1、快速测试片技术法
快速测试片是指以纸片、纸膜、胶片等作为培养基载体,将特定的培养基和显色物质附着在上面,通过微生物在上面的生长、显色来测定食品中微生物的方法。
细菌总数检测纸片的研制始于 20 世纪 80 年代,其主要优点是简便、实用、经济、操作性强。近年来以滤纸和美国某公司的 Petrifilm 为载体的测试片已开始被广泛应用。
2、生物电化学方法
生物电化学方法是指通过电极测定微生物产生或消耗的电荷,从而提供分析信号的方法。微生物在滋生代谢过程中,培养基的电化学性质如电流、电位、电阻和电导等会发生变化,所以可以通过检测分析这些电化学参量的变化来实现对微生物的快速测定。
常见的有:阻抗分析法、电位分析法、电流分析法等。生物电化学方法具有测量快速、直观、操作简单、测量设备成本低和信号的可控性等特点。
3、微菌落技术
微菌落是指细菌生长繁殖早期在固相载体上所形成的只能借助于显微镜观察的微小菌落。微菌落技术具有快速、经济、实用的特点,其研究始于 20 世纪50年代,定量测定技术从 20 世纪 70 年代开始,国外已有报道将该法应用于水、食品中细菌总数的快速检测。
4、气相色谱法
气相色谱应用到微生物的检测中,主要是依据不同微生物的化学组成或其产生的代谢产物各异,利用上述色谱检测可直接分析各种体液中的细菌代谢产物、细胞中的脂肪酸、蛋白质、氨基酸、多肽、多糖等,以确定病原微生物的特异性化学标志成分,协助病原诊断和检测。
5、高效液相色谱法
利用高效液相色谱检测可分析各种体液中的细菌代谢产物、病原微生物等,以确定病原微生物的特异性化学标志成分,协助病原诊断和检测。
B. 有什么方法能更有效的鉴别与分析活细菌与死细菌
用台盼蓝可以区分死菌和活菌,利用细胞膜选择透过性,活菌进不去台盼蓝进不去,呈现无色或透明的,而死菌失去了细胞膜的选择透过性,会被台盼蓝染色。
C. 论述从环境中筛选目标菌中的方法,一种就可以,详细点
5.6 菌种筛选方法
所有的微生物育种工作都离不开菌种筛选。尤其是在诱变育种工作中,筛选是最为艰难的也是最为重要的步骤。经诱变处理后,突变细胞只占存活细胞的百分之几,而能使生产状况提高的细胞又只是突变细胞中的少数。要在大量的细胞中寻找真正需要的细胞,就象是大海捞针,工作量很大。简洁而有效的筛选方法无疑是育种工作成功的关键。 为了花费最少的工作量,在最短的时间内取得最大的筛选成效,就要求采用效率较高的科学筛选方案和手段。因为诱变育种中的筛选工作最复杂,所以,本节主要讨论诱变育种的筛选方法,这些方法也为其它育种方法的筛选提供了借鉴。
5.6.1菌种筛选方案 在实际工作中,为了提高筛选效率,往往将筛选工作分为初筛和复筛两步进行。初筛的目的是删去明确不符合要求的大部分菌株,把生产性状类似的菌株尽量保留下来,使优良菌种不致于漏网。因此,初筛工作以量为主,测定的精确性还在其次。初筛的手段应尽可能快速、简单。复筛的目的是确认符合生产要求的菌株,所以,复筛步骤以质为主,应精确测定每个菌株的生产指标。
5.6.2 菌种筛选的手段 筛选的手段必需配合不同筛选阶段的要求,对于初筛,要力求快速、简便,对于复筛,应该做到精确,测得的数据要能够反映将来的生产水平。
5.6.2.1 从菌体形态变异分析 有时,有些菌体的形态变异与产量的变异存在着一定的相关性,这就能很容易地将变异菌株筛选出来。尽管相当多的突变菌株并不存在这种相关性,但是在筛选工作中应尽可能捕捉、利用这些直接的形态特征性变化。当然,这种鉴别方法只能用于初筛。有人曾统计过3,484个产维生素B2的阿舒假囊酵母(Eremothecium ashbyii)的变异菌落,发现高产菌株的菌落形态有以下特点:菌落直径呈中等大小(8-10毫米),凡过大或过小者均为低产菌株;色泽深黄色,凡浅黄或白色者皆属低产菌株。又如,在灰黄霉素产生菌荨麻青霉(Penicillium urticae)的育种中,曾发现菌落的棕红色变深者往往产量有所提高,而在赤霉素生产菌藤仓赤霉(Gibberella fujikuroi)中,却发现菌落的紫色加深者产量反而下降。
5.6.2.2 平皿快速检测法 平皿快速检测法是利用菌体在特定固体培养基平板上的生理生化反应,将肉眼观察不到的产量性状转化成可见的"形态"变化。具体的有纸片培养显色法、变色圈法、透明圈法、生长圈法和抑制圈法等,见图5.6.1。这些方法较粗放,一般只能定性或半定量用,常只用于初筛,但它们可以大大提高筛选的效率。它的缺点是由于培养平皿上种种条件与摇瓶培养,尤其是发酵罐深层液体培养时的条件有很大的差别,有时会造成两者的结果不一致。 图 5.6.1 平皿快速检测法示意图 平皿快速检测法操作时应将培养的菌体充分分散,形成单菌落,以避免多菌落混杂一起,引起"形态"大小测定的偏差。
1) 纸片培养显色法 将饱浸含某种指示剂的固体培养基的滤纸片搁于培养皿中,用牛津杯架空,下放小团浸有3%甘油的脱脂棉以保湿,将待筛选的菌悬液稀释后接种到滤纸上,保温培养形成分散的单菌落,菌落周围将会产生对应的颜色变化。从指示剂变色圈与菌落直径之比可以了解菌株的相对产量性状。指示剂可以是酸碱指示剂也可以是能与特定产物反应产生颜色的化合物。
2) 变色圈法 将指示剂直接掺入固体培养基中,进行待筛选菌悬液的单菌落培养,或喷洒在已培养成分散单菌落的固体培养基表面,在菌落周围形成变色圈。如在含淀粉的平皿中涂布一定浓度的产淀粉酶菌株的菌悬液,使其呈单菌落,然后喷上稀碘液,发生显色反应。变色圈越大,说明菌落产酶的能力越强。而从变色圈的颜色又可粗略判断水解产物的情况。
3) 透明圈法 在固体培养基中渗入溶解性差、可被特定菌利用的营养成分,造成浑浊、不透明的培养基背景。将待筛选在菌落周围就会形成透明圈,透明圈的大小反映了菌落利用此物质的能力。 在培养基中掺入可溶性淀粉、酪素或CaCO3可以分别用于检测菌株产淀粉酶、产蛋白酶或产酸能力的大小。
4) 生长圈法 利用一些有特别营养要求的微生物作为工具菌,若待分离的菌在缺乏上述营养物的条件下,能合成该营养物,或能分泌酶将该营养物的前体转化成营养物,那么,在这些菌的周围就会有工具菌生长,形成环绕菌落生长的生长圈。 该法常用来选育氨基酸、核苷酸和维生素的生产菌。工具菌往往都是对应的营养缺陷型菌株。
5) 抑制圈法 待筛选的菌株能分泌产生某些能抑制工具菌生长的物质,或能分泌某种酶并将无毒的物质水解成对工具菌有毒的物质,从而在该菌落周围形成工具菌不能生长的抑菌圈。例如:将培养后的单菌落连同周围的小块琼脂用穿孔器取出,以避免其它因素干扰,移入无培养基平皿,继续培养4-5天,使抑制物积累,此时的抑制物难以渗透到其它地方,再将其移入涂布有工具菌的平板,每个琼脂块中心间隔距离为2厘米,培养过夜后,即会出现抑菌圈。抑菌圈的大小反映了琼脂块中积累的抑制物的浓度高低。该法常用于抗生素产生菌的筛选,工具菌常是抗生素敏感菌。由于抗生素分泌处于微生物生长后期,取出琼脂块可以避免各菌落所产生抗生素的相互干扰。典型的例子是春雷霉素生产菌的筛选,见图5.6.2。
5.6.2.3 摇瓶培养法 摇瓶培养法是将待测菌株的单菌落分别接种到三角瓶培养液中,振荡培养,然后,再对培养液进行分析测定。摇瓶与发酵罐的条件较为接近,所测得的数据就更有实际意义。但是摇瓶培养法需要较多的劳力、设备和时间,所以,摇瓶培养法常用于复筛。但若某些突变性状无法用简便的形态观察或平皿快速检测法等方法检测时,摇瓶培养法也可用于初筛。 初筛的摇瓶培养一般是一个菌株只做一次发酵测定,从大量菌株中选出10-20%较好的菌株,淘汰80-90%的菌株;而复筛中摇瓶培养一般是一个菌株培养3瓶,选出3-5个较好的菌株,再做进一步比较,选出最佳的菌株。
5.6.3 特殊变异菌的筛选方法 上述一般的筛选菌株方法的处理量仍是很大的,为了从存活的每毫升106左右细胞的菌悬液中筛选出几株高产菌株,要进行大量的稀释分离、摇瓶和测定工作。虽然平皿快速检测法作为初筛手段可减少摇瓶和测定的工作量,但稀释分离的工作仍然非常繁重。而且有些高产变异的频率很低,在几百个单细胞中并不一定能筛选到,所以,建立特殊的筛选方法是极其重要的。例如营养缺陷型和抗性突变菌株的筛选有它们的特殊性,营养缺陷型或抗性突变的性状就象一个高效分离的"筛子",以它为筛选的条件,可以大大加快筛选的进程并有效地防止漏筛。在现代的育种中,常有意以它们作为遗传标记选择亲本或在DNA中设置含这些遗传标记的片段,使菌种筛选工作更具方向性和预见性。本节还将简单介绍其它一些特殊变异株的筛选方法。
5.6.3.1营养缺陷型突变株的筛选 经诱变处理后的菌悬液在筛选前一般应先进行诱变后培养,以促使变异细胞发生分离,防止出现表型延迟现象,筛选出不纯的菌株。营养缺陷型的筛选一般包括浓缩、进一步检出和鉴别营养缺陷型等步骤。
1) 浓缩营养缺陷型菌株 诱变后的细胞群体中大部分存活菌是野生型,而营养缺陷型占的比例相当小,这对分离是很不利的,所以,应该淘汰大量的野生型,以达到浓缩营养缺陷型的目的。常用的浓缩方法有抗生素法、菌丝过滤法、差别杀菌法和饥饿法等。
2)进一步检出所需缺陷型 浓缩后的菌液中营养缺陷型的比例较大,但并非全部都是。并且营养缺陷型中也有不同的类型,还需要进一步检出所需要的营养缺陷型。这样就需要采用逐个检出法、夹层培养法和限量补给法等方法进一步检出所需要的营养缺陷型。
3)营养缺陷型的鉴定 获得的营养缺陷型菌株还应进一步确认其生长的所需物。菌株较少时,可用生长谱法, 若菌株较多时,常采用组合补充培养基法
5.6.3.2 抗性突变菌株的筛选 抗性突变株的筛选相对比较容易,只要有10-6频率的突变体存在,就容易筛选出来。抗性突变株的筛选常用的有一次性筛选法和阶梯性筛选法两种手段。
1) 一次性筛选法 一次性筛选法就是指在对出发菌株完全致死的环境中,一次性筛选出少量抗性变异株。 噬菌体抗性菌株常用此方法筛选。将对噬菌体敏感的出发菌株经变异处理后的菌悬液大量接入含有噬菌体的培养液中,为了保证敏感菌不能存活,可使噬菌体数大于菌体细胞数。此时出发菌株全部死亡,只有变异产生的抗噬菌体突变株能在这样的环境中不被裂解而继续生长繁殖。通过平板分离即可得到纯的抗性变异株。 耐高温菌株在工业发酵中的应用意义在于它可以节约冷却水的用量,尤其是在夏季,并能减少染菌的机会。耐高温菌株所产生酶的热稳定性较高,适用于一些特殊的工艺过程。耐高温菌株也常采用此法筛选。将处理过的菌悬液在一定高温下处理一段时间后再分离。对此温度敏感的细胞被大量杀死,残存的细胞则对高温有较好的耐受性。 耐高浓度酒精的酵母菌的酒精发酵能力较高,也适宜提高发酵醪浓度,提高醪液酒精浓度。而耐高渗透压的酵母菌株具有积累甘油的性能,可用于甘油发酵。耐高酒精度、高渗透压的菌株也可分别在高浓度酒精或加蔗糖等造成的高渗环境下一次性筛选获得。
2)阶梯性筛选法 药物抗性即抗药性突变株可在培养基中加入一定量的药物或对菌体生长有抑制作用的代谢物结构类似物来一次性筛选,大量细胞中少数抗性菌在这种培养基平板上能长出菌落。但是在相当多的情况下,无法知道微生物究竟能耐受多少高浓度的药物,这时,药物抗性突变株的筛选需要应用阶梯性筛选法。 因为药物抗性常受多位点基因的控制,所以药物的抗性变异也是逐步发展的,时间上是渐进的,先是可以抗较低浓度的药物,而对高浓度药物敏感,经"驯化"或诱变处理后,可能成为抗较高浓度药物的突变株。阶梯筛选法由梯度平板或纸片扩散在培养皿的空间中造成药物的浓度梯度,可以筛选到耐药浓度不等的抗性变异菌株,使暂时耐药性不高,但有发展前途的菌株不致于被遗漏,所以说,阶梯性筛选法较适合于药物抗性菌株的筛选,特别是在暂时无法确定微生物可以接受的药物浓度情况下
5.6.3.3 组成酶变异株的筛选
许多水解酶是诱导酶,只有在含有底物或底物类似物的培养环境中,微生物才会合成这些酶类,所以,诱导酶的生产不仅需要诱导物,而且受到诱导物的种类、数量以及分解产物的影响。能迅速利用的碳源(如葡萄糖)往往会引起酶合成的减少,诱导物有时又比较昂贵。这些都可能造成这些水解酶工业生产的波动以及生产成本提高。如果控制这些酶合成的调节基因发生了变异,诱导酶就可能转变成组成酶,它的合成与细胞的其它组织蛋白一样,不再需要诱导物的存在。由诱导型的出发菌株诱变筛选出组成型变异株对于水解酶的工业生产具有重要的现实意义。具体的筛选方法有恒化器法、循环培养法和诱导抑制物法。
1) 恒化器法 恒化器常被用于微生物的"驯化"。在培养基中添加不能起诱导作用的低浓度底物,接入处理后的菌悬液进行培养,此时出发菌株由于不能被诱导,无法合成有关的诱导酶而不能分解该底物,从而生长速率极慢,而群体中少数组成型变异株则可合成有关的酶,分解利用该底物,生长速率较快。为了提高组成酶变异株的优势,即它在群体中的比例,可以应用恒化器培养技术。随着恒化器培养中不断加入新鲜基质而逐渐增大组成酶变异株的优势,这样就能够比较容易地做进一步的纯化分离。
2) 循环培养法 利用不含诱导物的培养环境和含有诱导物的培养环境进行交替循环培养待分离的菌悬液,从而使组成酶变异株得到富集。当接种到不含诱导物而含有其它可利用碳源的培养基中时,两种类型菌株同样能较好地生长,但在此环境中组成型突变株已能合成有关的水解酶,而诱导型菌株就不能合成。 进而将它们转接入含诱导物的培养基中时,变异株能迅速利用诱导底物进行生长繁殖,而诱导型出发菌株需经历一个诱导合成酶的阶段,两类菌株的生长就不同步了,随着循环交替培养的继续,组成酶变异株所占的比例将逐渐增大。
3) 诱导抑制剂法 有些化合物能阻止某些诱导酶的合成,如α-硝基苯基-β-岩藻糖苷对大肠杆菌的β-半乳糖苷酶的诱导合成有抑制作用,称为诱导抑制剂。当在诱导物和诱导抑制剂同时存在的培养环境中培养待分离菌群时,诱导型菌株不能产生诱导酶,无法正常生长,只有组成型变异株能够利用底物进行生长繁殖。
5.6.3.4高分子废弃物分解菌的筛选 随着石油化工和塑料工业的发展,各种高分子包装废弃物日益增多,这些"白色污染"在自然界很难被消化而进入物质循环。设法选育能分解利用这些高分子材料的微生物对于环境保护至关重要。这些高分子材料大多是不溶于水的,直接分离具有分解功能的微生物很困难。为此,有人设计了阶段式筛选法,首先寻找能在与聚乙二醇结构相似的含两个醚键的三甘醇上生长的微生物,接着,诱变筛选能分解聚乙二醇的变异株;或者筛选能以乙二醇、丙二醇为碳源的菌株,继而诱变筛选出能利用聚乙二醇等物质的变异株。这种由简单的聚合物单体入手逐级筛选高分子废弃物分解菌也许是一条有效的筛选思路。
5.6.3.5无泡沫菌株及高凝聚性菌株的筛选 有些菌在发酵过程中会产生大量的泡沫,从而造成发酵液满溢,增大了染菌的机会,使发酵体系反应不均匀,也有可能引起某些发酵产物的生物活性丧失,如蛋白酶变性失活。为了避免泡沫的产生,常常需通过牺牲发酵液的装量或加入大量的消泡剂来消除泡沫的不利影响。发酵过程产生泡沫是菌体代谢、培养基和发酵工艺等方面的原因造成的,而菌种是产生泡沫的关键,选育无泡沫或少泡沫菌株可以从根本上解决泡沫问题。 有人用气泡上浮法筛选出了无泡沫的酒精酵母。将变异处理后的菌悬液接种入生长培养基中,培养器皿的底部放置无菌压缩空气喷口,培养过程中不断通入无菌空气,形成鼓泡,易产生泡沫的酵母菌会随泡沫而除去,留下的是不易产生泡沫的变异菌株;也有人用苯胺蓝染色法进行筛选,将经过变异处理的菌悬液经培养后涂布在含葡萄糖3%、酵母膏0.5%、苯胺蓝0.005%的平板上培养4天,出发菌株呈浅蓝色,变异菌株因细胞壁成分和结构改变造成与染料结合力改变,少泡沫的变异菌株呈深蓝色。 啤酒发酵和单细胞蛋白培养都希望由凝聚性较好的酵母菌株担任发酵菌种,以便于啤酒的澄清和保持良好的风味,以及单细胞蛋白的收集。采用上述的泡沫上浮法也可以除去不易凝聚的细胞,通过改变鼓泡速度的调节,可以获得具不同凝聚性的菌株。
D. 为什么能用pcr的方法快速鉴定菌株
菌株有保守性特征序列,可以用pcr检测到
E. 如何鉴定菌种
在杏鲍菇、白灵菇生产中,只有具备优良的菌种,通过科学的培育管理,才能实现优质、高产、高效。因此菌种的优劣是事关千家万户的切身利益和菌种生产厂家信誉的大事。在现实生产中,也常发现有的菌种厂以赢利为目的,粗制滥造。加之有些菇农对菌种质量缺乏识别能力,致使在生产中减产、绝收,造成巨大的经济损失。因此严格菌种质量,加强对菌种的鉴定和识别是当前食用菌发展中的首要任务,也是最主要的技术环节和要求。
菌种质量的鉴定,严格地讲,应从形态、生理、栽培和经济效益等方面进行综合检测和评价。但要完成各种指标,除了需掌握一定的基础知识和基本技术外,还需具备一定的仪器设备及人力物力和时间。因此,一般生产者是很难完成的。这里仅将几种常用、简便、易行的方法予以介绍,供生产者参考。
(1)直接观察。
对引进的母种,首先要用肉眼观察包装是否符合要求,棉塞有无松动,试管有无破损,棉塞中有无杂菌和病虫害侵染,菌丝色泽是否正常、有无老化等现象。购进或自制的原种,瓶内菌丝应粗壮整齐、分枝浓密、色浓白呈绒毛状,说明生长旺盛。如瓶底出现黄水、菌丝萎缩与瓶壁脱离,或出现原基扭结,说明菌种老化应淘汰。(2)菌种纯度检查。
杏鲍菇菌丝是纯白色的,白灵菇菌丝较杏鲍菇菌丝稍浅些。如在菌种管或菌种瓶中出现其他颜色的菌丝或孢子(绿色、黄色、黑色等),则说明菌种不纯,被杂菌污染不能使用。如果在接菌时发现菌种有异味也说明菌种被杂菌污染,不能使用。(3)吃料能力鉴定。
将母种接入最佳配方的原种培养基中,或将原种接入栽培袋中观察菌丝生长情况。经1周的培养,如果菌种块能很快萌发并迅速向四周的培养料中生长伸展,说明菌种的吃料能力强。反之,菌种块萌发后生长缓慢,迟迟不向四周和料层深处伸展,则表明菌种对培养料的适应能力差。(4)观察菌丝长势。
可先将供测的菌种接入其适宜的试管培养基上进行培养,如果菌丝生长整齐浓密、健壮有力,则表明为优良菌种。若菌丝生长缓慢或长速太快,稀疏无力,参差不齐,容易衰老,则表明菌种质劣。(5)栽培试验观察。
这是菌种质量鉴定最可靠的方法。通过一定的栽培试验,凡具备优质高产、抗杂能力强和遗传性稳定的菌株,才是优良和可推广应用的品种。
F. 如何实现快速检测及有效控制沙门氏菌
沙门氏菌(Salmonella)是一种革兰氏阴性肠杆菌, 也是肠杆菌科中最主要的食源性致病菌。据有关资料统计由沙门氏菌引起的疾病病例在病原菌食源性疾病病例中所占比例已超过三分之二,2007年发生的“ 花生酱事件”以及 2008 年发生的“ 西红柿 事件”等[1]沙门氏菌中毒事件的发生也使得食品中沙门氏菌的检测受到人们的普遍关注。本文主要是对食品中沙门氏菌的传统检测方法以及后续建立的以分子生物学、免疫学、生物传感器和电化学为基础的快速检测方法进行了系统的综述,旨在为该致病菌的检测方法的研究应用提供一定的参考。
1、 传统的检测方法(国标法)
目前, 我国对食品中沙门氏菌的检测大多采用GB 4789.4-2010《食品微生物学检验 沙门氏菌检验》对食品样品进行检测,这种传统的培养方法可分为前增菌、增菌、分离培养、生化试验和血清学鉴定等步骤进行。虽然传统培养法可靠性高,但是其操作繁琐且耗时费力,并不能满足食品快速检测的要求。
2、分子生物学检测方法
2.1聚合酶链反应技术
PCR技术是一项敏感性高、特异性强且快速准确的微生物检测技术,也被许多学者用于对食品中沙门氏菌进行检测和研究。汪琦等[2]就采用传统培养方法 、BAX(r)方法和PCR 方法 3 种方法对沙门氏菌进行检测。在常规PCR的基础上宋东晓[3]建立了检测食品中沙门氏菌的新的PCR方法——多重PCR。此外其他新的PCR技术也运用于食品中沙门氏菌的检测,钟伟军[4]通过对荧光定量PCR反应体系和反应条件的摸索,建立了检测沙门氏菌的核酸荧光定量PCR方法,此研究为食品中沙门氏菌快速检测试剂盒的研制打下了良好的基础。
2.2核酸探针技术
核酸探针技术是根据核苷酸碱基互补的原理,在已变异的DNA样品中加入用同位素等标记的DNA特异片段,在一定条件下两片段进行杂交从而达到检测DNA的目的。此技术不仅简便、快速而且敏感性高、特异性强,已用于食品中沙门氏菌的检测。Almeida等[5]通过建立一种新颖的肽核酸探针结合荧光原位杂交方法对血液、粪便、水以及婴儿奶粉样品中沙门氏菌进行了检测,准确度高达 100%。
2.3基因芯片技术
基因芯片技术是利用已知核酸序列的探针与靶核苷酸序列杂交,然后通过信号检测对其进行定性与定量分析,在沙门氏菌等各种致病菌的分析检测中有很好的应用前景。饶宝等[6]通过建立检测致病菌的基因芯片检测方法,设计了通用引物和特异性探针: 沙门氏菌探针、大肠杆菌探针和金黄色葡萄球菌探针,实现了同时检测并区分沙门氏菌、大肠杆菌和金黄色葡萄球菌的目的。祝儒刚等[7]运用多重 PCR 结合基因芯片技术建立了检测肉及肉制品中的大肠埃希氏菌、沙门氏菌、金黄色葡萄球菌、志贺氏菌和单核细胞增生李斯特菌等5种食源性致病菌的快速检验方法。
2.4噬菌体裂解技术
噬菌体有特异性裂解细菌的作用。张碧波等学者利用此技术进行沙门氏菌
快速检测,结果和其他学者相同,据此得出特异性噬菌体可以检测出沙门氏菌,此法方便可行。姜琴等[8]利用噬菌体裂解对150份食品样品进行快速检测,结果说明肠杆菌科噬菌体组合对培养10h的沙门氏菌敏感性和特异性较高,这对实现沙门氏菌实时、快速而准确的检测有重要意义。
2.5环介导等温扩增技术(LAMP)
环介导等温扩增技术是2000年Notomi等开发的一种新的恒温核酸扩增方法,此方法的特点是特异性强、灵敏度高且简单、快速,适合对大规模样品的快速检测[9]。李佳桐[10]通过实验建立了沙门氏菌的LAMP检测方法,并将此方法与常规PCR进行比较,结果显示:LAMP方法对沙门氏菌的检测恒温65℃下只需要40min,只扩增沙门氏菌,不会扩增其他革兰氏阴性菌,最低可检出浓度10cfu/mL,比常规PCR的最低检出浓度高1个数量级,通过添加荧光染料SYBR Green Ⅰ,能够快速简便的观察检测出绿色的阳性结果十分明显的区别于橙色的阴性结果。
3、免疫学方法
3.1酶联免疫吸附技术
酶联免疫吸附法简称 ELISA, ,此技术敏感性高 ,不需特殊设备 ,结果观察简便,早在1977年就有报道将酶联免疫吸附法用于食品中沙门氏菌的检测。伍燕华等[11]设计捕获抗体和检测抗体,建立快速检测沙门氏菌双抗夹心ELISA方法对食品中的沙门氏菌进行检测。张帅等[12]建立双抗夹心ELISA体系,检测模拟污染肉样中沙门氏菌,其检测限为800CFU/g,等均并与其他血清型沙门氏菌、单增李斯特菌等菌均无交叉反应,特异性良好。
3.2免疫荧光标记技术
免疫荧光标记技术是根据抗原抗体的特异性反应,将荧光素标记在已知抗原(或抗体)上,与特异抗体(或抗原)结合后产生荧光,可用来定位抗原或抗体、并通过定量分析,确定测定含量。叶明强[13]基于纳米免疫磁珠富集,免疫量子点标记,建立了一种食品中沙门氏菌的含量进行快速检测的方法,研究出了一种新型的免疫荧光食源性致病菌检测技术。
3.3斑点免疫金渗滤法
免疫胶体金技术是以胶体金作为标记物结合免疫原理的一种应用于抗原抗体的新型技术,该技术运用最广泛的就是斑点免疫金渗滤法(DIGFA)。孔繁德等及曹春梅等都利用此技术对沙门氏菌的快速检测进行了研究,曹春梅等[14]是利用斑点免疫金渗滤法对沙门氏菌O9抗原进行了研究,结果表明此法简单、快速,适合推广运用;孔繁德等[15]是通过建立直接检测沙门氏菌的斑点免疫金渗滤法检测试纸盒对该菌进行了研究。
3.4免疫磁性分离技术
免疫磁珠分离技术是将特定病原体的单抗或多抗与磁珠微球偶联,并通过抗原抗体反应形成磁珠,在外加磁场作用下磁珠会发生定向移动,从而达到分离目标病原体的作用。食品样品中致病菌含量很少,常规的方法是很难从中分离出来的,借助免疫磁性分离技术可以达到快速分离的目的。王海明等[16]应用磁免疫技术建立快速检测食源性沙门氏菌的方法,结果表明此方法能对食品基质中的目标菌进行快速有效的富集,其检测限<10cfu/25g,检测周期约为40小时。胡霏[17]也通过实验针对鼠伤寒沙门氏菌建立免疫磁分离技术结合荧光层析技术的快速检测方法。
4、生物传感器技术
生物传感器是利用一些生物活性物质如酶 、多酶体系 、抗体等做为敏感器件,然后配以适当的信号传导器所构成的分析检测的工具。我国学者已采用此法对沙门氏菌的抗原、抗体的免疫吸附进行检测,并已用于快速检测食品中致病的沙门氏菌,而仅需 1h 完成,达到了快速的检测目的。宁毅[18]在对碳纳米管性质研究的基础上,结合分子探针构建了碳纳米管生物传感器,并将其用于沙门氏菌的检测,结果显示所构建的传感器灵敏度高、特异性强、稳定性好。
5、电阻抗技术
电阻抗法是近年发展起来的一项生物学技术,因为具有检测速度快、灵敏度高、准确性好等优点,目前此法已用于食品中沙门氏菌检测检验并已通过美国公职分析化学协会(AOAC)认可。陈广全等[19]建立了电阻抗法快速检测食品中沙门氏菌的方法,并将其与常规培养法进行比较,对食品中的沙门氏菌属进行检测,结果表明电阻抗法比传统培养法更加快速、可靠。
6、总结
综上所述,沙门氏菌检验技术正从传统的培养方法向分子检测方法改进,并向仪器化、标准化、自动化方向发展,并且食品安全、致病菌等问题对人类健康以及生活环境都造成了严重威胁,加强沙门氏菌检测势在必行。目前沙门氏菌快速检测技术大多具有检测迅速、灵敏度高、特异性强等特点,此外这些方法还具有各自的优点和局限性,在未来发展过程中需要我们不断改进和创新,建立更成熟可靠、方便快捷的沙门氏菌快速检测技术。