1. N-甲基哌嗪是哪类危险品
易燃易爆类
2. 格列卫的药代动力学
伊马替尼的药代动力学是在25~1000㎎剂量范围,在单剂量和达稳态后评价的。伊马替尼剂量在25~1000㎎范围内,其平均曲线下面积(AUC)的增加与剂量存在比例性关系。重复给药的药物累积量在达稳态时为1.5~2.5倍。吸收伊马替尼的平均绝对生物利用度为98%,口服后血浆伊马替尼AUC的变异系数波动在40~60%之间。与空腹时比较,高脂饮食后本药吸收率轻微降低(Cmax减少11%,tmax延后1.5小时),AUC略减少(7.4%)。分布约95%与血浆蛋白结合,绝大多数是与白蛋白结合,少部分与α-酸性糖蛋白结合,只有极少部分与脂蛋白结合。整个机体内的总体分布浓度较高,分布容积为4.9L/kg体重,但红细胞内分布比率较低。体内组织中有关药物分布情况仅来源于临床前的资料。肾上腺和性腺中摄取水平高,中枢神经系统中摄取水平低。代谢人体内主要循环代谢产物是N-去甲基哌嗪衍生物,在体外其药效与原药相似。该代谢物的血浆AUC是原药甲磺酸伊马替尼AUC的16%。伊马替尼是CYP3A4的底物,又是CYP3A4、CYP2D6、CYP2C9和CYP2C19的抑制剂,因此,可影响合用药物的代谢。(见【药物相互作用】)。消除伊马替尼的消除半衰期为18小时,其活性代谢产物半衰期为40小时,7天内约可排泄所给药物剂量的81%,其中从粪便中排泄68%,尿中排泄13%。约25%为原药(尿中5%,大便中20%),其余为代谢产物,在粪便和尿中活性代谢产物和原药的比例相似。特殊患者群的药代动力学成人群体药代动力学研究表明,性别对药代动力学无影响,体重的影响也可略而不计。给予同样的剂量(400㎎/天),GlST患者其稳态时的药物暴露量是CML患者的1.5倍。依据初步的GIST患者的群体药代动力学研究,伊马替尼的药代动力学有3项指标的变化(白蛋白、WBC和胆红素)在统计学上有显着性影响。低白蛋白水平降低清除,正如较高的WBC水平。但是这些影响并不足以断定剂量需要调整。儿童用药儿童和青少年260㎎/m2和340㎎/m2的使用剂量会产生同样的药物暴露,分别相当于成人的400㎎和600㎎。以340㎎/m2/天的剂量经每日一次重复给药后,第8天和第1天的AUC(0-24)比揭示出有1.7倍的药物蓄积。老年用药据报道在一项超过65岁的患者大于20%的临床研究结果,年龄对药代动力学没有明显的影响。器官功能不全伊马替尼及其代谢产物几乎不通过肾脏排泄。轻中度肾功能不全患者的血浆暴露量略高于肾功能正常的患者,增加约1.5—2倍,与血浆AGP水平增加1.5倍相符,AGP可与伊马替尼牢固结合。由于伊马替尼几乎不经肾脏排泄,故肾功能不全和肾功能正常患者的伊马替尼原药清除率大概相似(见【用法用量】,【注意事项】)。尽管药代动力学结果显示有个体差异,但与肝功能正常的患者相比,伴有不同程度肝功能不全的患者对伊马替尼的平均暴露量未见增加(见【用法用量】,【注意事项】,【不良反应】)。
3. N-甲基哌嗪的介绍
N-甲基哌嗪又名1-甲基哌嗪。无色液 体。分子量100.17。沸点138℃。相 对密度0.903 (20/4℃)。折射率1.4378。闪点42℃。溶于水、乙醚、乙醇。为有机合成中间体。在医药工业中制取抗菌素类药物甲哌利福霉素、抗精神病药三氟拉嗪等。由六水哌嗪经甲基化反应而得。
4. N-甲基哌嗪的生产方法
由六水哌嗪经甲基化反应而得。将六水哌嗪及盐酸加入反应锅中,加热至45℃,滴加甲酸和甲醛的混合液。加毕,在50℃左右反应2-3h,再升温回流,至二氧化碳气体不再逸出为止。冷却至80℃,加入盐酸,加热蒸酸至干。稍冷后加入甲醇,加热回流30min,趁热过滤(滤渣为哌嗪二盐酸盐)。滤液回收甲醇至尽,残液加入氢氧化钠溶液至pH=14,蒸馏,得含水甲基哌嗪。加苯加热回流带水至尽,分馏,收集132-140℃馏分,得无水甲基哌嗪。收率约50%。
5. 参考文献合成的化合物,合成路线怎么写
左旋氧氟沙星(levofloxacin,1)化学名为(S)-(-)-9-氟-2,3-二氢-3-甲基-10-(4-甲基-1-哌嗪)-7氧代-7氢吡啶骈〔1,2,3-de〕〔1,4〕苯骈?嗪-6-羧酸,是氧氟沙星的(S)-(-)异构体,它的抗菌活性为氧氟沙星的2倍,毒副作用小,成为第三代氟喹诺酮抗菌药中最优秀的品种之一,最早由日本第一制药株式会社开发上市〔1,2〕.
1合成路线设计
化合物(1)的合成文献〔3〕报道按起始原料可分为两大类:方法一,由2,3,4,5-四氟苯甲酸为原料,经酰氯化后与丙二酸二乙酯缩合、部分水解脱羧、与原甲酸三乙酯缩合、(S)-(+)-2-氨基丙醇置换、环合、水解后与4-甲基哌嗪缩合精制而得〔4,5〕;方法二,以2,3,4-三氟硝基苯为起始原料,先合成关键中间体(S)-7,8-二氟-3-甲基-3,4-二氢-2H-1,4-苯骈?嗪,再与乙氧亚甲基丙二酸二乙酯缩合、环合、水解、上甲基哌嗪精制而得〔6~8〕.方法二尽管与目前国内氧氟沙星的合成工艺近似,但关键中间体(S)-7,8-二氟-3-甲基-3,4-二氢-2H-1,4-苯骈?嗪的合成存在步骤长、收率低、光学纯化难度大等缺点,难以适合大量制备.方法一因国内已有2,3,4,5-四氟苯甲酸及(S)-(+)-2-氨基丙醇工业品供应,成为不对称合成左旋氧氟沙星较为理想的选择,故采用方法一作为试制路线,并对合成工艺进行优化和改进,以2,3,4,5-四氟苯甲酸为原料,经8步反应制得左旋氧氟沙星,总收率为39.2%,最终产物结构经元素分析,IR,1H-NMR,13C-NMR,DEPT,MS鉴定.合成路线见图1.
Fig.1The synthesis route of levofloxacin
2实验部分
熔点采用北京泰科仪器有限公司的XT-4双目显微熔点仪测定,温度未经校正.元素分析用美国PE-240C型元素分析仪.红外光谱仪为Nicolet 170SX型.热重分析用美国PE-7系列热重分析仪.核磁共振谱用Bruker AM 500 MHz核磁共振仪测定,d6-DMSO为溶剂,TMS为内标.质谱用VG-ZAB-HS GC-MSZ质谱仪测定.旋光度用WZZ-1自动指示旋光仪测定.
2.12,3,4,5-四氟苯甲酰基乙酸乙酯(5)的合成
化合物(2)38.8 g(0.200 mol)、SOCl2 150 mL(2.05 mol)、DMF 0.4 mL依次加入到反应瓶中,搅拌加热回流5 h,常压蒸出过量的SOCl2,加甲苯40 mL再减压蒸干得化合物(3).
于另一个反应瓶中依次加入镁粉5.0 g(0.206 mol)、无水乙醇50 mL、四氯化碳0.5 mL,加热引发反应后,搅拌下滴加丙二酸二乙酯32.8 g(0.206 mol)和无水甲苯60 mL的混合液,30 min加完后于60℃继续反应2 h,冷至-5℃后滴加化合物(3)的甲苯80 mL溶液,1 h加完后继续在0℃搅拌反应2 h,倾入浓盐酸90 mL和冰水90 mL的混合液中,分出有机相,水相用甲苯(50 mL×3)萃取,合并有机相,减压蒸出甲苯得橙黄色油状液体(4),在化合物(4)的反应瓶中加入水100 mL和对甲苯磺酸0.1 g(0.500 mmol),加热回流6 h,TLC检测原料点基本消失〔乙酸乙酯-甲醇(V∶V=4∶0.5)为展开剂〕,冷至室温,以二氯甲烷(50 mL×3)萃取,有机相用水洗至中性,无水硫酸钠干燥,减压蒸干得橙色液体(5)44.4 g,收率:84.0%(文献〔4〕收率:93%),化合物(5)不经纯化,直接用于下一步反应.
2.2(S)-(-)-9,10-二氟-2,3-二氢-3-甲基-7氧代-7氢吡啶骈〔1,2,3-de〕〔1,4〕苯骈?嗪-6-羧酸乙酯(8)的合成
在含有化合物(5)44.4 g(0.168 mol)的反应瓶中,加入醋酐82 mL(0.876 mol),原甲酸三乙酯66.6 mL(0.400 mol),搅拌加热回流4 h,并在反应中蒸出生成的乙酸乙酯,使反应完全,减压蒸干后加二氯甲烷450 mL溶解,于室温搅拌滴加(S)-(+)-2-氨基丙醇13.5 g(0.180 mol)和二氯甲烷50 mL的混合液,1 h滴完后继续搅拌反应2 h,回收二氯甲烷并减压蒸干得橙红色粘稠性油状物(7),在含化合物(7)的反应瓶中加入DMF 400 mL及无水K2CO3 46.4 g(0.336 mol),在120℃搅拌反应8 h,减压回收DMF后向反应瓶中加入冰水250 mL,搅拌析出固体,放置过夜,过滤,固体用水洗涤,以氯仿-乙醇(V∶V=3∶2)进行重结晶,烘干得化合物(8)34.0 g,收率:65.4%,mp 254~256℃(文献〔6〕mp 254~255℃).
2.3(S)-(-)-9,10-二氟-2,3-二氢-3-甲基-7氧代-7氢吡啶骈〔1,2,3-de〕〔1,4〕苯骈?嗪-6-羧酸(9)的合成
按文献〔8〕操作,收率为:87%,mp>300℃(文献〔8〕收率:88%,mp>300℃).
2.4(S)-(-)-9-氟-2,3-二氢-3-甲基-10-(4-甲基-1-哌嗪基)-7氧代-7氢吡啶骈〔1,2,3-de〕〔1,4〕苯骈?嗪-6-羧酸(1)的合成
化合物(9)28.1 g(0.100 mol)、N-甲基哌嗪26 mL(0.230 mol)、DMSO 75 mL依次加入反应瓶中,130℃加热搅拌反应6 h,减压回收DMSO及过量的N-甲基哌嗪,残留物用95%乙醇重结晶,得淡黄色晶体(1)的半水合物30.3 g,收率:82%,(文献〔8〕收率:75.06%),mp 224~226℃,〔α〕24D=-76.7°(c=0.39,0.05 mol/L NaOH)〔文献〔7〕mp 225~227℃,〔α〕24D=-76.9°(c=0.385,0.05 mol/L NaOH)〕.TG分析:化合物(1)在35.466~82.453℃失重2.632%,相当于含0.5个结晶水(理论含0.5个结晶水值为2.430%).元素分析,实测值(%):C 58.29,H 5.72,N 11.16,F 5.07;理论值(%):C 58.32,H 5.72,N 11.34,F 5.13.IR(KBr)cm-1:3267(—COOH),3081(ArH),2974~2802(RH),1724.3(—COOH,CO),1621(7—CO),1542~1453(Ar—CC—),1395.6~1315.4(C—H,C—N),1291.8~1241.0(C—O,C—F),1089.9(C—N),927.5(—OH),802(C—H).1H-NMR(DMSO-d6)δ:15.22(1H,br s,—COOH),8.96(1H,s,5-H),7.56(1H,d,8-H),4.92(1H,d,3-H),4.58(1H,d,2βH),4.36(1H,d,2αH),3.26~3.36(4H,m,1,1′哌嗪环质子),2.44(4H,br s,2,2′哌嗪环质子),2.23(3H,s,N—CH3),1.45(3H,d,3-CH3).13C-NMR(DMSO-d6)δ:176.27(7-C),165.95(-COOH),155.38(9-C),146.06(5-C),140.03(11-C),132.01(10-C),124.72(12-C),119.55(13-C),106.55(6-C),103.21(8-C),68.01(2-C),55.25(哌嗪环2,2′-C),54.78(3-C),50.05(哌嗪环1,1′-C),46.01(N-CH3),17.88(3-CH3).13C-NMR(DEPT)δ:146.06(5-C),103.21(8-C),54.78(3-C)为CH碳原子;δ:68.01(2-C),55.25(哌嗪环2,2′-C),50.05(哌嗪环1,1′-C)为CH2碳原子;δ:46.01(N—CH3),17.88(3-CH3)为CH3碳原子.EI MS m/z:361(M+).
3讨论
文献〔4〕报道化合物(5)的合成以化合物(2)为原料经酰氯化后与丙二酸单一酯在丁基锂作用下,于-55℃低温下缩合,水解精制而得,收率为93%,但该合成方法成本高,反应条件苛刻,本文在参考文献〔9,10〕类似物合成方法基础上,由(2)经酰氯化后与乙氧基镁丙二酸二乙酯缩合,用0.1%对甲苯磺酸部分水解脱羧制得,收率为84%.由(5)制备(9)时,本实验在(5)与原甲酸三乙酯和醋酐反应时,将生成的乙酸乙酯蒸出使反应完全,并以无水K2CO3和DMF替代文献〔5〕中的50%NaH和DMSO,以冰醋酸和盐酸替代KOH进行水解,四步反应收率为56.9%(文献〔5〕收率:23.5%),以DMSO替代吡啶为溶剂进行缩N-甲基哌嗪反应,收率为82%(文献〔8〕收率为75.06%),以2,3,4,5-四氟苯甲酸计,总收率为39.2%,本研究对左旋氟沙星的工业化生产有一定的参考价值.
6. 化工热力学里的“偏心因子”具体概念是什么
偏心因子采用改进的Rose釜测定恒压(0.1013MPa)汽液平衡数据,实测数据经检验符合热力学一致性。实验结果采用Wilson方程、NRTL方程及UNIFAC方程进行关联与推算,结果比较以Wilson方程最好。采用基团贡献法估算哌嗪、N-甲基哌嗪的临界性质和偏心因子,应用于上两体系的汽液平衡计算以及用UNIFAC模型关联与推算N-甲基哌嗪-哌嗪体系的汽液平衡均获得满意的结果。
7. N-甲基哌嗪的化学性质
无色液体。沸点138℃(140℃),相对密度0.903(20/4℃),折光率1.4378,闪点42℃,溶于水、乙醚、乙醇,与水、甲醇等任意比互溶,在水溶液中呈弱碱性。 熔点 -6 °C 沸点 138 °C(lit.) 密度 0.903 g/mL at 25 °C(lit.) 蒸气密度 3.5 (vs air) 折射率 n20/D1.466(lit.) 闪点 108 °F 储存条件 Store under Nitrogen 水溶解性 soluble 敏感性 Hygroscopic BRN 102724
8. n-甲基哌嗪和水共沸吗
晚上好,N-甲基哌嗪沸点是138度且与水互溶它是可以与纯水形成共沸物的(极性溶剂能形成氢键就可以),这类似同样缩写也是NMP的N-甲基吡咯烷酮与水物理混合后的形态请酌情参考。因为NMP沸点比水高,精馏时是不是带出来了一些?(实在没找到NMP的图就随便贴了个2MP的,见谅)