导航:首页 > 研究方法 > 复分析可视化方法pdf

复分析可视化方法pdf

发布时间:2022-05-19 13:51:37

Ⅰ 复分析可视化方法的图书目录

第1章 几何和复算术. 1
1.1 引言 1
1.1.1 历史的概述 1
1.1.2 庞贝利的奇想 3
1.1.3 一些术语和记号 5
1.1.4 练习 6
1.1.5 符号算术和几何算术的等价性 7
1.2欧拉公式 8
1.2.1 引言 8
1.2.2 用质点运动来论证 9
1.2.3 用幂级数来论证 10
1.2.4 用欧拉公式来表示正弦和余弦 12
1.3 一些应用 12
1.3.1 引言 12
1.3.2 三角 13
1.3.3 几何 14
1.3.4 微积分 17
1.3.5 代数 19
1.3.6 向量运算 24
1.4 变换与欧氏几何 26
1.4.1 克莱因眼中的几何 26
1.4.2 运动的分类 30
1.4.3 三反射定理 32
1.4.4 相似性与复算术 34
1.4.5 空间复数 37
1.5 习题 3
第2章 作为变换看的复函数 47
2.1 引言 47
2.2 多项式 49
2.2.1 正整数幂 49
2.2.2 回顾三次方程 50
2.2.3 卡西尼曲线 51
2.3 幂级数 54
2.3.1 实幂级数的神秘之处 54
2.3.2 收敛圆 57
2.3.3 用多项式逼近幂级数 60
2.3.4 唯一性 61
2.3.5 对幂级数的运算 62
2.3.6 求收敛半径 64
2.3.7 傅里叶级数 67
2.4 指数函数 69
2.4.1 幂级数方法 69
2.4.2 这个映射的几何意义 70
2.4.3 另一种方法 71
2.5 余弦与正弦 73
2.5.1 定义与恒等式 73
2.5.2 与双曲函数的关系 74
2.5.3 映射的几何 76
2.6 多值函数 78
2.6.1 例子:分数幂 78
2.6.2 多值函数的单值支 80
2.6.3 与幂级数的关联 82
2.6.4 具有两个支点的例子 83
2.7 对数函数 85
2.7.1 指数函数的逆 85
2.7.2 对数幂级数 87
2.7.3 一般幂级数 88
2.8 在圆周上求平均值 89
2.8.1 质心 89
2.8.2 在正多边形上求平均值 91
2.8.3 在圆周上求平均值 94
2.9 习题 96
第3章 默比乌斯变换和反演 106
3.1 引言 106
3.1.1 默比乌斯变换的定义和意义 106
3.1.2 与爱因斯坦相对论的联系 107
3.1.3 分解为简单的变换 107
3.2 反演 108
3.2.1 初步的定义和事实 108
3.2.2 圆周的保持 110
3.2.3 用正交圆周构作反演点 112
3.2.4 角的保持 114
3.2.5 对称性的保持 115
3.2.6 对球面的反演 116
3.3 反演应用的三个例子 118
3.3.1 关于相切圆的问题 118
3.3.2 具有正交对角线的四边形的一个奇怪的性质 119
3.3.3 托勒密定理 120
3.4 黎曼球面 121
3.4.1 无穷远点 121
3.4.2 球极射影 121
3.4.3 把复函数转移到球面上 124
3.4.4 函数在无穷远点的性态 125
3.4.5 球极射影的公式 127
3.5 默比乌斯变换:基本结果 129
3.5.1 圆周.角度和对称性的保持 129
3.5.2 系数的非唯一性 130
3.5.3 群性质 131
3.5.4 不动点 132
3.5.5 无穷远处的不动点 132
3.5.6 交比 134
3.6 默比乌斯变换作为矩阵 136
3.6.1 与线性代数的联系的经验上的证据 136
3.6.2 解释:齐次坐标 138
3.6.3 特征向量与特征值 139
3.6.4 球面的旋转作为默比乌斯变换 141
3.7 可视化与分类 143
3.7.1 主要思想 143
3.7.2 椭圆型.双曲型和斜驶型变换 144
3.7.3 乘子的局部几何解释 146
3.7.4 抛物型变换 147
3.7.5 计算乘子 149
3.7.6 用特征值解释乘子 150
3.8 分解为2个或4个反射 151
3.8.1 引言 151
3.8.2 椭圆型情况 151
3.8.3 双曲型情况 152
3.8.4 抛物型情况 154
3.8.5 总结 154
3.9 单位圆盘的自同构 155
3.9.1 计算自由度的数目 155
3.9.2 用对称原理来求公式 156
3.9.3 最简单的公式的几何解释 157
3.9.4 介绍黎曼映射定理 158
3.10 习题 159
第4章 微分学:伸扭的概念 166
4.1 引言 166
4.2 一个令人迷惑的现象 166
4.3 平面映射的局部描述 168
4.3.1 引言 168
4.3.2 雅可比矩阵 168
4.3.3 伸扭的概念 170
4.4 复导数作为伸扭 170
4.4.1 重新考察实导数 170
4.4.2 复导数 171
4.4.3 解析函数 173
4.4.4 简短的总结 174
4.5 一些简单的例子 175
4.6 共形=解析 176
4.6.1 引言 176
4.6.2 在整个区域中的共形性 177
4.6.3 共形性与黎曼球面 179
4.7 临界点 179
4.7.1 挤压的程度 179
4.7.2 共形性的破坏 180
4.7.3 支点 181
4.8 柯西-黎曼方程 182
4.8.1 引言 182
4.8.2 线性变换的几何学 183
4.8.3 柯西-黎曼方程 184
4.9 习题 185
第5章 微分学的进一步的几何研究 190
5.1 柯西-黎曼的真面目 190
5.1.1 引言 190
5.1.2 笛卡儿形式 190
5.1.3 极坐标形式 191
5.2 关于刚性的一个启示 192
5.3 log(z)的可视微分法 195
5.4 微分学的各法则 196
5.4.1 复合 196
5.4.2 反函数 197
5.4.3 加法与乘法 198
5.5 多项式.幂级数和有理函数 198
5.5.1 多项式 198
5.5.2 幂级数 199
5.5.3 有理函数 201
5.6 幂函数的可视微分法 201
5.7 exp(z)的可视微分法 203
5.8 E'=E的几何解法 204
5.9 高阶导数的一个应用:曲率 206
5.9.1 引言 206
5.9.2 曲率的解析变换 207
5.9.3 复曲率 209
5.10 天体力学 212
5.10.1 有心力场 212
5.10.2 两类椭圆轨道 213
5.10.3 把第一种椭圆轨道变为第二种 215
5.10.4 力的几何学 216
5.10.5 一个解释 216
5.10.6 卡斯纳-阿诺尔德定理 217
5.11 解析拓展 218
5.11.1 引言 218
5.11.2 刚性 219
5.11.3 唯一性 220
5.11.4 恒等式的保持 222
5.11.5 通过反射作解析拓展 223
5.12 习题 227
第6章 非欧几何学 236
6.1 引言 236
6.1.1 平行线公理 236
6.1.2 非欧几何的一些事实 238
6.1.3 弯曲曲面上的几何学 239
6.1.4 内蕴几何与外在几何的对立 241
6.1.5 高斯曲率 241
6.1.6 常曲率曲面 243
6.1.7 与默比乌斯变换的联系 244
6.2 球面几何 245
6.2.1 球面三角形的角盈 245
6.2.2 球面上的运动:空间旋转和反射.. 246
6.2.3 球面上的一个共形映射 249
6.2.4 空间旋转也是默比乌斯变换 252
6.2.5 空间旋转与四元数 256
6.3 双曲几何 259
6.3.1 曳物线和伪球面 259
6.3.2 伪球面的常值负曲率 260
6.3.3 伪球面上的一个共形映射 261
6.3.4 贝尔特拉米的双曲平面 263
6.3.5 双曲直线和反射 266
6.3.6 鲍耶-罗巴切夫斯基公式 269
6.3.7 保向运动的三种类型 271
6.3.8 把任意保向运动分解为两个反射 275
6.3.9 双曲三角形的角盈 277
6.3.10 庞加莱圆盘 279
6.3.11 庞加莱圆盘中的运动 282
6.3.12 半球面模型与双曲空间 285
6.4 习题 289
第7章 环绕数与拓扑学 29
7.1 环绕数 298
7.1.1 定义 298
7.1.2 “内”是什么意思? 299
7.1.3 快速地求出环绕数 299
7.2 霍普夫映射度定理 301
7.2.1 结果 301
7.2.2 环路作为圆周的映射 301
7.2.3 解释 303
7.3 多项式与辐角原理 303
7.4 一个拓扑辐角原理 304
7.4.1 用代数方法来数原象个数 304
7.4.2 用几何方法来数原象个数 306
7.4.3 解析函数在拓扑上有何特殊 307
7.4.4 拓扑辐角原理 309
7.4.5 两个例子 310
7.5 鲁歇定理 311
7.5.1 结果 311
7.5.2 代数的基本定理 312
7.5.3 布劳威尔不动点定理 313
7.6 最大值与最小值 313
7.6.1 最大模原理 313
7.6.2 相关的结果 315
7.7 施瓦茨-皮克引理 315
7.7.1 施瓦茨引理 315
7.7.2 刘维尔定理 318
7.7.3 皮克的结果 319
7.8 广义辐角原理 321
7.8.1 有理函数 321
7.8.2 极点与本性奇点 323
7.8.3 解释 325
7.9 习题 326
第8章 复积分:柯西定理 334
8.1 引言 334
8.2 实积分 335
8.2.1 黎曼和 335
8.2.2 梯形法则 336
8.2.3 误差的几何估计 337
8.3 复积分 339
8.3.1 复黎曼和 339
8.3.2 一个可视化技巧 341
8.3.3 一个有用的不等式 342
8.3.4 积分法则 342
8.4 复反演 343
8.4.1 一个圆弧 343
8.4.2 一般环路 344
8.4.3 环绕数 346
8.5 共轭映射 347
8.5.1 引言 347
8.5.2 用面积来解释 347
8.5.3 一般环路 349
8.6 幂函数 349
8.6.1 沿圆弧的积分 349
8.6.2 复反演作为极限情况 351
8.6.3 一般回路和形变定理 351
8.6.4 定理的进一步推广 353
8.6.5 留数 353
8.7 指数映射 355
8.8 基本定理 356
8.8.1 引言 356
8.8.2 一个例子 356
8.8.3 基本定理 357
8.8.4 积分作为原函数 359
8.8.5 对数作为积分 361
8.9 用参数作计算 362
8.10 柯西定理 363
8.10.1 一些预备知识 363
8.10.2 解释 364
8.11 一般的柯西定理 366
8.11.1 结果 366
8.11.2 解释 367
8.11.3 一个更简单的解释 368
8.11.4 回路积分的一般公式 369
8.12 习题 370
第9章 柯西公式及其应用 377
9.1 柯西公式 377
9.1.1 引言 377
9.1.2 第一种解释 377
9.1.3 高斯平均值定理 378
9.1.4 第二种解释和一般柯西公式 379
9.2 无穷可微性和泰勒级数 380
9.2.1 无穷可微性 380
9.2.2 泰勒级数 381
9.3 留数计算 383
9.3.1 以极点为中心的罗朗级数 383
9.3.2 计算留数的一个公式 384
9.3.3 对实积分的应用 385
9.3.4 用泰勒级数计算留数 387
9.3.5 在级数求和上的应用 388
9.4 环形域中的罗朗级数 390
9.4.1 一个例子 390
9.4.2 罗朗定理 391
9.5 习题 394
第10章 向量场:物理学与拓扑学 398
10.1 向量场 398
10.1.1 复函数作为向量场 398
10.1.2 物理向量场 399
10.1.3 流场和力场 400
10.1.4 源和汇 402
10.2 环绕数与向量场 403
10.2.1 奇点的指数 403
10.2.2 庞加莱怎样看指数 406
10.2.3 指数定理 407
10.3 闭曲面上的流 408
10.3.1 庞加莱-霍普夫定理的陈述 408
10.3.2 定义曲面上的指数 410
10.3.3 庞加莱-霍普夫定理的解释 411
10.4 习题 413
第11章 向量场与复积分 417
11.1 流量与功 417
11.1.1 流量 417
11.1.2 功 419
11.1.3 局部流量和局部功 420
11.1.4 散度和旋度的几何形式 422
11.1.5 零散度和零旋度向量场 423
11.2 从向量场看复积分 425
11.2.1 波利亚向量场 425
11.2.2 柯西定理 427
11.2.3 例子:面积作为流量 428
11.2.4 例子:环绕数作为流量 429
11.2.5 向量场的局部性态 430
11.2.6 柯西公式 431
11.2.7 正幂 432
11.2.8 负幂和多极子 433
11.2.9 无穷远处的多极子 435
11.2.10 罗朗级数作为多极子展开 435
11.3 复位势 436
11.3.1 引言 436
11.3.2 流函数 437
11.3.3 梯度场 439
11.3.4 势函数 440
11.3.5 复位势 441
11.3.6 例 444
11.4 习题 445
第12章 流与调和函数 448
12.1 调和对偶 448
12.1.1 对偶流 448
12.1.2 调和对偶 451
12.2 共形不变性 453
12.2.1 调和性的共形不变性 453
12.2.2 拉普拉斯算子的共形不变性 454
12.2.3 拉普拉斯算子的意义 456
12.3 一个强有力的计算工具 457
12.4 回顾复曲率 459
12.4.1 调和等势线的几何性质 459
12.4.2 调和等势线的曲率 460
12.4.3 关于复曲率的进一步计算 463
12.4.4 复曲率的其他几何性质 464
12.5 绕障碍物的流 466
12.5.1 引言 466
12.5.2 一个例子 466
12.5.3 镜像法 470
12.5.4 把一个流映为另一个流 476
12.6 黎曼映射定理的物理学 478
12.6.1 引言 478
12.6.2 外映射和绕障碍物的流 479
12.6.3 内映射和偶极子 481
12.6.4 内映射.涡旋和源 483
12.6.5 一个例子:圆盘的自同构 485
12.6.6 格林函数 487
12.7 狄里希莱问题 491
12.7.1 引言 491
12.7.2 施瓦茨的解释 492
12.7.3 圆盘的狄里希莱问题 494
12.7.4 诺依曼和波歇的解释 496
12.7.5 一般的格林公式 501
12.8 习题 504
参考文献 507
译后记... 514

Ⅱ 自学复变函数用什么书

国产:
方企勤《复变函数教程》 (改写自ahlfors)
龚升《简明复分析》 (华罗庚学生 前不久过世了的多复变大师)

国外:
ahlfors 《复分析》
尼达姆《复分析 可视化方法》

Ⅲ 图灵教育出版的“图灵数学统计学系列”

我们上课用过图灵的一本 金融数学导论 感觉非常难 大部分同学觉得很难理解 可能与这门课程内容本身比较难有关 因为涉及到随机过程 泛函分析和偏微分方程 P.S(我所在的是国内数学排名前十的大学数学专业)
其他图灵的书没用过 翻过他的一本概率论 感觉内容没什么难度 就是英文看起来贼慢 英文课本的通病 写得老厚 废话大堆 搞到你不知道重点在哪。。。尤其不是那么习惯看英文书的时候

我不知道你所谓的数学菜鸟是指的什么水平 所以不好给建议 不过如果你想从微积分 线代 学起的话 那英文版教材对于你可能弊大于利 因为学习效率太低了 可能你学过一遍中文版的 知道大体框架之后再去阅读会收获更大

另外,据我所知,计算机图形学与计算数学关系更大,不清楚你为什么要看这么多概率论的书,学一本概率论和数理统计的就好了...

Ⅳ 泛函分析、实分析、复分析有什么经典的教材

实分析的《陶哲轩实分析》很好。但是很可惜,在当当、卓越都缺货、你可以去当当网看看其他的,复分析就看《复分析:可视化方法 》这个好,泛函分析《泛函分析(原书第2版)——华章数学译丛 》。这些你到当当网去找,都能找到。总之像这些数学高等分支还是看一看国外的比较好。(仅个人建议、但并非崇洋媚外)

Ⅳ 求复分析和解析数论的教材推荐,最好中文

复分析中文版
华章数学译丛:《复分析基础及工程应用》E.B.Saff,A.D.Snider着
华章数学译丛: 《复分析》 Ahlfors着
华章数学译丛:《实分析与复分析》Rudin着
俄罗斯数学教材选译:《复分析导论》沙巴特 着,第一卷、第二卷,
图灵数学 统计学丛书:《复分析·可视化方法》尼达姆 着
中国科学技术大学精品教材:《简明复分析》龚升
北京大学数学教学系列丛书:《复分析导引》李忠
另外可参考:方企勤、Conway、stein、小平邦彦的相关着作,这里不列举了。

解析数论中文版
图灵数学 统计学丛书:《哈代数论》哈代,本书有部分内容是解析数论
《数论导引》华罗庚,这个就不必介绍了
《初等数论》陈景润,共三卷,哈工大出版社,挺不错,可以作为参考,
《解析数论基础》[俄] 卡拉楚巴 着 潘承彪,张南岳 译,哈工大出版社
《解析数论引论》[美] 阿普斯托 着 赵宏量,唐太明 译,哈工大出版社

国内的其他教材就不推荐了,如果愿意,可以随便看看。要想学好数学,还是要下功夫看英文版的。某些知识点的译文不怎么样,估计译者完全没弄明白原文。以上教材除了华罗庚的《数论导引》其他都是从网上可以可以买到的,一些经典书籍可以到图书馆找。
更多内容可以参考一下下面的文章,挺不错,只是有些书不好找。
http://wenku..com/link?url=_sw5JR1AAgg2WY9pb6R2_

Ⅵ 数学方面的能力怎样培养

大家都有这样的体会:小学的时候你根本不知道初中数学是什么样,高中的时候你也根本想不到大学数学是什么样。而大学生,如果你不专注于数学,恐怕也不知道现代数学是什么模样。下面将分别从学数学的动机、数学不同学科的分类以及如何切实可行培养数学能力等几个方面阐述如何学习数学。

我的建议是在阅读数学的过程中开拓眼界,纯数学和应用数学学科都看看,找到感兴趣、应用广泛、工作好找(来钱)的方向再一猛扎下去成为你的事业。比如数学扎实,编程能力也强的人就很有前途。

Ⅶ 从事—计算机图形学—数学该学哪些

数值分析
矩阵计算(英文版·第3版)
图论导引

图灵数学统计学系列丛书我买过三四本了至少,还行,但是内容太多了,要花大量时间看。

我今天刚买的
概率论沉思录(英文版)

计算机图形学不是数学专业的课程,虽然应用了许多数学方法,看计算机图形学的书啊,
注意算法和编程的书,而不是数学书,
数学为图书则偏向于应用的。
可找下数字图像处理,计算几何,之类的。
解析几何

复分析:可视化方法(英文版)这个高级程度才看的,
你也太急了!

Ⅷ 诚心请教,如何学习复变函数,学习方法及经典教材推荐

复分析可视化方法; 人民邮电出版社.

Ⅸ 数学方面的能力该怎么培养 知乎

一、认清你的需要
为什么需要学习数学,这是你首先需要想清楚的问题。数学学科子分类多、每一本数学书中都有许多定理和结论,需要花大量时间研究。而人的时间是宝贵的、有限的,所以你需要大体有一个目标和计划,合理安排时间。
1.1 你的目标是精通数学、钻研数学,以数学谋生,你可能立志掌握代数几何,或者想精通前沿物理。那么你需要打下坚实的现代代数、几何以及分析基础,你需要准备大量时间和精力,拥有坚定不移的决心。(要求:精通全部三级高等数学)
1.2 你的目标是能够熟练运用高等数学,解决问题,掌握探索新应用领域的武器,你可能立志进入计算机视觉领域、经济学领域或数据挖掘领域。那么,你需要打下坚实的矩阵论、微积分以及概率统计基础。(要求:精通第一级高等数学)
1.3 你的目标是想了解数学的乐趣,把学数学作为人生一大业余爱好。那么,你需要打下坚实的线性代数、数学分析、拓扑学以及概率统计基础,对你来说,体会学数学的乐趣是一个更重要的目标。(精通第一级高等数学,在第二级高等数学中畅游,尝试接触第三级高等数学)

二、给自己足够的动力
学数学需要智力,更需要时间和精力。下面的几个事实相大家都深有体会:
1. 凡是没有用的东西,或者虽然有用,但是你用不到的东西,学得快忘得也快。不信你回忆一下你大一或者初一的基础课,你还记的清楚吗?
2. 凡是你不感兴趣(或者感觉不到乐趣)的东西,你很难坚持完成它。很多人都有这样的经历,一本书,前三章看的很仔细,后面就囫囵吞枣,越看越快,反正既没意思也没用。
3. 小学数学是中学数学的基础,中学数学是高中数学的基础,高中数学是大学数学的基础(你可以以此类推)。
因此,无论你的目标是什么,搞数学、用数学、还是体会数学的乐趣、满足自己从少年时就有的梦想。学有所乐、学有所用,永远是维持你动力不衰退的两个最主要的因素。

三、高等数学学什么?
好了,来看看标准大学数学的科技树:
一级:
线性代数(矩阵论),数学分析,近世代数(群环域),分别囊括了了几何、分析和代数的基础理论。别忘了还有概率论(建立在分析之上的一门基础学科)。
二级:
有了这些基础,接着是基础的基础、抽象和推广:测度论(积分的基础,当然也是概率论的基础),拓扑学(有关集合、空间、几何的一门极度重要的基础学科),泛函分析(线性代数的推广),复变函数(分析的推广),常微分方程与偏微分方程(分析的推广),数理统计和随机过程(概率论的推广),微分几何(分析和几何的结合)。
然后是一些小清新和应用学科:数值分析(算法),密码学,图形学,信息论,时间序列,图论等等。
三级:
再往上是研究生课题,往往是代数、几何和分析要一起上:微分流形、代数几何、随机动力学等等。
这个科技树的三级,和小学、初中、高中数学很相似,一层学不精通,下一层看天书。

四、如何学习
4.1 适量做题
千万千万千万不要狂做题。玩过战略对抗游戏的同学都知道,低级兵造几个就行了,要攒钱出高级兵才能在后期取胜,低级兵不仅攻击力低,还没有好玩的魔法,它们存在的意义在于让你有能力熬到后期。上面列举了那么多课程,你先花5年做完吉米诺维奇六本数学分析习题集,你就30岁了,后面的二级课程还没开始学呢。因此,做一些课后习题,帮助你复习、思考、维持大脑运转就行,要不断地向后学。如果完全学不懂了,返回来做习题帮自己理清头绪。
4.2 了解思想
数学的精髓不是做题的数量,而是掌握思想。每一个数学分支都有自己的主线思想和方法论,不同分支也有相互可供对比和借鉴的思维方式。留意它,模仿它,琐碎的知识就串成了一条项链,你也就掌握了一门课。思想并不是读一本教材就能轻易了解的,你要读好几本书,了解一些应用才能体会。举两个例子:
微积分的主线有这么几条:认识到微观和宏观是有联系的,微分用来刻画事物如何变化,它把细节放大给你看,而积分用来刻画事物的整体性质;微分和积分有时是描述一个现象的不同方式,这一点你在数学分析书中可能不容易发现,但是如果学点物理,就会发现麦克斯韦方程组同时有等价的微分形式和积分形式;积分变换能够建立不同空间之间的的联系,建立空间和空间边界的联系,这就是Stokes定理:,这个公式最迟要在微分流形中你才能一窥全貌。
矩阵是空间中线性变换的抽象,线性代数这门课的全部意义在于研究如何表达、化简、分类空间线性变换算子;SVD分解不仅在应用学科用有极为广泛的亮相,也是你理解矩阵的有力工具;矩阵是有限维空间上的线性算子,对"空间"的理解不仅能让你重新认识矩阵,更为泛函分析的学习开了个好头。
4.3 渐进式迂回式学习,对比学习
很多时候,只读一本书,可能由于作者在某处思维跳跃了一下,以后你就再也跟不上了。学习数学的一个诀窍,就是你同时拿到好几本国际知名教材,相互对比着看,或者看完一本然后再看同一主题的另一本书,已经熟悉的内容跳过去,如果看不懂了,停下来思考或者做做习题,还是不懂则往后退一退,从能看懂的部分向前推进,当你看的多了,就会发现一个东西出现在很多地方,对它的理解就加深了。举两个例子:
外微分这个东西,国内有的数学分析书里可能不介绍,我第一次遇到是在彭家贵的《微分几何》里,觉得这是个方便巧妙的工具;后来读卓里奇的《数学分析》和Rudin的《数学分析原理》,都讲了这个东西,可见在西方外微分是一个基础知识。你要读懂它,可能要首先理解矩阵,明白行列式恰好是空间体积在矩阵的变换下拉伸的倍数,它是一种线性形式。最后,当你读微分流形后,将发现外微分是获得流形上的Stokes定理的工具。
点集拓扑学这个东西,搞应用用不到。但是但凡你想往深处学,这一门学科就必须要掌握,因为它提供对诸如开集、紧集、连续、完备等数学基本概念的精准刻画。往后学泛函分析、微分流形,没有这些概念你将寸步难行。首先你要读芒克里斯的旷世名着《拓扑学》,接着在读其他外国人写的书时,或多或少都会接触一些相关概念,你的理解就加深了,比如读Rudin的《泛函分析》,开始就是介绍线性拓扑空间,前面的知识你就能用上了。
4.4 建立不同学科的联系
看到一个东西在很多地方用,你对它的理解就加深了,慢慢也就能体会到这个东西的精妙,最后你会发现所有的基础学科相互交织,又在后续应用中相互帮助,切实体会到它们真的很基础,很有用。这是一种体会数学乐趣的途径。
4.5 关注应用学科
没有什么比应用更能激发你对新知识、新工具的渴望。找一些感兴趣的应用学科教材,读一读,开阔眼界,为自己的未来积累资源。以下结合自己的专业(计算机视觉)和爱好说说一些优秀的专业书籍:

学了微积分,就可以无压力阅读《费恩曼物理学讲义第一卷》,了解力、热、光、时空的奥秘;学了偏微分方程,就可以无压力阅读《费恩曼物理学讲义第二卷》,了解电的奥秘;学了矩阵论,可以买一本《计算机视觉中的多视图几何》,了解成像的奥秘,编程进行图像序列的三维重建;学了概率论的同学应该会听说过贝叶斯学派和频率学派,这两个学派的人把战场拉到了机器学习领域,成就了两本经典着作《Pattern Recognition And Machine Learning》和《The Elements of Statistical Learning》,读了它们,我被基础数学为机器学习领域提供的丰硕成果和深刻见解深深折服;读了《Ray Tracing from the Ground Up》,自己写了一个光线追踪器渲染真实场景,它的基础就是一点点微积分和矩阵......
高等数学的应用实在是太多了,如果你喜欢编程,自动化、机器人、计算机视觉、模式识别、数据挖掘、图形图像、信息论和密码学......到处都有大量模型供你玩耍,而且只需要一点点高等数学。在这些领域,你可能能发现比数学书更有趣,也更容易找到工作的目标。
4.6 找有趣的书看
数学家写的书有时是比较死板的,但是总有一些教材,它们的作者有强烈的欲望想向你展示"这个东西其实很有趣","这个东西完全不是你想的那个样子"等等,他们成功了;还有些作者,他们喜欢把一个东西在不同领域的应用,和不同东西在某一领域的应用集中展示给你看。这样的书会提供给你充足的乐趣读下去。典型代表就是国内出版的一套《图灵数学统计学丛书》,这一套书实在是太棒了,比如《线性代数应该这样学》《复分析:可视化方法》《微分方程、动力系统与混沌导论》,个人认为都是学数学必读的经典教材,非常非常有趣。

五、多读书,读好书
如果只有一句话概括如何培养数学能力,那么就是这一句:多读书,读好书。因此这一步我想单独拿出来多说两句。
想必大家都十分精通并能熟练应用小学数学。想读懂代数几何,或者退一步,想读懂信息论基础,你就要挑几本好的基础教材,最好是外国人写的,像掌握小学数学那样掌握它。不要只看一本,找三本不同作者的书,对比着看,逐行逐字看。有的地方肯定看不懂,记下来,说不定在另一本书的某个地方就从另一个角度说到了这个东西。
如果你以后还要往后学,现在看到的每一个基础定理,以后还会用到。
每一本基础书,你今天放弃,明天还要乖乖重头再来。
要像读经文一样,交叉阅读对比不同教材内容的异同。

5.1. 推荐教材(其实就是我读过的觉得好的书):
第一级:
《线性代数应该这样学》
卓里奇《数学分析(两册)》(读英文版吧,不难。有知友说这个还是不太简单,那你可以先看个国内教材,然后回过头来再看这个)
复旦大学《概率论》

第二级:
芒克里斯《拓扑学》
图灵丛书的一些分册
柯斯特利金《代数学引论》
Vapnik《统计学习理论的本质》
Rudin《数学分析原理》
Rudin《泛函分析》
Gamelin《复分析》
彭家贵《微分几何》
Cover《信息论基础》
第三级:
《微分流行与黎曼几何》
《现代几何学,方法与应用》三卷

5.2. 阅读一些科普教材
《数学是什么》
《高观点下的初等数学》
《巴赫、埃舍尔、哥德尔》
《e的故事》

5.3. 阅读各个领域最有趣、最活泼、最让你长知识、最重视应用、文笔最易懂的教材和书籍
《费恩曼物理学讲义》三册
《混沌与分形:科学的新疆界》
《微分方程、动力系统与混沌导论》
《复分析:可视化方法》

最后想说,数学是一个无底洞,会消耗掉你宝贵的青春。一无所知的你可能励志搞懂现代数学,但是多会半途却步,同时剩下的时间又不够精通另一门科学。而且即使你精通纯数学,没有几篇好文章也并不容易找工作。
我的建议是在阅读数学的过程中开拓眼界,纯数学和应用数学学科都看看,找到感兴趣、应用广泛、工作好找(来钱)的方向再一猛扎下去成为你的事业。比如数学扎实,编程能力也强的人就很有前途。

作者:王小龙
链接:http://www.hu.com/question/19556658/answer/26950430
来源:知乎
着作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

Ⅹ 《复分析基础及工程应用》pdf下载在线阅读,求百度网盘云资源

《复分析基础及工程应用》(萨夫)电子书网盘下载免费在线阅读

资源链接:

链接:https://pan..com/s/1UhMTiqrMWTGl2q5ym-Xqfg

提取码:r0to

书名:复分析基础及工程应用

作者:萨夫

译者:高宗生

豆瓣评分:8.6

出版社:机械工业出版社

出版年份:2007-1

页数:388

内容简介:

本书系统而全面地介绍了复分析的基本理论和方法及其在工程问题上的应用,且注重理论与实际密切结合。全书共分八章:复数,解析函数,初等函数,复积分,解析函数的级数表示,留数理论,共形映射,应用数学的变换。为了便于读者掌握本书的主要内容,在每章后面都给出了小结和参考文献,并且配备了大量的例题和练习,书末附有练习答案和提示。

本书内容丰富,理论严谨,讲解透彻,可作为高等院校高年级本科生和研究生复分析课程的教材或教学参考书,还可供需要复变函数知识的工程技术人员参考。

本书全面介绍复变理论及其在当今工程问题上的应用,理论与实际应用密切结合,对工程类学科的学生来说,这种方式使数学方法更具生动性。本书的主要特点:

结合使用MATLAB工具箱:使复杂算术运算及保形映射更加可视化。

阐述对复函数在线性分析中的用途的最新阐述:为学生提供了交流电路、运动学及信号处理等应用的另一种视角。

介绍茹利亚集:使学生熟悉复分析研究的最新论题。

以两种可选的方式给出了柯西定理:提供了更易子可视化、更易子应用到特定情况的方法。

对数值保形映射的高可读性阐述:这对现代技术领域中的应用非常重要,与其他数学领域也密切相关。

给出在实际工程问题中的应用:吸引并帮助学生灵活应用数学方法。

阅读全文

与复分析可视化方法pdf相关的资料

热点内容
叮当镯和田玉怎么识别真假的方法 浏览:454
绿植种类少解决方法 浏览:939
胆管扩张怎么治疗方法 浏览:296
苹果手机流量下载控制设置在哪里设置方法 浏览:593
直尺直线度测量方法 浏览:472
菜饼堆肥制作方法视频 浏览:121
成果解决教学问题的方法如何写 浏览:899
太阳能光电板安装方法 浏览:445
城市人口增多的问题和解决方法 浏览:270
人物形象的方法技巧 浏览:425
真假海螺肉的鉴别方法 浏览:772
胡子有点黄用什么方法洗 浏览:246
安卓手机亮屏时间哪里设置方法 浏览:359
激光笔的使用方法 浏览:625
架接果树方法视频 浏览:685
名师阅读教学方法 浏览:759
长发快速剪发方法视频 浏览:74
铜丝球连接方法 浏览:42
驳口金油使用方法 浏览:858
足背伸的锻炼方法 浏览:794