的间距,非金属管道应在100之内的间距。
判别漏水的依据是:每个漏水点会产生一个持续的漏水声,根据记录仪记录的噪声强度和频繁度来判断在记录仪附近是否有漏水的存在,计算机软件自动识别并作二维或三维图。 在管道听测漏水声时,一般说来,漏点大产生的漏水声比漏点小产生的漏水声要大一声,但漏点大到一定程度漏水声反而小了,因此,我们不能认为听到的漏水声大,其漏水量就大,有时实际情况正好相反。分区检漏法使漏水点按漏水量大小分烦恼成为可能,并因此能做到:控制大的漏水点并首先被排除掉。每个管网中都存在着多处小的漏水点和几处大的漏水点,经验表明,漏水总量的80%%是由20%%大漏水点造成的。因此,尽快排除大的漏水点才能更好地控制漏耗,降低漏失率,同时,分区检漏可大大提高检漏速度。
所谓分区检漏法是:是主要应用流量计测漏。首先关闭与该区相连的阀门,使该区与其他区分离,然后用一条消防水带一端接在被隔离区的消火栓上,另一端接到流量计的测试装置上;再将第二条消防水带一端接在其他区的消火栓上,另一端接流量计的测试装置上,最后开启消火栓,向被隔离区管网供水。借助于流量计,测量该区的流量,可得到某一压力下的漏水量。如果有漏水,可通过依此关K开该区的阀门,可发现哪一段管道漏水。德国SEBA的流量计TDM10-60正是为分区检漏而设计的。
采用分区检漏法检漏的优点:
(1)能迅速排除大的漏水点;
(2)系统地测试,可进行管网状况分析;
(3)用所测流量与正常流量比较,可以发现漏水的早期迹象。
其不足之处就是可能会影响部分居民用水。另它装载在车上操作起来方便。 区域泄漏普查系统法是一种目前最新型的,经过实践证明实用有效的一种方法。它在方法和技术上主要是集了上述2,3,4三种方法的优点,并应用了声学,电子,软件,通讯,信号处理,数字化处理等综合技术。
区域泄漏普查系统(以下简称多探头相关仪),由英国BADCOM公司研究生产,埃德尔集团自主开发中文操作界面,是世界上独一无二的:集漏水预定位和精定位于一体,仅一次检测即可完成一定区域内的漏点预定位和漏点精定位的仪器,而且对管道属性要求不高,可以在不清楚管材管径的情况下进行漏水定位。从而实现了从发现漏水点到漏水点精确定位,从一段管线到大面积的检漏普查,仅用一套仪器就可完成。
多探头相关仪,顾名思义多探头,从2个探头开始,最多可配置到192个探头;以实现区域漏水声音的记录。普通相关仪则是我们已熟知的,其原理是根据漏水声沿管道传播到传感器的时间差来确定漏点位置的,而多探头相关仪有强大的软件支持,可反复利用在测试中收集到的大量相关测漏数据来验证检测结果,因此大大提高了检测的效率和准确度。
多探头相关仪的记录仪(简称探头)具有防水功能,不用无线发射,可排除无线干扰和盲区,区域泄漏普查系统可对PVC管和水泥管进行检漏。
测试时间不受限制(从10秒~3小时),可在白天或夜间测试,避免了其它产品只能在夜间测试的局限性。
③ 球墨铸铁给水管怎么测量厚度
球墨铸铁管尺寸的检测方法:
应采用合适的工具球墨铸铁管、管件及附件的外径、内径、长度及壁厚进行测量。外径用绕行量具、量规或专用量具测量;内径用卡尺、内径千分尺、样板等工具测量;长度用直尺或卷尺等工具测量;壁厚可以直接测量,也可用合适的工具间接测量
④ 给排水、污水管道完成后要做什么试验
根据:中华人民共和国国家标准《建筑给水排水及采暖工程施工质量验收规范》(GB 50242-----2002)给排水、污水管道完成后要做如下试验:
3.3.16 各种承压管道系统和设备应做水压试验,非承压管道系统和设备应做灌水试验。
4.2.1 室内给水管道的水压试验必须符合设计要求。当设计未注明时,各种材质的给水管道系统试验压力均为工作压力的1.5倍,但不得小于0.6MPa。
检验方法:金属及复合管给水管道系统在试验压力下观测10min,压力降不应大于0.02MPa,然后降到工作压力进行检查,应不渗不漏;塑料管给水系统应在试验压力下稳压1h,压力降不得超过0.05MPa,然后在工作压力的1.15倍状态下稳压2h,压力降不得超过0.03MPa,同时检查各连接处不得渗漏。
4.2.2 给水系统交付使用前必须进行通水试验并做好记录。
检验方法:观察和开启阀门、水嘴等放水。
4.2.3 生产给水系统管道在交付使用前必须冲洗和消毒,并经有关部门取样检验,符合国家《生活饮用水标准》方可使用。
检验方法:检查有关部门提供的检测报告。
5.2.1 隐蔽或埋地的排水管道在隐蔽前必须做灌水试验,其灌水高度应不低于底层卫生器具的上边缘或底层地面高度。
检验方法:满水15min水面下降后,再灌满观察5min,液面不降,管道及接口无渗漏为合格。
5.2.5 排水主立管及水平干管管道均应做通球试验,通球球径不小于排水管道管径的2/3,通球率必须达到100%。
检查方法:通球检查。
6.2.1 热水供应系统安装完毕,管道保温之前应进行水压试验。试验压力应符合设计要求。当设计未注明时,热水供应系统水压试验压力应为系统顶点的工作压力加0.1MPa,同时在系统顶点的试验压力不小于0.3Mpa。
检验方法:钢管或复合管道系统试验压力下10min内压力降不大于0.02MPa,然后降至工作压力检查,压力应不降,且不渗不漏;塑料管道系统在试验压力下稳压lh,压力降不得超过 0.05MPa,然后在工作压力1.15倍状态下稳压2h,压力降不得超过0.03MPa,连接处不得渗漏。
6.2.2 热水供应管道应尽量利用自然弯补偿热伸缩,直线段过长则应设置补偿器。补偿器型式、规格、位置应符合设计要求,并按有关规定进行预拉伸。
检验方法:对照设计图纸检查。
6.2.3 热水供应系统竣工后必须进行冲洗。
⑤ 给水试压检验如何操作
给水工程需要做试压检验的理论依据: 依据《建筑给水排水及采暖工程施工质量验收规范》(GB50242-2002)要求“室内给水管道的水压试验必须符合设计要求。当设计没有注明时,各种材质的给水管道系统试验压力均为工作压力的1.5 倍,但不得小于 0.6MPAa。 检验方法:金属及复合管给水管道系统在试验压力下观测10min,压力降不应大于0.02 MPAa,然后降到工作压力进行检查,应不渗不漏;塑料管给水管道系统应在试验压力下稳压力1h,压力降不得超过0.05 MPAa,然后在工作压力的1.15倍状态下稳压2 h,压力降不得超过0.05 MPAa,同时检查各连接处不得渗漏。 给水管道安装完成后,应首先在各出水口安装水阀或堵头,并打开进户总水阀,将管道注满水,然后检查各连接处,没有渗漏,才能进行水压试验。 1.连接试压泵:试压泵通过连接软管从室内给水管道较低的管道出水口接入室内给水管道系统。 2.向管道注水:打开进户总水阀向室内给水管系统注水,同时打开试压泵卸压开关,待管道内注满水并通过试压泵水箱注满水后,立即关闭进户总水阀和试压泵卸压开关。 3.向管道加压:按动试压泵手柄向室内给水管系统加压,致试压泵压力表批指示压力达到试验压力(0.6MPAa)时停止加压。 4.排出管道空气:缓慢拧松各出水口堵头,待听到空气排出或有水喷出时立即拧紧堵头。 5.继续向管道加压:再次按动试压泵手柄向室内给水管系统加压,致试压泵压力表批指示压力达到试验压力(0.6MPAa)时停止加压。然后按(GB50242-2002)4.2.1规定的检验方法完成室内给水管系统压力试验。试验完成后,打开试压泵卸压开关卸去管道内压力。 备注:1、可以按上述方法分别对室内冷水系统和热水系统进行压力试验; 也可以用连接软管将冷,热出水口连通,一次完成内冷水系统和热水系统的压力试验。 2、进户总水阀关闭严密与否是准确完成压力试验的关键,若总水阀不能关闭严密,则应该将室内给水管道与室外给水管网分离,然后进行室内给水管系统压力试验。 3、管道排空是为了保证室内给水管系统压力试验的准确性,一定要认真做好。
⑥ 水管漏水检测要怎么操作
方法一:环境调查法环境调查法是判定漏水线索和范围直观的一种方法,该方法是根据供水管网图及相关人员提供的情况,对供水管道进行详细的调查。调查内容包括管道的连接、分布、材质及周围介质的情况。同时,通过对路面情况、冬季积雪先融、管线上方草木生长、下水井沟渠清水长流等情况的观察来判定漏点。
方法二:压力测试比较法压力测试比较法是管道漏水检测最为常见的一种漏水检测方法。将管道阀门关闭后,连接相关仪器,保证整个回路的密闭性良好,通过打压测试,利用漏水检测仪来确定漏点位置,这是漏水检测中快速、有效的方法之一。
水管漏水检测
方法三:管道漏水检测之余氯检测法余氯检测法是利用余氯与邻联甲苯胺反应生成黄色的醌式化合物的原理,通过对采集到的水样进行检测,利用目视比色法来判断供水管网是否发生泄漏的方法。按照国家规定的标准,氯和水接触30分钟后,水中余氯含量要不低于0.3毫克/升,管网末梢水中游离性余氯的含量不低于0.05毫克/升。通过比对,判断漏水情况。
方法四:管道漏水检测之音听检漏法音听检漏法一般分为阀栓听音、路面听音和钻探定位三种。其中,阀栓听音法适用于查找漏水的线索和范围,也被称为漏点预定位。阀栓听音法一般是用听音杆直接在管道暴露点(如消火栓、烦闷及暴露的管道等)测听漏水声,从而确定漏水管道、缩小漏水检测范围,通常金属管道的漏水声频率范围在300-2500Hz之间,非金属管道的漏水声频率在100-700Hz范围内,听测点距漏水点位置越近,听测到的漏水声越大,反之则越小;路面听音和钻探定位法适用于确定漏点位置,也被成为漏点精准定位法。
⑦ HDPE管道、PE给水管的检验项目有哪些
一般的PE给水管材都是HDPE的。按照该产品标准GB/T 13663-2000,检验项目有:颜色、外观、尺寸、纵向回缩率、静液压强度试验(20℃,100h;80℃,165h;80℃,1000h)。
断裂伸长率、熔体质量流动速率、氧化诱导时间、卫生性能。工程复试项目一般选择比较重要的:尺寸、静液压试验(20℃,100h)、氧化诱导时间、卫生性能。
(7)给水管道检测的方法扩展阅读:
PE给水管连接方法:
聚乙烯管材与管材、管材与PE管、管材与配件,以及聚乙烯管与金属管之间的连接方式很多,不同的连接方式都有自身的优点和局限性,用户可根据管道直径、工作压力、使用场所等环境,选择合适的连接方式。
城镇供水聚乙烯管道最常用的连接方式有:热熔连接、电熔连接、承插式柔性连接、法兰连接、钢塑过渡接头连接等。
1、热熔连接
热熔连接是用专用加热工具,在压力下加热聚乙烯管材或管件的待连接部位,使其熔融后,移走加热工具,施压将两个熔融面连在一起,在稳定的压力下保持一段时间,直到接头冷却。热熔连接包括热熔对接连接、热熔承插连接、热熔鞍型连接。
2、电熔连接
电熔连接是用内埋电阻丝的专用电熔管件与PE管材或管件的连接部位紧密接触通电,PE管通过内埋的电阻丝加热连接部位,使其熔融连为一体,直至接头冷却。电熔连接可用于与不同类型和不同熔体流动速率的聚乙烯管材或插口管件连接。电熔连接分为电熔承插连接和电熔鞍型连接。
参考资料来源:搜狗网络-PE给水管
⑧ 想要自来水漏水检测,有哪些方法
想要自来水漏水检测有7种检测方法:
1、环境调查法
最直观的一种判定漏水线索和范围的方法。根据供水管网图及有关人员提供的情况,对供水管道进行详细的调查。包括管道连接情况、分布、材质及周围介质的情况。并通过观察路面情况、冬季积雪先溶、管线上方草木茂盛、下水井等沟渠清水长流等情况判定漏点。
2、压力测试比较法
管道破损漏水 ,如漏量较大,一般会造成管网局部压力降低,离漏点越近压力越低。利用消防栓进行测压比较,可以快速锁定漏水区域。
3、余氯检测法
按照国家规定的出厂水标准,氯和水接触30分钟后余氯含量要不低于0.3毫克/升,管网末梢水中游离性余氯的含量不低于0.05毫克/升。利用余氯与邻联甲苯胺反映生成黄色的醌式化合物的原理,通过对采集到的水样进行检测,通过目试比色就可判断是否是供水管网发生泄漏。
4、音听检漏法
音听检漏法分为阀栓听音、路面听音、钻探定位三种,前一种用于查找漏水的线索和范围,简称漏点预定位;后两种用于确定漏水点位置,简称漏点精确定位。
5、阀栓听音法
阀栓听音法一般是用听音杆直接在管道暴露点(如消火栓、阀门及暴露的管道等)听测由漏水点产生的漏水声,从而确定漏水管道,缩小漏水检测范围。金属管道漏水声频率一般在300~2500Hz之间,而非金属管道漏水声频率在100~700Hz之间。听测点距漏水点位置越近,听测到的漏水声越大;反之,越小。
6、地面听音法
当通过预定位方法确定漏水管段后,用测漏仪在地面听测地下管道的漏水点,并进行精确定位。听测方式为沿着漏水管道走向以间距50-70cm左右逐点听测比较,异常点处要求小于20cm,并在异常点处反复进行听音分析,以确定异常点位置。当地面拾音器靠近漏水点时,听测到的漏水声越强,在漏水点上方达到最大。为了避免干扰,一般在晚上11:00至凌晨5:00内进行作业。
7、钻探定位法
当路面听音进行完毕,确定异常点后,用管线定位仪定准异常点附近管线,在管线正上方用冲击钻钻探,然后利用听音杆直接接触管体听音。利用此方法可进一步对漏点进行精确定位。
⑨ HDPE给水管材及管件的技术指标的检测方法
HDPE给水管系统特点
PE给水管内壁光滑,且不随使用时间变化,摩擦阻力小,节省能源,压力损失比钢管约小30%,可选用比钢管小的口径。卫生性能好,无添加剂,没有污染饮用水的可能性,ISO标准定级聚乙烯材料为0级(最低级),不生霉材料,与其他一些常用塑料材料相比,聚乙烯的耐霉菌性能要高很多,长期使用也不积垢。PE管适用于温度不超过40℃,公称压力在1.6MPa以下,一般用途的压力输水以及饮用水的输送。主要有市政埋地供水,建筑给(排)水,农田灌溉,水景工程等。在给水管道工程中,PE给水管最终将取代UPVC管。PE管材综合性能道应用领域|耐温性|低温脆化温度很低,可在-40℃到60℃范围内使用,冬季安装施工不会发生管道脆裂 。
HDPE管道的优越性能
长久的使用寿命:在正常工作温度、压力状况下,PE管道可安全使用50年以上.
卓越的耐腐蚀性能:除少数强氧化剂外,可耐多种化学介质的侵蚀;无电化学腐蚀。
优异的抗磨性能:在输送矿砂泥浆时,PE管的耐磨性是钢管的4倍以上。
良好的卫生性能:PE管加工时不添加重金属盐稳定剂,无毒性,无结垢,不滋生细菌,较好地解决了城市饮用水的二次污问题。
较好的耐冲击性:PE管韧性好,耐冲击强度高,下洪武直接压过管道,不会导致管道破裂。即使在401的情况下,管道也不会冻裂。
可靠的连接性能:PE管热熔或电熔接口的强度高于母材本身的强度,连接处不会由于土壤移动或载荷的作用而断开。
良好的施工性能:管道重量轻,焊接工艺简单,施工方便,工程综合造价低,可以采取非开挖敷设。
较大的流通能力:管道内壁光滑,水头损失小,PE管道的流通能力比其它一般管道提高30%以上。
综合评价:金泰HDPE管道集环保、节能、卫生、密封、防腐、抗震、质优、价廉、施工简单等优越性于一体,在给水、燃气、大口径排水管道等领域具有良好的经济效益,应用前景十分广泛。
(1)PE管材材质无毒,不腐蚀,不结垢,可有效的提高管网水质;PE管道具有良好的耐水锤压力的能力,与管材一体的熔接接头及PE管对地下运动和端荷载的有效抵抗能力,大大提高供水的安全可靠性。
(2)PE给水管专用材料近几年来得到很大发展,pe材料早期得不到发展的一个重要原因就是由于其的不经济性。然而高性能的聚乙烯管材专用料开发出来之后,增强了pe管的使用优势,扩大了pe管的应用领域。 (3)PE管具有很好的柔韧性和可熔接性使其铺设时更加方便经济和更加安全可靠。PE管的铺设速度快,损坏费用和维护费用低,只要接头良好就可承受轴向负荷而不发生泄漏和脱开。因此在铺设时在接合处和弯曲处不需要进行费用不小的锚点,支墩,费用可降低。PE管道具备独特的柔韧性,其断裂伸长率均超过500%,弯曲半径可以达到管道直径的20~25倍,还有优良的耐刮伤痕的能力。因此铺设时很容易移动,弯曲和穿插,适用于非开挖顶管等多种施工方式。而且pe管对于管道基础的适应能力强,一方面对于管基的要求降低,另一方面铺设后管基发生变化,也不容易损坏。
PE100材料的性能 PE100第三代聚乙烯树脂,双峰型分子量分布,共聚单体优先于较长分子链上,具有较高的密度和刚度,PE100具有20℃/50年抗蠕变能力、同时又保持了较好的ESCR(耐环境力开裂)性能。
优异的慢性裂纹增长能力,卓越的快速裂纹扩展抵抗能力,较好的改善可刮痕敏感度。使得PE100制成的管材具有更高的长期静液压强度。
⑩ 给排水涂塑钢管的检测方法
外观检查
目测检查涂覆钢管的外观质量,试验结果应符合5.1的规定。
厚度测量
从涂覆钢管的两端取不同长度的两个横断面,在每个横断面用电磁测厚仪测量圆周上直交的任意四点的涂层厚度,试验结果应符合5.4的规定。
针孔试验
管段试件长度约为1000 mm,用电火花检漏仪对钢管涂层在规定试验电压下进行检查,涂层厚度不大于0.4mm,试验电压为1500 V,涂层厚度大于0.4 mm,试验电压为2000 V。检查有无电火花产生,试验结果应符合5.5的规定。
附着力试验
附着力试验按CJ/T 120-2008中7.4.2进行,试验结果应符合5.6的规定。
弯曲试验
DN≤50mm的涂覆钢管进行弯曲试验。管段试件长度为(1200±100) mm。
在温度为(20±5) ℃的环境下,以钢管公称通径的8倍为曲率半径,弯曲角度为30o,在弯管机或模具上进行弯曲。弯曲试验时管内不带填充物,焊缝位于弯曲主面的侧面。
试验后,从弯曲圆弧的中部将试件剖开,检查内涂层,试验结果应符合5.7的规定。
压扁试验
DN>50 mm的涂覆钢管进行压扁试验。管段试件尺寸长为(50±10) mm。
在温度为(20±5) ℃的环境下,如图1所示,将试件置于两平板之间,在压力试验机上逐渐压缩至两平板间距离为试件外径的五分之四,压扁时涂覆钢管焊缝垂直于载荷施加方向。试验后,检查内涂层,试验结果应符合5.8的规定。
压扁试验
冲击试验
从涂覆钢管的任意位置切取长约100 mm的试样,在温度为(20±5) ℃的环境下,如图2所示,按表2的规定进行冲击试验,观察内涂层的损坏情况。试验时,焊缝应在冲击面相反的方向,试验结果应符合5.9的规定。
表2 冲击试验条件
公称通径 DN
mm锤重,kg落下高度,mm
15~251.0300
32~502.1500
65
80~3006.31000
冲击试验装置
真空试验
管段试件长度为(500±50) mm,使用适当的措施堵住管道进出口,从进口逐渐增加负压至660 mm汞柱,保持1 min,试验后检查内涂层,试验结果应符合5.10的规定。
高温试验
管段试件长度为(100±10) mm,将试件放置在恒温箱中,升温至(300±5) ℃,并恒温1 h,然后取出自然冷至常温。试验后,取出试件并检查内涂层(允许外观颜色变深、发暗现象),试验结果应符合5.11的规定。
低温试验
管段试件尺寸长度为(100±10) mm,将试件放置在低温箱中,降温至(-30±2) ℃,并恒温1 h,然后取出放置在温度为(20±5) ℃的环境下(4~7) h。试验周期结束后,取出试件检查其内涂层,并按6.4的规定进行附着力试验,试验结果应符合5.12的规定。
压力循环试验
管段试件长度为(500±50) mm,使用适当的措施堵住管道进出口,并与水压供给系统相连接,充水排除空气,然后进行3000次从(0.4±0.1) MPa至 MPa的交变水压试验,每次试验的周期不大于2 s。试验后检查内涂层,并按6.4的规定进行附着力试验,试验结果应符合5.13的规定。
温度循环试验
管段试件长度为(500±50) mm,将试件按下列顺序在每个温度条件下放置24 h:
(50±2)℃;
(-10±2)℃;
(50±2)℃;
(-10±2)℃;
(50±2)℃;
(-10±2)℃。
试验后试件放置在温度为(20±5) ℃的环境中24 h,检查内涂层情况,并按6.4的规定进行附着力试验,试验结果应符合5.14的规定。
温水老化试验
管段试件尺寸长度约为100 mm,管段两端裸露处应进行相应的防腐处理,将管段放置在(70±2) ℃的蒸馏水中浸泡30 d,试验后取出自然冷却至常温,检查试件内涂层,试验结果应符合5.15的规定。
施工、安装要点
1)、应按《建筑给水涂塑复合管管道工程技术规程》CECS125:2001执行。
2)、涂塑钢管应选用下列施工机具:
(1)切割应采用金属锯切割;
(2)压槽应采用专用滚槽机;
(3)弯管应采用弯管机冷弯;
(4)套丝应采用电动套丝机进行管螺纹加工;
(5)涂塑钢管端口去毛刺和加工园角应采用锉刀加工;
(6)涂敷高强度无机溶剂液体环氧树脂涂料应采用小毛刷或小牙刷。
3)、涂塑钢管施工程序应符合下列要求:
(1)涂塑钢管不宜埋设于钢筋混凝土结构层中;
(2)涂塑钢管管道安装中禁止进行焊接;
(3)涂塑钢管管道安装宜从大口径逐渐接驳到小口径,管口应及时封堵;
(4)涂塑钢管在运输、装卸及工地施工中,严禁抛摔和剧烈撞击;
(5)涂塑钢管安装时,管径不大于DN50时可用弯管机冷弯,但其弯曲曲率半径不得小于8倍管径,弯曲角度不得大于10°。