导航:首页 > 解决方法 > 人脸姿态检测方法

人脸姿态检测方法

发布时间:2022-06-16 21:54:44

⑴ opencv的人脸识别基于什么特征

基于几何特征的人脸识别方法

基于特征的方法是一种自下而上的人脸检测方法,由于人眼可以将人脸在不此研究人员认为有一个潜在的假设:人脸或人脸的部件可能具有在各种条件下都不会改变的特征或属性,如形状、肤色、纹理、边缘信息等。基于特征的方法的目标就是寻找上述这些不变特征,并利用这些特征来定位入脸。这类方法在特定的环境下非常有效且检测速度较高,对人脸姿态、表情、旋转都不敏感。但是由于人脸部件的提取通常都借助于边缘算子,因此,这类方法对图像质量要求较高,对光照和背景等有较高的要求,因为光照、噪音、阴影都极有可能破坏人脸部件的边缘,从而影响算法的有效性。

模板匹配算法首先需要人TN作标准模板(固定模板)或将模板先行参数化(可变模板),然后在检测人脸时,计算输入图像与模板之间的相关值,这个相关值通常都是独立计算脸部轮廓、眼睛、鼻子和嘴各自的匹配程度后得出的综合描述,最后再根据相关值和预先设定的阈值来确定图像中是否存在人脸。基于可变模板的人脸检测算法比固定模板算法检测效果要好很多,但是它仍不能有效地处理人脸尺度、姿态和形状等方面的变化。

基于外观形状的方法并不对输入图像进行复杂的预处理,也不需要人工的对人脸特征进行分析或是抽取模板,而是通过使用特定的方法(如主成分分析方法(PCA)、支持向量机(SVM)、神经网络方法(ANN)等)对大量的人脸和非人脸样本组成的训练集(一般为了保证训练得到的检测器精度,非人脸样本集的容量要为人脸样本集的两倍以上)进行学习,再将学习而成的模板或者说分类器用于人脸检测。因此,这也是j种自下而上的方法。这种方法的优点是利用强大的机器学习算法快速稳定地实现了很好的检测结果,并且该方法在复杂背景下,多姿态的人脸图像中也能得到有效的检测结果。但是这种方法通常需要遍历整个图片才能得到检测结果,并且在训练过程中需要大量的人脸与非人脸样本,以及较长的训练时间。近几年来,针对该方法的人脸检测研究相对比较活跃。


基于代数特征的人脸识别方法

在基于代数特征的人脸识别中,每一幅人脸图像被看成是以像素点灰度为元素的矩阵,用反映某些性质的数据特征来表示人脸的特征。 设人脸图像 ) , ( y x I 为二维 N M × 灰度图像,同样可以看成是 N M n × = 维列向量,可视为 N M × 维空间中的一个点。但这样的一个空间中,并不是空间中的每一部分都包含有价值的信息,故一般情况下,需要通过某种变换,将如此巨大的空间中的这些点映射到一个维数较低的空间中去。然后利用对图像投影间的某种度量来确定图像间的相似度,最常见的就是各种距离度量。 在基于代数特征的人脸识别方法中,主成分分析法(PCA)和Fisher 线性判别分析(LDA)是研究最多的方法。本章简要介绍介绍了PCA。

完整的PCA(PrincipalComponentAnalysis)人脸识别的应用包括四个步骤:人脸图像预处理;读入人脸库,训练形成特征子空间;把训练图像和测试图像投影的上一步骤中得到的子空间上;选择一定的距离函数进行识别。详细描述如下:

4.1读入人脸库

一归一化人脸库后,将库中的每个人选择一定数量的图像构成训练集,设归一化后的图像是n×n,按列相连就构成n2维矢量,可视为n2维空间中的一个点,可以通过K-L变换用一个低维子空间描述这个图像。

4.2计算K.L变换的生成矩阵

训练样本集的总体散布矩阵为产生矩阵,即

或者写成:

式中xi为第i个训练样本的图像向量,|l为训练样本的均值向量,M为训练样本的总数。为了求n2×n2维矩阵∑的特征值和正交归一化的特征向量,要直接计算的话,计算量太大,由此引入奇异值分解定理来解决维数过高的问题。

4.3利用奇异值分解(AVD)定理计算图像的特征值和特征向量

设A是一个秩为r的行n×r维矩阵,则存在两个正交矩阵和对角阵:

其中凡则这两个正交矩阵和对角矩阵满足下式:

其中为矩阵的非零特征值,

4.4 把训练图像和测试图像投影到特征空间每一副人脸图像向特征脸子空间投影,得到一组坐标系数,就对应于子空间中的一个点。同样,子空间中的任一点也对应于~副图像。这组系数便可作为人脸识别的依据,也就是这张人脸图像的特征脸特征。也就是说任何一幅人脸图像都可以表示为这组特征脸的线性组合,各个加权系数就是K.L变换的展开系数,可以作为图像的识别特征,表明了该图像在子空间的位置,也就是向量

可用于人脸检测,如果它大于某个阈值,可以认为f是人脸图像,否则就认为不是。这样原来的人脸图象识别问题就转化为依据子空间的训练样本点进行分类的问题。


基于连接机制的人脸识别方法

基于连接机制的识别方法的代表性有神经网络和弹性匹配法。

神经网络(ANN)在人工智能领域近年来是一个研究热门,基于神经网络技术来进行人脸特征提取和特征识别是一个积极的研究方向。神经网络通过大量简单神经元互联来构成复杂系统,在人脸识别中取得了较好的效果,特别是正面人脸图像。常用的神经网络有:BP网络、卷积网络、径向基函数网络、自组织网络以及模糊神经网络等n¨。BP网络的运算量较小耗时也短,它的自适应功能使系统的鲁棒性增强。神经网络用于人脸识别,相比较其他方法,其可以获得识别规则的隐性表达,缺点是训练时间长、运算量大、收敛速度慢且容易陷入局部极小点等。Gutta等人结合RBF与树型分类器的混合分类器模型来进行人脸识别乜螂1。Lin等人采用虚拟样本进行强化和反强化学习,采用模块化的网络结构网络的学习加快,实现了基于概率决策的神经网络方法获得了较理想结果,。此种方法能较好的应用于人脸检测和识别的各步骤中。弹性匹配法采用属性拓扑图代表人脸,拓扑图的每个顶点包含一个特征向量,以此来记录人脸在该顶点位置周围的特征信息¨引。拓扑图的顶点是采用小波变换特征,对光线、角度和尺寸都具有一定的适应性,且能适应表情和视角的变化,其在理论上改进了特征脸算法的一些缺点。


基于三维数据的人脸识别方法

一个完整的人脸识别系统包括人脸面部数据的获取、数据分析处理和最终结果输出三个部分。图2-1 显示了三维人脸识别的基本步骤:1 、通过三维数据采集设备获得人脸面部的三维形状信息;2 、对获取的三维数据进行平滑去噪和提取面部区域等预处理;3 、从三维数据中提取人脸面部特征,通过与人脸库中的数据进行比对;4 、用分类器做分类判别,输出最后决策结果。

基于三维数据的方法的代表性是基于模型合成的方法和基于曲率的方法。

基于模型合成的方法,它的基本思想为:输入人脸图像的二维的,用某种技术恢复(或部分恢复)人脸的三维信息,再重新合成指定条件下的人脸图像。典型代表是3D可变形模型和基于形状恢复的3D增强人脸识别算法。3D可变形模型首先通过200个高精度的3D人脸模型构建一个可变形的3D人脸模型,用这个模型来对给定的人脸图像拟合,获得一组特定的参数,再合成任何姿态和光照的人脸图像n卜捌。基于形状恢复的3D增强人脸识别算法是利用通用的3D人脸模型合成新的人脸图像,合成过程改变了一定的姿态与光源情况。

曲率是最基本的表达曲面信息的局部特征,因而最早用来处理3D人脸识别问题的是人脸曲面的曲率。Lee禾lJ用平均曲率和高斯曲率值,将人脸深度图中凸的区域分割出来。



如果你是开发者的话,可以去Tel一下colorreco,更好地技术解答。

⑵ 人脸识别技术小知识有哪些

人脸识别技术是指利用分析比较的计算机技术识别人脸。人脸识别是一项热门的计算机技术研究领域,其中包括人脸追踪侦测,自动调整影像放大,夜间红外侦测,自动调整曝光强度等技术。

人脸识别技术属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。

(1)人脸检测

面貌检测是指在动态的场景与复杂的背景中判断是否存在面像,并分离出这种面像。一般有下列几种方法:

①参考模板法

首先设计一个或数个标准人脸的模板,然后计算测试采集的样品与标准模板之间的匹配程度,并通过阈值来判断是否存在人脸;

②人脸规则法

由于人脸具有一定的结构分布特征,所谓人脸规则的方法即提取这些特征生成相应的规则以判断测试样品是否包含人脸;

③样品学习法

这种方法即采用模式识别中人工神经网络的方法,即通过对面像样品集和非面像样品集的学习产生分类器;

④肤色模型法

这种方法是依据面貌肤色在色彩空间中分布相对集中的规律来进行检测。

⑤特征子脸法

这种方法是将所有面像集合视为一个面像子空间,并基于检测样品与其在子空间的投影之间的距离判断是否存在面像。

值得提出的是,上述5种方法在实际检测系统中也可综合采用。

(2)人脸跟踪

面貌跟踪是指对被检测到的面貌进行动态目标跟踪。具体采用基于模型的方法或基于运动与模型相结合的方法。此外,利用肤色模型跟踪也不失为一种简单而有效的手段。

(3)人脸比对

面貌比对是对被检测到的面貌像进行身份确认或在面像库中进行目标搜索。这实际上就是说,将采样到的面像与库存的面像依次进行比对,并找出最佳的匹配对象。所以,面像的描述决定了面像识别的具体方法与性能。主要采用特征向量与面纹模板两种描述方法:

①特征向量法

该方法是先确定眼虹膜、鼻翼、嘴角等面像五官轮廓的大小、位置、距离等属性,然后再计算出它们的几何特征量,而这些特征量形成一描述该面像的特征向量。

②面纹模板法

该方法是在库中存贮若干标准面像模板或面像器官模板,在进行比对时,将采样面像所有象素与库中所有模板采用归一化相关量度量进行匹配。此外,还有采用模式识别的自相关网络或特征与模板相结合的方法。

人脸识别技术的核心实际为“局部人体特征分析”和“图形/神经识别算法。”这种算法是利用人体面部各器官及特征部位的方法。如对应几何关系多数据形成识别参数与数据库中所有的原始参数进行比较、判断与确认。一般要求判断时间低于1秒。

识别过程

一般分三步:

(1)首先建立人脸的面像档案。即用摄像机采集单位人员的人脸的面像文件或取他们的照片形成面像文件,并将这些面像文件生成面纹(Faceprint)编码贮存起来。

(2)获取当前的人体面像。即用摄像机捕捉的当前出入人员的面像,或取照片输入,并将当前的面像文件生成面纹编码。

(3)用当前的面纹编码与档案库存的比对。即将当前的面像的面纹编码与档案库存中的面纹编码进行检索比对。上述的“面纹编码”方式是根据人脸脸部的本质特征和开头来工作的。这种面纹编码可以抵抗光线、皮肤色调、面部毛发、发型、眼镜、表情和姿态的变化,具有强大的可靠性,从而使它可以从百万人中精确地辨认出某个人。人脸的识别过程,利用普通的图像处理设备就能自动、连续、实时地完成。

技术流程

人脸识别系统主要包括四个组成部分,分别为:人脸图像采集及检测、人脸图像预处理、人脸图像特征提取以及匹配与识别。

人脸图像采集及检测

人脸图像采集:不同的人脸图像都能通过摄像镜头采集下来,比如静态图像、动态图像、不同的位置、不同表情等方面都可以得到很好的采集。当用户在采集设备的拍摄范围内时,采集设备会自动搜索并拍摄用户的人脸图像。

人脸检测:人脸检测在实际中主要用于人脸识别的预处理,即在图像中准确标定出人脸的位置和大小。人脸图像中包含的模式特征十分丰富,如直方图特征、颜色特征、模板特征、结构特征及Haar特征等。人脸检测就是把这其中有用的信息挑出来,并利用这些特征实现人脸检测。

主流的人脸检测方法基于以上特征采用Adaboost学习算法,Adaboost算法是一种用来分类的方法,它把一些比较弱的分类方法合在一起,组合出新的很强的分类方法。

人脸检测过程中使用Adaboost算法挑选出一些最能代表人脸的矩形特征(弱分类器),按照加权投票的方式将弱分类器构造为一个强分类器,再将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,有效地提高分类器的检测速度。

人脸图像预处理

人脸图像预处理:对于人脸的图像预处理是基于人脸检测结果,对图像进行处理并最终服务于特征提取的过程。系统获取的原始图像由于受到各种条件的限制和随机 干扰,往往不能直接使用,必须在图像处理的早期阶段对它进行灰度校正、噪声过滤等图像预处理。对于人脸图像而言,其预处理过程主要包括人脸图像的光线补 偿、灰度变换、直方图均衡化、归一化、几何校正、滤波以及锐化等。

人脸图像特征提取

人脸图像特征提取:人脸识别系统可使用的特征通常分为视觉特征、像素统计特征、人脸图像变换系数特征、人脸图像代数 特征等。人脸特征提取就是针对人脸的某些特征进行的。人脸特征提取,也称人脸表征,它是对人脸进行特征建模的过程。人脸特征提取的方法归纳起来分为两大 类:一种是基于知识的表征方法;另外一种是基于代数特征或统计学习的表征方法。

基于知识的表征方法主要是根据人脸器官的形状描述以及他们之间的距离特性来获得有助于人脸分类的特征数据,其特征分 量通常包括特征点间的欧氏距离、曲率和角度等。人脸由眼睛、鼻子、嘴、下巴等局部构成,对这些局部和它们之间结构关系的几何描述,可作为识别人脸的重要特 征,这些特征被称为几何特征。基于知识的人脸表征主要包括基于几何特征的方法和模板匹配法。

人脸图像匹配与识别

人脸图像匹配与识别:提取的人脸图像的特征数据与数据库中存储的特征模板进行搜索匹配,通过设定一个阈值,当相似度超过这一阈值,则把匹配得到的结果输 出。人脸识别就是将待识别的人脸特征与已得到的人脸特征模板进行比较,根据相似程度对人脸的身份信息进行判断。这一过程又分为两类:一类是确认,是一对一 进行图像比较的过程,另一类是辨认,是一对多进行图像匹配对比的过程。

衡量人脸识别的算法能力:拒识率、误识率、通过率,准确率。

⑶ 有没有人脸识别技术

厦门云脉人脸识别技术,通过人脸检测、特征库建立和人脸比对来判定是否为本人特征。
准确度——证件照首位命中率100%;当前的视频截图、网吧截图命中率75%。
速度——大容量数据库中,单服务器检索速度平均达到18秒。
适应牲——样本照片的光线角度不一,眼镜及轻化妆,人脸姿态在上下15度左右旋转30 度以内无显着变化。

⑷ 人脸识别是怎么组成的是怎么运行的

很多人坐高铁检票时,会在检票机上刷脸来认证自己的身份,亦或者是去超市买生活日用品结账时,不想排长长的队伍,最好的选择就是刷脸结账。这里提到的刷脸就运用到了华科云人脸识别面部识别技术,很多人知道这项技术的存在,却不知道如何实现的。面部识别系统,通常是由以下三个模块组成,且由华科云制造的人脸识别主板支撑运转。三个模块为:
1、面部检测
面部检测器是用来锁定画面中出现人的面部位置,如果有人的面部存在的话,就会返回含有这张面部信息的边界框位置。
2、面部对齐
面部对齐的作用是先确定图像中固定位置,然后进行面部图像的缩放和裁剪。这个过程是需要一个固定的面部特征检测仪器来寻找面部特征,通常是以2D对齐为主要形式,然后寻找最佳参考点来做仿射转换。
3、面部匹配
在这个环节中,需要把获取的面部信息与系统库里的面部信息进行比较,从而产生相似度的分数,该分数就是为了确保是否为同一人。
单单有技术是无法支撑整个系统的运转,这时就要提下华科云制造的人脸识别主板。这块主板作为除了技术外另一个核心点,是为了保证系统正常运转,并实现各种功能支撑。不得不说,华科云制造的硬件都是实打实的好用,就连他们解决出来的方案,也是比同行业的更好。

⑸ 人脸识别中的姿态问题,大家一般是怎么解决的啊

姿态问题涉及头部在三维垂直坐标系中绕三个轴的旋转造成的面部变化,其中垂直于图像平面的两个方向的深度旋转会造成面部信息的部分缺失。使得姿态问题成为人脸识别的一个技术难题。解决姿态问题有三种思路:


第一种思路是学习并记忆多种姿态特征,这对于多姿态人脸数据可以容易获取的情况比较实用,其优点是算法与正面人脸识别统一,不需要额外的技术支持,其缺点是存储需求大,姿态泛化能力不能确定,不能用于基于单张照片的人脸识别算法中等。

第二种思路是基于单张视图生成多角度视图,可以在只能获取用户单张照片的情况下合成该用户的多个学习样本,可以解决训练样本较少的情况下的多姿态人脸识别问题,从而改善识别性能。


第三种思路是基于姿态不变特征的方法,即寻求那些不随姿态的变化而变化的特征。我们的思路是采用基于统计的视觉模型,将输入姿态图像校正为正面图像,从而可以在统一的姿态空间内作特征的提取和匹配。


因此,基于单姿态视图的多姿态视图生成算法将是我们要研究的核心算法,我们的基本思路是采用机器学习算法学习姿态的2D变化模式,并将一般人脸的3D模型作为先验知识,补偿2D姿态变换中不可见的部分,并将其应用到新的输入图像上去。


更多技术解答,Ph一下颜鉴,更好的技术。

⑹ 人脸识别是靠什么技术实现的

人脸识别门禁技术如今已渐趋成熟,曾经很多企业、社区、景区、工地所依赖的指纹识别门禁、门禁卡门禁、密码锁门禁如今正被人脸识别门禁所取代,为各行业领域带来了极大的便捷。但人脸识别技术作为一种新兴的人员身份鉴别技术,大部分人对于这项技术还是相对陌生,关于与人脸识别相关的问题也时有发生,为了让大家快速学会使用人脸识别门禁系统,今天宝比万像人脸识别就来教大家如何学会人脸识别门禁的人脸信息录入使用。
启动设备
1.默认打开宝比万像人脸识别门禁考勤设备端APP,进入“宝比万像人脸识别门禁考勤系统设备端APP”启动页
2.默认进入人脸认证页面。
3.在人脸认证界面,点击“首页”按钮,返回人脸设备主菜单。
人脸验证
1.在人脸识别主界面点击“人脸认证”菜单进行人脸验证
2.人脸认证:通过认证,闸门开启,并显示人脸ID,姓名。
3.人脸认证:没有登记的人脸进行验证,提示“人脸无登记”。
人脸登记
1.在人脸识别主界面点击“人脸登记+”,弹出登录界面。
2.输入登录账号、密码(xxxxxx),点击登录。
3.输入姓名,点击下一步,跳转到人脸登记界面。
4.人脸登记初始化页面。提示登记这,请面对摄像头。
5.人脸登记:拍摄成功后“确认注册”,提升“人脸登记成功”。
6.点解“重新获取”,即对需要登记的人脸进行重新拍摄登记。
7.已登记成功的用户,再次进行人脸登记,则提示;已登记。
8.点击当前页面的返回剪头,即返回到人脸识别设备APP首页。

⑺ 人脸识别的识别算法

一般来说,人脸识别系统包括图像摄取、人脸定位、图像预处理、以及人脸识别(身份确认或者身份查找)。系统输入一般是一张或者一系列含有未确定身份的人脸图像,以及人脸数据库中的若干已知身份的人脸图象或者相应的编码,而其输出则是一系列相似度得分,表明待识别的人脸的身份。
人脸识别算法分类
基于人脸特征点的识别算法(Feature-based recognition algorithms)。
基于整幅人脸图像的识别算法(Appearance-based recognition algorithms)。
基于模板的识别算法(Template-based recognition algorithms)。
利用神经网络进行识别的算法(Recognition algorithms using neural network)。
基于光照估计模型理论
提出了基于Gamma灰度矫正的光照预处理方法,并且在光照估计模型的基础上,进行相应的光照补偿和光照平衡策略。
优化的形变统计校正理论
基于统计形变的校正理论,优化人脸姿态;强化迭代理论
强化迭代理论是对DLFA人脸检测算法的有效扩展;
独创的实时特征识别理论
该理论侧重于人脸实时数据的中间值处理,从而可以在识别速率和识别效能之间,达到最佳的匹配效果

⑻ 监测人脸识别系统的原理是什么

人脸识别系统的技术原理是以人脸识别技术为核心,是一项新兴的生物识别技术,是当今国际科技领域攻关的高精尖技术。它广泛采用区域特征分析算法,融合了计算机图像处理技术与生物统计学原理于一体,利用计算机图像处理技术从视频中提取人像特征点,利用生物统计学的原理进行分析建立数学模型,具有广阔的发展前景。
用人脸识别会议签到系统正是应用先进的面部自动识别技术来实现与会人员的自主签到,智能化办公,提高办事效率,增加与会人员身份准确定位,从而大大提高了会前会务组织、会中会议签到和会后数据查询统计速度,并节省经费。
迎宾机系统会议签到应用方案是现代会议管理中的一项重要环节,会议签到流程一改传统签到的弊端,与会人员只需从摄像机前走过,利用人体生物特征的唯一性进行身份认证,即时完成到会签到,还能有效识别假冒人员,同时,能即时统计、打印出到会人员名单。缩短到会人员签到时间,减轻工作人员与会人数统计强度,统计数准确、快捷。
3系统设计
3.1系统结构
本方案可应用于各种企事业单位和会议中心,用于与会人员的签到管理,主要由摄像机、显示设备、人脸识别分析盒、管理客户端组成。
在会议室入口签到处安装一台网络摄像机,通过交换机将采集图像传输到迎宾主机,主机可通过串口数据线连接会议室门禁系统,以识别结果通过串口信息来控制门禁打开,有效防止会议无关人员进入,同时连接到显示设备上,在显示器上实时显示识别结果,以及设置的欢迎致辞或提示信息,或用于会议宣传内容播放等。
以上设备通过局域网内的客户端进行管理和配置信息的下发,在客户端可进行人脸识别库的建立,会议签到统计等功能。系统拓扑如下:

阅读全文

与人脸姿态检测方法相关的资料

热点内容
如何打开鸡蛋的方法 浏览:441
路由vpn怎么设置方法 浏览:465
吊车头的拉线安装方法 浏览:80
番茄灰霉病治疗土方法 浏览:423
oppo手机耳线的包装方法 浏览:711
如何寻找正确的工作方法 浏览:736
羊布病普遍治疗方法 浏览:894
研究方法论是谁写的 浏览:530
婴儿肚子胀怎么办有哪些方法 浏览:335
苹果手机的感应在哪里设置方法 浏览:614
香碗制作方法视频 浏览:100
北京蛋白质组学分析方法 浏览:790
有哪些方法稀释油漆 浏览:191
可以替代焊锡的sma头连接方法 浏览:474
剪辑视频的方法 浏览:599
如何用化学方法鉴别环己烷和苯胺 浏览:546
浙江菜烹饪方法有哪些 浏览:389
星战模拟器怎么找到自己的家正确方法 浏览:775
2020洪灾原因和解决方法 浏览:833
长期失眠睡不着怎么办最好的方法 浏览:119