导航:首页 > 研究方法 > 油田递减规律研究方法

油田递减规律研究方法

发布时间:2022-04-25 23:11:33

Ⅰ 国内外油气采收率预测方法

一、国外油气采收率预测方法

国际上常用的采收率预测理论方法主要有两类:

(一)确定法

确定法适合存在已开发油气藏的采收率预测,又细分为:类比法、体积法、物质平衡法和产量递减法(表1-1),方法种类基本上与国内的相同。

表1-1 油田原始可采资源量预测方法

续表

(二)概率法

概率法通常应用于未开发油藏采收率的预测。由于资料较少,主观因素较多,提高其预测可靠程度的难度较大。代表性的方法有美国地质调查局的概率统计法和加拿大地质调查局的石油勘探与资源评价系统。

二、国内油气采收率预测方法

国内对油气采收率预测方法的研究较为深入,方法种类也比较多。采收率不仅与油层的岩性、物性及驱油机理等油藏的地质条件有关,而且还与油藏的开发方案、油井工作制度、采油工艺技术水平及增产措施有关,因此在确定一个油藏的原油采收率时,往往需要用不同的方法进行估算,然后将各种方法获得的结果进行分析、对比,从中选出较为合理的采收率值。

(一)经验类比法

油田投入开发以前,主要利用油藏静态地质资料、试验资料以及枯竭油田推导的相关经验公式等方法确定采收率。可以根据地层原油粘度,油层渗透率,油层非均质性和油藏的驱动类型等几项主要指标,与已开发油藏类比确定采收率值。

不同驱动类型油藏采收率的经验值一般为:

水压驱动30%~50%;

气顶驱动20%~40%;

溶解气驱动10%~20%。

(二)岩心分析法

用岩心在实验室内模拟油藏条件进行实验,能够获得注水开发油藏的驱油效率,再乘以油藏的体积波及系数,就可以求得油藏的水驱采收率。

对于原油密度小、含蜡量低、凝固点低的油藏,在泥浆滤液冲刷很好的条件下岩心的残余油饱和度求得的驱油效率,也可作为确定采收率的参考数据。

(三)相渗透率曲线法

根据有代表性的油、水相对渗透率曲线,利用分流量方程式进行理论计算,得到含水率和含水饱和度的关系曲线,取含水率为98%时的平均含水饱和度,由公式计算出驱油效率,该数值经过流度比和地层渗透率变异系数的校正,即可得到合理的采收率值。

(四)相关经验公式法

根据油藏的地质和开发参数,利用水驱和溶解气驱油藏采收率相关经验公式计算采收率。

(五)预测水驱采收率的新方法

注水开发油田产量、采收率的预测一直是一大难题,尤其是低渗透、裂缝性油田的产量预测。目前常用的油藏数值模拟方法存在很大的不确定性,经常需要进行油藏数值模拟。而传统的产量递减分析方法仍然是基于一些经验公式,不具备完善的理论基础,也不具有普适性。而且在注水开发前或早期根本无法知道油田产量遵循哪种经验型的递减方式。

新的预测水驱采收率的方法是基于大量的试验及理论研究成果推导出来的,可以对注水开发油田的单井、区块或全油田进行产量、采收率的预测。该方法主要采用两种方式进行产量预测:一种方式是油田注水投产以前进行水驱动态的预测。所需数据为岩石、流体的基本物性参数(孔隙度、渗透率、流体粘度等)及特殊物性参数(相对渗透率、毛管压力等)。采用新的实验方法,可以不需要进行传统的相对渗透率和毛管压力曲线测量,而只需测量特定油藏的总流动能力。另一种方式是在油田注水开发一定时间以后进行产量预测。所需输入参数为产油量历史数据。在进行产量、采收率预测的同时,还可以推算出油藏岩石与流体的流动参数,如相对渗透率、毛管压力、或总流动能力等参数。

Ⅱ 递减率怎么

老井产量自然递减率

1)定义:单位时间内老井产量的变化率或单位时间内产量递减百分数。

2)计算公式:

老井自然递减率=(今年底老井平均日产油量-老井今年措施日增油量-去年底老井平均日产油量)/去年底老井平均日产油量×100%

所谓老井,这里指去年年底以前投产的油井。措施日增油量是指老井今年经过措施后日产油量增加数。

自然递减率反映油田各采油井如果不采用增产措施的产量变化规律。是负数,说明产量递减;是正数,则产量没有递减。它是检查油田是否能够稳产及安排措施工作量的重要依据。递减大,则稳产要求安排的工作量就多。(06年江汉油田老井标定自然递减率为13.93%,现场一般算标定递减率,*递减率符号为Dt ,Dt>0为产量递减,Dt<0为产量上升,与上面讲的符号正好相反)。

Ⅲ 油田开发经济政策界限计算方法与应用

尚明忠孙伟孟新华王兴科苏映宏

摘要介绍了新井经济极限初产油量、老井经济极限含水量及经济极限产油量、措施增产油量经济政策界限的研究方法,制作了胜利油区不同类型油田的开发经济政策界限图版,为避免油田开发中的低效工作量和提高油田开发的整体经济效益提供了依据。

关键词经济政策界限经济极限含水量措施经济极限产油量经济效益胜利油区

一、引言

在油田开发过程中,随着油田含水量的上升和开发难度的加大,其产量也会不断下降。当产量降低到一定界限,其产值不能平衡必要的投资和成本时,油田或油井的开采就会没有效益,甚至亏本。因此,研究油田开发经济政策界限,对于提高油田开发经济效益具有非常重要的意义。

1.计算原理及方法

二、新井经济极限初产油量

新井经济极限初产油量是指在一定的技术、经济条件下,当油井在投资回收期内的累积产值等于同期总投资、累积年经营费用和必要的税金之和,即单井投资回收期内的经济效益为零时井对应的产油量,称为新井经济极限初产油量。

单井投资回收期内经济效益表达式为

胜利油区勘探开发论文集

当投资回收期内累计经济效益为0,即Pp=0时,得出新井经济极限初产油量的计算公式为

胜利油区勘探开发论文集

式中:Pp——投资回收期内生产井单井累计效益,104元;

Sp——投资回收期内生产井单井累计总产值,104元;

K——投资回收期内生产井单井累计总投资,104元;

Cp——投资回收期内生产井单井累计年经营成本,104元;

τ0——油井开井时率,小数;

qmin——新井单井经济极限初产油量,t/d;

w——原油商品率,小数;

P——原油价格,元/t;

Rt——吨油税金,元/t;

T——投资回收期,a;

B——油井在投资回收期内产量平均年递减余率,小数;

Ib——单井地面建设投资,104元/井;

Id——单井钻井投资,104元/井;

β——油水井系数,小数;

i——经营成本年上涨率,小数;

C0——单井经营成本,104元/井。

2.参数的确定[1]

(1)投资

投资可分为钻井投资和地面建设投资两部分。

钻井投资是指油气田开发建设期所钻的开发井投资,包括钻前准备工程、钻井工程、测井和完井工程投资。其投资定额主要和井深有关。胜利油区每米钻井投资CM与井深H有如下回归公式(不包括海上油田)

胜利油区勘探开发论文集

油田地面建设投资主要包括油气集输、注水、供排水、供电、通讯、道路等。根据“九五”期间实际发生的油田地面建设投资,可以确定陆上老区新井、陆上新区新井、海上油井的平均单井地面建设投资。

(2)经营成本及费用

经营成本和费用是油气田企业在生产经营活动中按规定发生的一切消耗和费用的总和,包括油气开采成本、管理费用、销售费用和财务费用。原油开采成本包括生产过程中实际消耗的直接材料、直接工资、其他直接支出等。油气勘探开采过程发生的管理、销售和财务等三项费用作为当期损益,直接从当期销售收入中扣除。

按现行会计报表,油气开采成本由15项构成,包括动力费、材料费、燃料费、生产人员工资、福利费、驱油物注入费、热采费、油气处理费、轻烃回收费、井下作业费、测井试井费、修理费、制造费用、折耗及摊销、勘探费用。

(3)税金

主要税金包括增值税、城建税、教育费附加税和资源税。为简化步骤,计算了不同油价下的吨油综合税金。在原油价格为800~1800元/t时,吨油综合税金为99~220元/t。

(4)递减率

为了确定新井产量递减率,统计分析了胜利油区1990~1995年新井的变化规律,按日产油水平分为小于4t、4~6t、6~8t、8~10t和大于10t五个级别进行跟踪分析。统计结果表明,递减率的大小与单井初产油量的高低有关,单井初产油量越高,递减率越大。单井初产油大于10t/d的井递减率约为15%,单井初产油量为8~10t/d、6~8t/d、4~6t/d的井递减率分别为12%、10%、5%左右,小于4t/d的井基本不递减。

3.新井经济极限初产油量计算

通过分析“九五”以来胜利油区的投资、成本,结合单井日产油量的变化规律,分别计算了不同井深、不同油价条件下陆上老区、陆 上新区和海 上新区新井的经济极限初产油量。

根据计算的经济极限初产油量,对胜利油区“九五”以来的新区进行了评价,在综合分析的基础上得出了不同地区不同油价下的低效产量比例。

(1)陆上新区新井经济极限初产油量计算

以井深为1000~3500m,原油价格取900~1700元/t为条件,测算了陆上新区低渗透油田和高渗透油田新井经济极限初产油量,并制作了图件(图1、图2)。从图中可看出,井深相同时,油价越高,新井经济极限初产油量越低;在相同油价情况下,井越浅,对新井初产油量要求越低。

图1陆上新区低渗透油田新井经济极限初产油量图

图2陆上新区高渗透油田新井经济极限初产油量图

高渗透油田对新井的初产要求低于低渗透油田。油价为1000元/t,井深为2000m时,高渗透油田新井经济极限初产为5.65t/d,低渗透油田为6.12t/d。

根据陆上新区新井经济极限初产油量图,对胜利油区1996~1998年所钻陆上新区新井进行了跟踪分析。1996年共钻新区新井317口,平均单井产量11.43t/d,其中低效井78口,平均单井产量3.35t/d,低效井井数占24.6%,但产量仅占4.1%;1997、1998年低效井井数分别占当年钻新井的25.6%、20.2%,产量分别占6.1%、3.5%。

(2)陆上老区新井经济极限初产油量计算

陆上老区井深取1000~3500m,原油价格取900~1700元/t,其低渗透、高渗透油田新井经济极限初产油量计算结果分别见于图3、图4。由于低渗透油田钻井投资、地面建设投资及经营成本等均高于高渗透油田,其新井经济极限初产油量要高于高渗透油田。油价为1000元/t,井深为2000m时,高渗透油田新井经济极限初产为5.3t/d,低渗透油田为5.5t/d。

图3陆上老区低渗透油田新井经济极限初产油量图

图4陆上老区高渗透油田新井经济极限初产油量图

根据陆上老区新井经济极限初产油量图,对胜利油区1990年以来的陆上老区新井进行了跟踪分析,得出了不同油价下其新井低效产量的比例。油价为1000元/t时,1990~1995年陆上老区新井低效产量比例从4.5%上升到13.4%,高于陆上新区新井低效产量的比例,且低效产量的比例上升较快。1995年以后,通过应用精细油藏描述等新技术,不断优化新井井位设计,使得低效产量比例上升的趋势得到控制,基本保持在13%左右。

(3)海上油田新井经济极限初产油量计算

依据海上油田经济参数分析结果,计算了不同油价、井深情况下海上油田新井经济极限初产油量,并制作了图件(图5)。在原油价格为1000元/t时,海上油田新井经济极限初产油量为35.7t/d(井深2200m)。1999年,胜利油区的平均原油销售价格为931元/t,所对应的海上新井经济极限初产油量为36t/d。

图5海上油田新井经济极限初产油量图

根据上述经济极限初产,统计了海上油田近几年新井低效产量的比例。当油价为1000元/t时,1995~1998年低效产量比例分别为11.08%、7.87%、4.36%、7.36%。海卜油田自1995~1996年馆陶组油藏全面投入开发以来,不断应用地震约束反演、油层保护等新技术,优化方案设计,钻井成功率高,新井低效产量的比例明显降低。随着动用储量难度加大,1998年以后低效产量比例上升。

三、老井经济极限含水及经济极限产油量

研究油田的经济极限含水量及经济极限产油量,可以及时判别低效井,并对之采取关闭或转注、改层等措施,以提高经济效益。

1.计算原理及方法

经济极限含水量及经济极限产油量,是指油田(油井)开发到一定的阶段,其含水量上升到某一数值或产油量下降到某一数值,投入与产出达到平衡,含水如再升高、产油量如再下降,油田开发就没有利润了,油田(油井)此时的含水量称为经济极限含水量,其对应的产量称为经济极限产量。

老井经济极限含水量、新井经济极限初产油量的计算都是采用盈亏平衡原理,但不同的是,新井经济极限初产油量的计算是指一定阶段(投资回收期)的投入产出平衡,而老井经济极限含水量的计算是指瞬时(一般取一年)的投入产出平衡。

由于老井一般都认为经历了8年以上的开采时间,在计算老井经济极限含水量及经济极限产油量时,可以不考虑其投资,仅计算它的经营成本。对原油经营成本不同的考虑方法,可以得出不同概念的经济极限含水量及经济极限产油量。常规成本分析法是考虑老井开采时所需的全部经营成本;而最低成本分析法,则是按油井主要的维持生产的费用来计算的。

计算老井经济极限含水量及经济极限产油量的投入产出平衡式为:

胜利油区勘探开发论文集

由(4)式可导出求老井经济极限含水量及经济极限产油量的表达式:

胜利油区勘探开发论文集

式中:qo,min——经济极限产油量,t/d;

fw,min——经济极限含水,小数;

qL——单井产液量,t/d;

Cv——吨液可变成本,元/t;

Cg——固定成本,104元/井;

t——预测年相距基础年的年数,a。

2.吨液成本与平均单井产液量关系

单井生产成本分固定成本和可变成本。(5)、(6)式中准确求取单井生产成本非常关键。为提高该方法的可操作性和实用性,经研究可简化成本分析项目,直接通过平均单井产液量、吨液成本求取单井生产成本。

按最低成本统计分析了1998年胜利油区40个陆上水驱开发油田的吨液成本 CL和油田的平均单井产液量qL有很好的相关关系,其回归关系式为:

胜利油区勘探开发论文集

将(7)式代入(5)、(6)式,可得新的经济极限产油量和经济极限含水量的表达式:

胜利油区勘探开发论文集

3.老井经济极限产油量及经济极限含水量计算

(1)陆上老井经济极限产油量及经济极限含水量计算

油价选800~2400元/t,单井产液量取10~160t/d,利用式(8)、(9)计算了老井的经济极限产油量和经济极限含水量(图6,图7)。从图中可以看出,在相同单井产液量条件下,油价越高,单井经济极限产油量越低;相同油价下,单井产液量越高,单井经济极限产油量越高。油价为1000元/t,单井产液量为10t/d时,单井经济极限产油量为1.15t/d,经济极限含水量为88.5%;单井产液量为160t/d时,单井经济极限产油量为1.68t/d,经济极限含水量为98.9%。

(2)海上老井经济极限含水量及经济极限产油量计算

由于资料所限,海上油田未建立起吨液成本与单井产液量的关系,其原油成本通过分项统计获得。利用公式(5)、(6),油价为1000元/t,单井产液量为30t/d时,计算得老井经济极限含水量为87.2%,经济极限产油量为3.8t/d;单井产液量为80t/d时,计算得老井经济极限含水量为89.1%,经济极限产油量为8.7t/d。从计算结果看,海上油田由于原油生产成本高,其经济极限含水大大低于陆上油田,而经济极限产量大大高于陆上油田。

(3)胜利油区老井低效井情况

依据绘制的老井经济极限产油量及经济极限含水量判别图,对2000年6月开井的13028口老井进行了分析,其中低效井有1293口,占总井数的9.9%;月产油1.94×104t,占全部老井产量的0.83%;平均单井日产油0.5t;综合含水量98.2%。这批低效井2000年6月的最低生产成本为3365×104元,同比产值为1982×104元,亏损1383×104元,建议该部分井进行关停并转。

图6陆上老井经济极限产油量图

图7老井经济极限含水量图

四、措施增产油量经济界限[2]

1.计算原理及方法

措施增产油量经济界限是当油井在措施有效期内的投入与产出平衡时,措施后比措施前累积增产的油量,其计算公式为:

胜利油区勘探开发论文集

式中:Ic——措施新增投入,104元;

Tc——措施有效期,a;

Cc——措施成本,元/t;

qc——措施增油量经济界限,t/d。

2.计算实例

利用公式(10)测算了埕东油田下电泵、防砂、补孔改层、下大泵、卡堵五项措施的日增油量经济界限值。其下电泵措施的有效期为半年至两年,单井日增油界限值为2.29~0.57t,累计增油量经济界限值364t;防砂、补孔改层、下大泵、卡堵的累计增油量经济界限值分别为111t、158t、95t、142t。

五、稠油蒸汽吞吐热采井经济极限油汽比

1.计算原理及方法

对于稠油注蒸汽开采来说,设备工艺的要求要比稀油开采高,设备投资额较大,原油成本也较高。因此,应特别注意蒸汽吞吐热采井开采中的经济界限问题。当油汽比达到某一数值,使总成本高于总销售收入时,注蒸汽开采便无经济意义了,收入与支出平衡时的油汽比即为经济极限油汽比。

测算经济极限油汽比的公式为:

胜利油区勘探开发论文集

式中:OSRmin——经济极限油汽比,小数;

Cig——平均每注1m3蒸汽的成本,元/m3

Cwdf——单井平均分摊的固定成本,元/d;

Cg——吨油可变成本,元/t;

qo——平均单井产油量,t/d。

2.计算实例

据1998年孤岛油田稠油成本实际发生值,与注汽量有关的费用按注汽费和部分热采费计算,按照公式(11)测算的孤岛稠油油田单井日产分别为4t、5.2t、6t、7t、8t、10t情况下,当油价为948元/t时,经济极限油汽比分别为0.71、0.25、0.19、0.16、0.14、0.12。

六、结论

本文分析研究了不同类型油藏成本、投资分类,建立了老井吨液成本与单井产液量的函数关系,简化了老井经济极限含水量的计算方法和步骤,提高了方法的实用性。

全面而系统地研究了新井、老井、热采井及措施井的经济界限值,并制作了胜利油区不同类型油田开发的经济界限图件,为关停并转低效和无效井提供了依据。

致谢本文集中了地质科学研究院开发综合规划室最近几年在经济政策界限方面的主要成果,是集体智慧的结晶。胜利有限公司副总地质师、地质院院长孙焕泉和开发管理部总地质师方开璞给予了悉心指导。参加本文工作的还有凡哲元、杨勇、邴绍献、吴作舟、侯春华、王道祯、王星等,在此一并致谢。

主要参考文献

[1]中国石油天然气总公司计划局,中国石油天然气总公司规划总院编.石油工业建设项目经济评价方法与参数(第二版).北京:石油工业出版社,1994.

[2]岳立,岳登台.老油田高含水期可采储量及增产措施经济评价方法.石油学报,2000,21(5).

Ⅳ 特低渗透油藏开发方案优化研究——以大古、樊块为例

赵红雨邓宏伟邱国清

参加工作的还有蒋龙,张可宝,王铭宝,周燕,孙玉红,程育红等,

摘要大王庄油田大古67块和大芦湖油田樊124块属特低渗透油藏,平均渗透率为5×10-3~8.8×10-3μm2,油藏埋深3100~3250m,且储集空间较为复杂,有溶孔和微裂缝存在,开发难度大。本文从低渗透油田的油藏特点和开采规律着手,具体分析了这两个区块的开采动态,开展了注水必要性和可行性评价,在此基础上对影响开发效果的井网、井距、转注时机及注采比进行优化研究,确定出各区块的推荐方案,预计当年可建产能9.2×104t。

关键词特低渗透油藏储集空间微裂缝评价优化推荐方案

一、引言

胜利油区低渗透油田已累积探明石油地质储量5.8×108t,占总探明储量的12.6%,其中已动用33个区块,动用储量3.6×108t,占探明储量62.1%。已动用的低渗透油田大部分埋藏较深,在2800m以下,且以构造、岩性油藏为主。空气渗透率一般小于20×10-3μm2,储量丰度一般小于100×104t/km2,但原油性质普遍较好。地层原油粘度为0.5~6mPa.s,凝固点26~53℃。油藏具有吸渗驱油的微观机理,流体渗流不遵循达西定律。油井自然产能较低,一般需要压裂或其他改造措施,才能获得较高产能。油井见水后,无因次采液(油)指数随含水上升降低的幅度大,提液困难,注采井间难以建立一定的驱替压力梯度。大古67块和樊124块属特低渗透油藏,1994年后陆续采用常规或压裂方法试采11口井,到1999年9月,平均单井日产油能力12.3t,累积产油2.9370×104t,地层压力下降快、产液产油量递减率大。为提高油田开发效果,2000年合理编制了两区块油藏开发方案,开展了注水可行性、井网、井距、注水时机和注采的设计与优化研究工作。

二、地质特征

大王庄油田大古67块位于车镇凹陷大王庄鼻状构造带大一断层上升盘中段,北以大一断层为界与大王北油田相接,南以大古2块与大古82井区相连,是一个四面为断层封闭的断块油藏。樊124块位于济阳坳陷东营凹陷西南部的金家-樊家鼻状构造带西翼,大芦湖油田的西南部,西邻高青油田。

大古67块主力含油层系为二叠系上石盒子组万山段,自下而上共分三个砂层组,总有效厚度为33.1m。在构造腰部附近有效厚度相对较大,达40m以上,向南北两侧逐渐变薄。大古67块万山段地层属河流相沉积,储集层岩性以中、细砂岩为主,储集空间主要以粒间孔为主。平均孔隙度13.4%,平均渗透率8.8×10-3μm2,属低孔、特低渗储集层,且储集层层间、层内非均质性较严重。油藏类型为层状断块油藏,块圈定含油面积3.3km2,石油地质储量396×104t,储量丰度120×104t/km2,为深层、中丰度储量。

樊124块主要含油层系为沙三下亚段。砂体西北厚度大,并呈条带状或朵状向东南减薄直至尖灭。樊124块沙三下储集层为湖泊三角洲沉积,储集层岩性为粉、细砂岩,储集空间为残留粒间孔、溶蚀孔、微孔隙。平均孔隙度14.1%,平均渗透率5.0×10-3μm2,属低孔、特低渗储集层。油藏类型属具有边水的构造-岩性油藏。块圈定含油面积3.5km2,石油地质储量202×104t,储量丰度58×104t/km2,属深层、低丰度储量。

三、开采动态和注水可行性研究

1.开采动态分析

目前两油藏都经历了试油试采阶段,在试油试采过程中有以下特点。

大古67块和樊124块试油井均见油,但一般都需压裂投产才能获得较高产能。随着开采时间的延长,由于能量补充不及时,各井日产油能力下降较快,特别是压裂井下降速度更快。分析试采时间较长的8口井的递减情况,常规井月递减率为5.1%,而压裂井月递减率则高达13.2%。

2.注水可行性研究

(1)油层条件有利于注水

两区块油藏属弱、弱-中等水敏性油层,注入标准盐水,渗透率比值几乎无影响;注入蒸馏水,渗透率比值下降6.4%~30%左右。樊124块油层属非速敏,大古67块油层中等速敏,但临界流速高达2.82m/d,测算在此临界流速下,当日注水量为90m3,注水生产压差6.9MPa时,对储集层的伤害半径仅为50cm。根据低渗透油田启动压力与渗透率变化关系的经验公式,计算得到两油藏注水启动压力分别为13MPa和17MPa,要求注水泵压在30MPa左右,不超过目前注水工艺设备能力。

(2)同类型油田类比

目前两区块均无试注水资料,但与国内几个主要的低渗透油田(马西深层、牛25-C砂体和大芦湖油田)的油藏地质条件类比,两区块的油藏埋藏深度,有效厚度处于几个油藏的中间,只有孔隙度、渗透率参数略低,而这三个油藏预测的水驱采收率都在18%以上,因此在这两个油藏实施注水开发也是可行的。

四、开发方案优化研究

1.开发方案设计

1)设计原则

特低渗透率油田的渗流机理和开采规律,决定了影响其开发效果的因素较多,本次开发方案只针对井网、井距、转注时机、注采比4个敏感性参数进行优化,故制定了以下设计原则。

(1)考虑国内几个低渗透油田开发经验

马西深层、牛25-C砂体、大芦湖油田等是目前国内开发较为成功的低渗透油田,故在方案设计时充分考虑其初期布井方式的选择、转注时机的确定,以及开发后期注采井网的调整等。

(2)立足于早期注水开发

两区块地饱压差大(18.27~20.16MPa),利用地层能量开采的余地较大,但弹性产率低。另据琼斯实验室试验结果表明,随着地层压力下降,裂缝逐渐闭合,从而降低流体的渗流能力,动态上则表现为产量迅速下降。因此要使油藏有较高的采油速度和单井产量,必须早期注水以保持较高的油层压力。

(3)考虑油藏的地层最大主应力方向

低、特低渗透油田一般都需压裂投产,压裂后容易在地层最大主应力方向上产生裂缝,若注采井与地层主应力方向一致,不可避免会造成采油井暴性水淹,因此注采井应与主应力方向保持一定夹角。由地层倾角测井和地应力测试结果,大古67块地层最大主应力方向为N67.5°E、樊124块为N78°E。

(4)单井须有一定的有效厚度,并至少钻遇1~2个主力层

根据油藏地质特征和试油、试采特点,大古67块选择有效厚度大于10m的范围内布井,樊124块在有效厚度大于5m的范围内布井。

2)设计步骤

为更科学优化开发方案,依据上述原则,对井网、井距、转注时机、注采比4个敏感性参数逐级进行设计,即先设计井网方案,其次为井距、转注时机方案,最后是注采比方案,上一级参数方案优化结果可直接运用到下一级参数的方案优化中。

2.开发方案优化研究

在油藏地质研究的基础上,利用VIP数模软件建立了全油藏地质模型,并划分网格,网格模型X方向与地层最大主应力方向平行,利用数值模拟方法,结合油藏工程分析,对每一项参数进行了优化研究。预测结果至2019年,预测时间为20年。

1)井网优化研究

根据国内外低渗透率油田成功的开发经验,此类油田一般采用面积注水方式较为适宜,有利于强化注水,增加注水波及体积,提高水驱采收率。为此,设计并优化了五点法、反九点法、排状三种面积注水井网,共19个方案。

(1)全部采用直井

数值模拟对大古67块优化计算了8个对比直井井网方案(表1),计算结果反映出以下特点。

反九点法井网初期采油量高,但含水上升快,采出程度低。采用反九点法井网的1-1方案,采油井数多达16口,注采井数比为1∶5,因此初期产能相对较高,同时为保持压力平衡和维持较高的采油速度,则注水井注水强度相应地有所增大。但该井网有一部分角井位于水驱主流线上,即注采井与地层主应力方向平行,在较高的注水强度和采油井都压裂投产的前提下,使得这部分角井过早水淹,产能下降,含水迅速上升。该方案采出程度仅为22.5%,比其他方案低2~4个百分点,开发效果差。即使将这部分角井转成注水井的1-2方案,开发效果也未得到明显改善,采出程度只提高了0.2%。

表1大古67块井网方案数值模拟计算对比表

排状井网采出程度增幅不大 排状井网注采井数比为1∶1,为维持压力平衡,则注水井注水强度有所降低,减小了高速注水条件下采油井暴性水淹的可能性;同时位于地层主应力方向上的注采井距较大,延缓了采油井见水时间,因此其开采效果优于反九点法井网,但采出程度提高幅度不大。3个方案平均采出程度为25.3%,只比反九点法井网高3%左右。

注水井排平行地层主应力方向的五点法井网开发指标最好 方案1-3采用五点法井网,与排状井网一样,注采井数比为1:1,注水井注水强度不大,而与排状井网不同的是该方案注水井排平行于地层主应力,即在人工压裂裂缝方位上只有注水井或采油井,这就避免了采油井暴性水淹,从而延迟采油井见水时间,扩大注水波及体积,明显改善开发效果。采出程度比反九点法和排状井网分别高出5%和2%,且该方案新钻井数少于其他方案,经济效益也最高。因此,大古67块直井井网方案应采用五点法井网。

樊124块优化计算了7个对比直井井网方案,方案优化结果与大古67块类似,也应采用五点法井网。

(2)水平井与直井组合

表2樊124块水平井数值模拟计算对比表

为了应用新技术提高低渗透油藏的开发效果,樊124块在五点法直井井网方案基础上设计了4种水平井与直井组合的井网方案,并进行了优化计算(表2)。

从数值模拟计算结果看,由于水平井动用层位少,用一口水平井代替两口直井的方案1-16和方案1-17指标比全部采用直井的方案1-9差,方案1-18和方案1-19虽比方案1-9多采油2.7×10-3t,但须多钻一口水平井,同时累积注水和累积产水量都大于直井方案,因此在经济效益上利用水平井开发樊124块油藏是不适宜的。而且目前胜利油田利用水平井开发低渗透油藏处于探索阶段,采用水平井开采风险较大,故方案设计不采用水平井。

2)井距优化

低渗透油藏储集层存在非线性渗流特征,注水驱油时,存在注水启动压差,再加上储集层本身就存在较大的渗流阻力,导致注采井间压力消耗较大,因此注采井距不宜过大。然而为了提高油井产量,生产井均为压裂投产,通过压裂又可适当增大井距。

(1)经济合理的井网密度和井距的测算

根据胜利油田砂岩油藏的经济合理井网密度经验公式,结合两油藏各自的地质特点,在目前油价下,计算出大古67块、樊124块经济合理的井网密度分别为9口/km2和8口/km2。大古67块有效厚度大于10m(方案布井区)的含油面积为2.7km2,则该块经济合理的井数是24~25口,折算五点法和九点法井网的合理井距为300m。樊124块有效厚度大于5m(方案布井区)的含油面积为2.1km2,则该块经济合理的井数是16~17口,折算出五点法和九点法井网的合理井距为350m(已投产井的完钻井距也在350m左右)。

(2)井距优化计算

在五点法直井井网和测算的经济合理井距基础上,对两区块分别优化计算了三种不同的井距方案(大古67块为250m、300m、350m,樊124块为300m、350m、400m)。在不同井距下开发周期为20年,方案采出程度最高的井距都为各区块的经济合理井距,即大古67块300m、樊124块350m,采出程度比其他两个井距方案高1~1.5个百分点,而且此井距在整个开发阶段含水都略低于其他井距方案,经济效益好。由此认为最优井距大古67块为300m,樊124块为350m。

3)注水时机优化

根据设计原则,两油藏都须早期注水且保持较高的油层压力,考虑油藏目前的压力水平和现场及地面工程建设所需时间,对比了五种不同压降下的注水方案(表3),其压力水平均在饱和压力以上,压降为4~15MPa。

从数值模拟指标看,转注越早,采出程度越高。随着转注时压降的增加,采出程度呈下降趋势,特别是压降大于10MPa后,采出程度下降幅度更大。其原因主要是油藏低压力水平开采,导致油井供液不足。由此说明,油藏应在较高的压力条件下转注。但转注越早,注水量越多,在多采油的同时,采水量相应增加,含水上升速度加快。对比含水变化曲线(图1),当含水相同时,压降为7~10MPa转注的方案采油量相对较多,最终采收率高,经济效益较优。因此,方案选择油藏压降达到7~10MPa时转入注水开发,预计约在整体投产半年后。

4)注采比优化

选取合适的注采比对于油田注采平衡、实现高产稳产至关重要。为此,主要从恢复、保持地层能量出发,在两个区块分别设计并优化了五种不同注采比的开发方案(表4)。计算结果显示,在相同的井网形式和转注压力条件下,注采比越大,累积产油量越多,采出程度越高,当注采比由0.8提高到1.3时,采出程度提高 1~2倍。但注采比超过1.0后,采出程度增加幅度变缓,说明提高注水量在增加采油量的同时,主要是增加了采水量,而在相同含水期内,注采比为1.0的方案累积产油量多,且最终采收率高,经济效益好。故最佳的注采比为1.0,即油层压力保持在转注压力水平上的开发。

表3注水时机方案数值模拟计算对比表

图1大古67块不同注水时机含水量与累积产油量关系曲线图

5)开发方案推荐

大古67块推荐注水方案采用五点法井网,注采井距300m,油藏压降在7~10MPa后转注,即油藏平均压力降至18~21MPa,注采比保持在1.0左右;樊124块推荐注水方案采用五点法,注采井距350m,油藏压降在7~10MPa后转注,即油藏平均压力降至21~24MPa,注采比保持在1.0左右。

3.产能的确定

(1)比采油指数、采油指数的确定

表4不同注采比方案数值模拟计算对比表

大古67块仅有大671井压裂后取得初期采油指数资料,该井射开有效厚度9.0m,投产半年多时间测得3个流压值,分别为22.3MPa、13.7MPa、7.13MPa,所对应的日产油量为22.5t、7.1、2.0t,计算出平均比采油指数为0.162t/(d·m·MPa)。樊124块计算了樊124-1井、樊125井两口井初期压裂后的比采油指数,樊124-1井为0.15t/(d·m·MPa),樊125井为0.17t/(d·m·MPa),平均的比采油指数为0.16t/(d·m·MPa)。分析认为,这些计算值能够反映采油井初期的开采水平,考虑全面开发对产量的影响,故初期比采油指数两区块都取0.15t/(d·m·MPa)。若单井平均射开有效厚度大古67块按15m、樊124块按10m计算,则初期平均采油指数大古67块为2.25t/(d·m·MPa),樊124块为1.5t/(d·m·MPa)。

(2)无因次采油指数随含水量的变化

由相渗曲线计算的无因次采油指数随含水变化曲线可知,见水后无因次采油指数随着含水量上升逐步下降。在含水量30%以前,大古67块含水量每上升1%,无因次采油指数下降1%;樊124块含水量每上升1%,无因次采油指数下降1.1%。

(3)产能的确定

根据初期的采油指数、无因次采油指数随含水量的变化规律以及油井所对应的生产压差,并结合数值模拟预测结果,确定出大古67块第一年单井平均日产油能力为13t,樊124块第一年单井平均日产油能力为14t。则第一年大古67块可建成年生产能力5.3×104t,樊124块可建成年生产能力3.9×104t,共建产能9.2×104t。

五、结论

大古67块和樊124块这两个特低渗透油藏应立足于注水开发,且注水开发是可行的。

两油藏注水开发方案采用注水井排平行于地层最大主应力方向的五点法井网,合理的注采井距为300~350m,最佳转注时机为地层压力下降7~10MPa,注采比保持1.0。

确定特低渗透油藏产能时必须综合考虑开发动态、油藏工程测算和数值模拟的结果,两油藏第一年可建产能9.2×104t。

主要参考文献

[1]裘怿楠,刘雨芬等.低渗透率砂岩油藏开发模式.北京:石油工业出版社,1998.

[2]刘漪厚.扶余裂缝型低渗透率砂岩油藏.北京:石油工业出版社,1997.

[3]朱义吾.马岭层状低渗透砂岩油藏.北京:石油工业出版社,1997.

[4]范乃福.胜利油区低渗透油田的开发与认识.1993.

Ⅳ 递减率及递减指数的确定方法

递减率和递减指数是利用常规递减方法计算技术可采储量的两个重要参数,确定其递减参数,建立相关经验公式,方能进行未来的产量预测。通过10年来开展的已开发储量的自评估,结合Degolger and MaCnaughton公司对递减率确定的具体做法,确立了递减率选取的原则。

1)产量处于递减阶段的油田,按目前的递减规律选取递减率。处于递减阶段的油田,遵循油田开发实际规律,合理应用评估方法,科学合理评估已开发油田的剩余可采储量。

2)进入过递减期后,由于综合调整产量有波动的油田,取调整前出现的稳定递减段预测递减率。

3)处于上产或未出现递减规律的油田,采用平均单井产量递减段预测递减率。

目前经常用来确定递减参数的方法有图解法、试凑法、曲线位移法、典型曲线拟合法和二元回归法等。所有这些方法的应用,都需建立在线性关系的基础上。例如,当由图解法判定递减类型之后,需要利用线性回归法确定直线的截距、斜率和相关系数,并由直线的截距和斜率确定q1、Di的数值。此时,即可建立实用的相关经验公式。

Ⅵ 埕岛油田一区馆陶组上段注水特征研究

赵红霞刘利任允鹏李建于东海

参加本项工作的还有:崔映坤,王爱景,季雅新,张素玲,姜书荣,王世燕,张海娜等.

摘要埕岛油田馆陶组上段(简称“馆上段”)油藏饱和压力高,地饱压差小,加之没有活跃的边底水,油田天然能量不足,必须注水保持地层能量。为了搞好埕岛油田的注水开发,本文通过数值模拟手段从注采比、注水方式、油层吸水能力、水淹特征、含水上升规律、产液量、产油量变化等方面开展了该油田一区馆上段注水特征研究,以指导埕岛油田馆上段的注水开发。

关键词数值模拟注采比注水方式注水特征埕岛油田

一、概况

埕岛油田位于渤海湾南部的极浅海海域。构造上位于济阳坳陷与渤中坳陷交汇处的埕北低凸起的东南端。埕岛油田以北纬38°15′和193.8东西向测线为界分为三个区,北部为三区、中部为一区、南部为二区。一区为本课题研究的主要目标区,以其主体部位作为数值模拟区。

数值模拟模型区内包括12个井组72口单井,自1995年起相继投入生产。投产初期平均单井日产油79t。截止1999年12月,模型区开井56口,日产液能力2432.4t,日产油能力1924t,日产油水平1862t,平均单井日产液能力41.5t,单井日产油能力32.8t,综合含水量20.9%,年采油72.1×104t,采油速度1.8%,累积产油346.85×104t,采出程度6.5%。

二、主要开采特征研究

开采特征研究是注水特征研究的基础,通过对埕岛一区馆上段天然能量、油井产能、产量递减、压降变化的分析,为数值模拟提供可靠依据。

1.天然能量分析

根据行业标准SY/T6167-1995《油藏天然能量评价方法》,对埕岛一区馆上段的天然能量进行了评价:①计算弹性产量比Q=2.6;②计算每采出1%地质储量地层总压降值为0.72MPa。

由能量分级标准可知,此点正好落在有一定天然能量框内,说明埕岛一区馆上段具有一定天然能量,但天然能量不足,需注水保持地层能量。

2.油井产能分析

统计埕岛一区馆上段平均初期单井日产油能力68.1t,方案设计日初产能力69t,符合程度好。但经分析认为,构成产能的几个因素存在不同程度的差异(表1)。

表1产能分析表

由此可以看出,埕岛一区实际动用厚度和采油指数比方案预计要好,但生产压差却仅为方案设计值的一半。所以,要进一步改善开发效果,可从工艺上着手。

3.产量递减

到目前为止,埕岛油田一区馆上段油藏已投产17个井组108口井,只有两口井试注14天,因此油藏仍处于天然能量开采阶段,由于油藏没有活跃的边底水能量补充,虽然油井初期产能较高,但随着地层能量的下降,油井产液量产油量下降较快。

为此,将模型区内投产的72口井进行递减分析,结果发现,模型区内的井全部投产以后平均单井日产油能力逐渐上升,大约一年后,油田开始出现递减且呈指数规律递减[1],递减期内平均单井日产油年递减率为29.9%。

4.油田压降情况

一区馆上段油藏饱和压力高,平均为10.12MPa,地饱压差小,平均为3.4MPa,地层压力降至饱和压力前可供利用的弹性能量弱,加之又无大面积连通的活跃的边底水供给,地层压力下降较快。通过对一区馆上段油藏测压资料统计,到1999年6月,平均地层总压降4.1MPa。

1.模型建立

(1)模型区选择

三、数值模拟

模型区选择在资料齐全、准确且地质认识清楚的埕岛油田一区馆上段主体部位。模型包括12个井组72口井。区域面积17.48km2,地质储量5296×104t。纵向上除(1+2)砂层组未考虑外,其他小层完全按地质上分层,共19个小层,即31~6、41~5、51~6、61和63作为模拟目的层,这些层包括了所有的目前射孔层位和将来配产配注方案的补孔层位。

(2)网格划分

平面网格划分 考虑到实际井网井距、计算机条件等因素,取数值模拟模型的平面网格步长为100m×100m,这样可以保证在300m左右的井距下,井间一般有2~3个网格。

垂向网格划分 垂向网格划分与地质上所划分小层一致,即垂向网格为19个。因此,模型区网格总数为33212。2.控制参量的确定

(1)射孔

目前井网条件下,按生产井实际射孔状况射孔,注水后按配产配注方案进行补孔。

(2)生产井最低井底流压与生产压差

根据动态分析及垂直管流计算[2]结果,油井自喷生产的能力是较弱的,应立足于机械采油。机械采油方式最低井底流压主要受工艺下泵深度限制。埕岛油田平均下入深度按1000m考虑。为满足泵效,考虑300m沉没度,油层中部深度取1350m,因此将最低井底流压设定为6MPa。

根据动态分析结果,初期平均生产压差在1.2MPa左右,由于最佳注水时机为0.85倍饱和压力,即8.5MPa附近,因此注水后最大生产压差设定为2.5MPa。

(3)生产井最大日产液量

动态分析结果显示,埕岛油田馆上段平均采油指数为3.5t/(d·MPa·m),补孔完善井网实施注水后,单井平均射开有效厚度21.6m,合理注水时机为0.85倍饱和压力,最低井底流压6MPa,因此最大生产压差为2.5MPa,综合含水60%时无因次采液指数为1.7左右,计算得到最大液量为321m3,取值300m3。虽然随着含水的上升,无因次采液指数上升,液量不断增大,但考虑到注水井注水能力、注采平衡、地面管线承受能力及方案的可比性,因此单井最大液量取值300m3

(4)注水井最高井底流压及最大日注水量

以油层破裂压力的80%为上限。应用威廉斯《压裂指南》的破裂压力公式,计算得到馆上段破裂压力为21.2MPa,则注水井最高流压取值16.96MPa。

生产井单井最大液量300m3,根据注采平衡的需要,注水井最大日注水量确定为600m3。参考同类油田资料初步计算,该注水量完全可以达到。

3.历史拟合

(1)拟合原则

储量拟合精度控制在2%以内;产量拟合精度控制在1%以内;含水要求精细拟合全区含水和典型井含水;压力要求拟合全区压降及典型井压降。

(2)拟合结果

储量拟合储量拟合误差最大的35层为1.79%,最小的41层为0.03%,总储量拟合误差为0.09%。

产量拟合根据动态分析,埕岛油田一区实际生产压差1~1.5MPa,模型区内初期产量79t,校正流体模型,使初产控制在80t左右。并拟合了有测压资料井的米采油指数。

含水拟合通过调整相渗曲线拟合含水,拟合期模型区平均误差2.7%,典型井含水误差在9%以内,含水上升趋势与实际保持一致。

压力拟合全区压力拟合到1999年6月,模型区模拟地层总压降为4.4MPa;实际地层总压降为4.1MPa,单井压降拟合误差在8%左右。

四、注水特征研究

1.注采比

在分段注水的前提下,设计0.8,0.9,1.0,1.1四种不同注采比进行数值模拟研究,在注水过程中,注采比始终保持不变。

地层压力降至0.85倍饱和压力注水,不同注采比数值模拟方案指标预测结果(表2)显示:注采比0.9~1.0开发效果最好,注采比0.8开发效果最差,注采比1.1开发效果居中。这主要是因为注采比1.1时,注水强度太大,水线推进不均匀,水驱效果差;注采比0.8时,地层压力下降较快,生产压差得不到保障,采油速度低,因而开发效果变差。注采比0.9~1.0很好地解决了上述矛盾,所以开发效果最好。

表2埕岛一区不同注采比开采期末指标对比表

综合分析认为,埕岛油田属高孔隙度、高渗透率储集层,始终保持较高注采比极易造成水窜流,影响总体开发效果,因此,注采比总体上应该控制在0.9~1.0。由于埕岛油田注水较晚,地层已出现脱气,所以初期注采比可考虑控制在1.0稍高水平,待地层压力恢复到饱和压力时,再将注采比保持在0.9~1.0,从而既能保持较大的生产压差和采油速度,又不至于因注采比过高,注水强度过大,导致综合含水量迅速上升,驱油效率下降,开发效果变差。

2.注水方式

注水方式从纵向上来说主要分为笼统注水和分段注水两种。笼统注水时注入水容易沿物性好的高渗透层推进,油井见水后容易形成大孔道,造成水线单向突进,不利于提高水驱波及系数,不利于发挥各油层的潜力,也不利于实现分层注采平衡,但笼统注水工艺简单,采油工程费用少,通常适用于非均质不严重的油藏;分段注水有利于改善水驱波及系数,并实现注采平衡,但工艺较为复杂,特别是采油井段长、层间矛盾突出的井,工艺就更为复杂,且采油工程投资高,风险大,通常适用于非均质较严重的油藏。

埕岛油田馆上段各个油层的原油性质、储集层物性无论是层间还是平面上,都存在不同程度的差异,因此埕岛油田要实现高水平开发,在现有的工艺水平条件下,对注水方式进行优化研究是必要的。

(1)数值模拟优化研究注水方式

根据埕岛一区馆上段配产配注研究,注水前首先对油水井按方案设计进行补孔作业。由于三级三段注水难度很大,工程尚难以实现,因此,数值模拟分段注水按两级两段考虑。

笼统注水与分段注水数值模拟结果(表3)显示,后者开发效果好于前者。这主要是因为分段注水使分段配注成为现实,物性好、吸水能力大的层可以通过调小水嘴或降低注水压差实现少注,物性差、吸水能力弱的层通过调大水嘴或提高注水压差也可以实现多注,不但实现了注采总体平衡,而且使分段注采平衡基本成为可能,既减少了单层注入水的突进,节约了注水量,又改善了水驱效果,因此分段注水开发效果好于笼统注水。

表3埕岛一区不同注水方式开采期末指标对比表

但是,分段注水比笼统注水优势不是十分明显,主要原因有以下几点。

第一,指标预测15年,而天然能量开采期为4.5年,且两种开发方式相同,注水时间仅为10.5年,注水时间短,因此,开发效果差异小。

第二,埕岛油田虽然存在较严重的层间、平面非均质,但总体上仍属于高孔高渗储集层。岩心分析渗透率统计显示,4砂层组空气渗透率最高,平均为3072×10-3μm2,5砂层组空气渗透率最低,但平均也达到1440×10-3μm2

第三,埕岛油田大部分为斜井,受目前工艺水平的限制,根据实际静态资料,注水井最多分两段,油层层间非均质虽然有所减小,但有的井级差仍然较大,还不足以使水线均匀推进。

第四,模型平面网格步长100m,网格内部物性参数相同,而实际地层存在差异。

如11E-4井笼统注水时渗透率级差为18.5,实施分段注水后,第一段渗透率级差为7.27,第二段渗透率级差为3.52,分段后,油层非均质性有所改善。而22B-4井,笼统注水时渗透率级差为90.2,实施分段注水后,第一段渗透率级差仍为90.2,第二段渗透率级差为9.16,分段后,油层非均质性改善不大。

(2)类比研究注水方式

孤岛油田中一区3~4层系投产初期为反九点井网,第一次调整后将油井合采改为分采,第二次调整后将水井合注改为分注,分段后,日产油水平提高了311t,含水降低0.7个百分点,分段注水效果好于合注。

综上所述研究成果,鉴于埕岛油田馆上段储集层非均质程度严重的特点,应该实施分段注水。

3.油层吸水能力

(1)试注资料分析

埕岛油田只在一区主体部位的22A-3和22A-6井进行了试注,并且时间很短,只有13天22小时,未取得相应的试注压力等资料,所以对油层吸水能力认识不很清楚。

22A-3井分两段注水

第一段44、51层,44层为补孔层段,51层经过一段时间的排液,周围25B-2井也在采同一层位,地层有一定压降,注水时井口压力4.9MPa,累积注水393m3。由于注水井未取得流压测试资料,为了掌握吸水能力的变化情况,用视吸水指数来表示吸水能力的大小。

视吸水指数=日注水量/井口压力,计算视吸水指数平均为5.76m3/(d·MPa)。

第二段52~56层,这几个层为该井的主力小层,到目前为止,该井已累积采液38447m3,地层压力下降较大,注水时仅靠静水柱压力水就可进入油层,井口压力为0,累积注水量859m3

22A-6井分两段注水

第一段44、51层均为补孔层段,未经排液,没有压降,因此注水时井口压力较高,平均为8.6MPa,累积注水548m3,计算视吸水指数平均为4.58m3/(d·MPa)。

第二段52~55层,这几个层为该井的主力小层,周围油井都已射孔,到目前为止,该井已累积采液54300m3,地下亏空严重,注水时仅靠静水柱压力水就可进入油层,井口压力为0,累积注水量1026m3

由于该两口井注水前未测静压,且由于水嘴很小,嘴损尚有待进一步深入研究,因此注入压差难以估算。

(2)油藏工程方法分析油层吸水能力

埕岛油田试注时间很短,并未取得很多资料,无法进行常规的吸水能力分析。应用平均油水相对渗透率曲线计算的水油流度比为2.04,理论推算油藏初期每米吸水指数与每米采油指数之比应等于水油流度比,初期埕岛一区每米采油指数为3.5t/(d·MPa·m),所以理论计算初期每米吸水指数为7.14m3/(d·MPa·m)。

(3)数值模拟研究油层吸水能力

油田开发实践表明,注水开发过程中,随着含水饱和度的增加,流动阻力减小,水相相对渗透率增大,油层吸水能力增强。注水开发后,随着含水的上升,每米吸水指数不断增加。该区数值模拟结果符合以上规律,中含水期吸水指数上升较慢,从注水到含水60%,吸水指数由32m3/(d·MPa)上升到55m3/(d·MPa);高含水期,吸水指数上升较快,到含水92.7%时,吸水指数上升到116m3/(d·MPa)。

4.水淹特征

(1)注水前部分油井过早见水

埕岛油田投产初期,由于各种原因,部分井射孔底界控制不够或平面上距油水边界较近,致使有的油井投产后很快见水,目前,模型区72口井已有29口井不同程度见水。投产即见水井9口,占见水井数的31.0%;投产后见水的井20口,占见水井数的69.0%。有边水的小层,油层边部含水饱和度略高,计算其边水推进速度为2.93m/d。

(2)注水后油井见水快,油层平面水淹面积逐步扩大

埕岛一区馆上段油层孔隙度大,渗透率高。数值模拟结果显示:油田注水后3个月内油井受效,注入水水线推进速度为5.33m/d;一年半左右,综合含水达到60%,主力层采出程度仅11.8%,而平面水淹面积达到65.1%;评价期末,综合含水92.7%,主力层采出程度24.0%,主力油层平面水淹面积84.9%(表4)。

(3)注采井网完善程度不同,储集层渗透率不同,相应的水淹程度不同

数值模拟结果表明:油层平面水淹程度与注采井网的完善程度和储集层渗透率有关,在注采井网完善程度好,储集层渗透率高的油层,平面波及系数大,如41层最高可达94.7%,而注采井网完善程度相对差的非主力层或渗透率相对低的油层,如33层平面波及系数在中含水期只达到28.6%,到开采期末,该层平面波及系数只有42.9%(表4)。

表4埕岛一区平面波及程度统计表

(4)纵向上主力层水淹程度高,非主力层水淹程度相对较低

纵向上主力层水淹程度高,采出程度大,非主力层水淹程度相对较低,采出程度较小。具体到单井上也是如此,CB22B-1井射开8个小层,其中41、52小层为主力小层,单层厚度大,渗透率高,所以水淹程度较高。而44、53、54虽然是主力小层,但该井在这三个层中或处于砂体边界,或注采系统不完善,所以水淹相对较差。因此油层纵向水淹状况与其地质条件及物性有很大关系。

5.含水上升规律

(1)油藏工程方法分析含水上升规律

埕岛油田属常规稠油油藏,油水粘度比较高,在含水与采出程度关系曲线上一般呈凸形曲线,主要储量在高含水期采出。这是由于非活塞式水驱油,岩石的润湿性和储集层的非均质性决定的。

(2)油田基本无无水采油期,注水前已结束低含水期

埕岛一区馆上段油层1996年大规模投入开发,投产初期油田含水>2%,基本无无水采油期和无水采收率。注水前模型区预测综合含水29.9%,已结束低含水期。与同类型其他油田相比,含水略高。孤岛油田注水时含水<2%;孤东油田注水时含水为20.7%。

(3)中低含水期含水量上升快

埕岛一区馆上段低含水期及中含水初期依靠天然能量开采,目前,综合含水量20.8%,采出程度5.33%,含水上升率3.9%;注水前综合含水量 29.9%,采出程度7.81%,含水量上升率3.83%。孤东油田三套不同层系(6区3-4、6区5-6、7区52+3)天然能量开采阶段含水量上升率分别为6.3%、4.9%、5.4%,孤岛油田为1.3%。埕岛一区含水量上升速度介于同期同类型油田之间。中含水期,孤东油田三套层系含水量上升率分别为16.7%、8.5%、11.2%,孤岛油田为5.2%,埕岛一区为12.2%,与同期孤东7区52+3层系含水上升速度相近(表5)。

(4)高含水期含水量上升速度减缓

埕岛一区含水量上升高峰主要在中含水期,含水量大于60%以后,含水量上升速度明显减缓,其上升率为4.23%,含水量上升规律与常规稠油油藏基本一致。

表5各油田注水时含水情况统计表

6.产液量、产油量变化

(1)枯竭式开采阶段产液量、产油量变化

枯竭式开采阶段,数值模拟模型区单井日油能力按年递减率29.9%的速度递减,单井日液能力按23.7%的速度递减,产量下降较快,递减幅度比较大。

(2)油藏工程方法研究产液量、产油量变化

一般水驱油藏产油量、产液量变化主要是根据油水相对渗透率曲线所得的无因次采油、采液曲线进行预测,埕岛油田的无因次采油、采液曲线表明,随着含水的上升,无因次采油指数逐渐下降,无因次采液指数逐步上升。到高含水期,无因次采液指数增长加快。当含水60%时,无因次采液指数是无水期采油指数的1.7倍,到含水90%时,达到4倍。

(3)数值模拟分析产液量、产油量变化

数值模拟研究结果表明:随着含水量上升,产油能力逐步降低,产液能力不断增加。中含水期,油田产油能力下降较快,平均年递减率为24.3%,油田产液能力上升较快,由6250m3上升到7400m3;高含水期,油田产油能力下降较慢,平均年递减率为14%,油田产液能力上升变缓且趋于稳定,保持在11000m3左右。分析主要原因认为:中含水期含水上升较快,在定压差生产的情况下,产液量上升不足以抵消含水的上升,导致日产油量下降也较快;到高含水后,此时由于含水量上升速度变缓,因此日产油量递减较小。而高含水期油田产液能力基本不变,主要是受采油工程的限制,达到了最大液量。

五、结论

鉴于埕岛一区注水时间较晚,初期注采比可控制在1.0稍高水平,待地层压力恢复到饱和压力附近,再将注采比保持在0.9~1.0。

油田含油井段长,一套层系开发,为了避免注入水单层突进,提高水驱波及体积,注水井应尽量分段注水。

埕岛一区属高孔、高渗储集层。随着注水开发,渗流阻力减小,油层吸水能力增强,到高含水阶段,吸水指数上升加快,达116m3/(d·MPa)。

油田平面水淹面积差别较大,注采井网不完善和平面非均质性严重的层水淹程度低。各小层一般为11~94.7%,平均为67.4%,主力层平面波及面积平均可达84.9%。

油田中含水期采出程度低,为9.8%,含水上升快,含水上升率为12.2%。进入高含水期后含水上升速度减缓,含水上升率为4.2%,大部分可采储量将在高含水期采出。其含水上升规律与稠油高渗透油田一般规律基本一致。

低含水和中含水期,油田产油量递减较快,平均单井日产油年递减率为24.3%;到高含水期,递减率减小,为14.8%。注水后,产液量逐步增加,大部分井可达到极限产液量300m3。因此,到开发后期,埕岛一区可实行强注强采。

主要参考文献

[1]陈钦雷.油田开发设计与分析基础.北京:石油工业出版社.1982.

[2]黄炳光,刘蜀知.实用油藏工程与动态分析方法.北京:石油工业出版社.1997.

Ⅶ 容积法计算石油储量

1. 容积法基本公式

容积法计算石油储量的实质就是确定石油在油层中所占据的那部分体积。石油储集在油层的孔隙空间内,孔隙内除石油以外,还含有一定数量的水,因此,只要获得油层的几何体积 (即油层的含油面积和有效厚度之乘积)、有效孔隙度、含油饱和度等地质参数,便可计算出地下石油的地质储量。

油层埋藏在地下深处,处于高温、高压条件下的石油往往溶解了大量的天然气,当原油被采到地面上以后,由于压力降低,石油中溶解的天然气便会逸出,从而使石油的体积大大减小。

如果要将地下原油体积换算成地面原油体积,必须用地下原油体积除以石油体积系数(地下原油体积与地面标准条件下原油体积之比)。石油储量一般以质量来表示,故应将地面原油体积乘以石油的密度,由此便得到容积法计算石油储量的基本公式:

N=100A·h·φ(1-Swi))ρo/Boi

式中:N——石油地质储量,104t;A——含油面积,km2;h——平均有效厚度,m;φ——平均有效孔隙度,小数;Swi——平均油层原始含水饱和度,小数;ρo——平均地面原油密度,t/m3;Boi——平均原始原油体积系数。

地层原油中的原始溶解气地质储量按下式计算:

GS=10-4N·Rsi

式中:Gs——溶解气的地质储量,108 m3;Rsi——原始溶解气油比,m3/t。

容积法是计算油田地质储量的主要方法。该方法适用于不同勘探开发阶段,不同圈闭类型、储层类型及驱动方式的油藏。计算结果的可靠程度取决于资料的数量和准确性。对于大、中型构造油藏的精度较高,而对于复杂类型油藏则精度较低。

2. 储量参数的确定

(1) 含油面积

含油面积是指具有工业性油流地区的面积,是油藏产油段在平面上的投影范围。容积法计算石油储量公式中,含油面积的精度对石油储量的可靠性有决定性的影响。所以,准确地圈定含油面积是储量计算的关键。

含油面积的大小,取决于产油层的圈闭类型、储层物性变化及油水分布规律。对干均质油层、岩性物性稳定、构造简单的油藏来说,可根据油水边界确定含油面积。对于地质条件复杂的油藏,含油边界往往由多种边界构成,如油水边界、油气边界、岩性边界及断层边界等。对于这一类油藏在查明圈闭形态、断层位置、岩性边界以及确定油藏油水分布规律之后,才能正确圈定含油面积。

岩性边界是指有效储层与非有效储层的分界线,也称有效厚度零线。在确定岩性边界时,要先确定储层的砂岩尖灭线,然后根据规则确定岩性边界线。

从概率学角度讲,在一口无有效厚度 (物性差或岩性尖灭) 的井与相邻有有效厚度的井之间,有效厚度零线的位置可能出现在两井之间的任意点上,而且出现的机会均等。相对而言,零线放在两井间的中点位置,是概率误差最小的简化办法。同理,在一口有效厚度的井与相邻相变为泥岩的井之间,岩性尖灭线的位置也应在井距1/2处。考虑到砂岩物性标准比储层有效厚度物性标准低,砂体末端虽不以楔形递减规律尖灭,但仍存在变差的趋势,所以可将零线定在尖灭线至有有效厚度的井之间1/3距离处。用这种方法因定的岩性边界,计算平均有效厚度时,宜采用井点面积权衡法或算术平均法,而不宜用等厚线面积权衡法。

断层边界是断层控油范围,是断层面与油层顶、底面的交线。当油层位于断层下盘时,断层边界为油层底面与断层面的交线;当油层位于断层上盘时,断层边界为油层顶面与断层面的交线。

油水边界为油层顶 (底) 面与油水接触面的交线。油水接触面指油藏在垂直方向油与水的分界面。对于边水油藏,油水接触面与油层顶面的交线为外含油边界,它是含油面积的外界;油水接触面与油层底面的交线为内含油边界,它控制了含油部分的纯含油区;内、外含油边界之间的含油部分也称为过渡带,油水过渡带的宽窄主要取决于地层倾角,地层倾角大的油藏,过渡带窄,地层倾角小的油藏,过渡带宽。对于底水油藏,由于底水存在,只有外含油边界。如果油层的厚度变化很小,则内外油水边界和构造线平行。如果油层厚度在平面上有明显变化,这时内外含油边界不平行,在相变情况下,它们在油层尖灭位置上相合并 (图7-1)。

图7-1 油水边界特征图

油水接触面确定方法有以下3种:

1) 利用岩心、测井以及试油等资料来确定油水接触面。在实际工作中,对一个油藏来说,首先要以试油资料为依据,结合岩心资料的分析研究,制定判断油水层的测井标准,然后划分各井的油层、水层及油水同层。在此基础上按油、水系统,根据海拔高度作油底、水顶分布图。如图7-2所示,按剖面将井依次排列起来,在图上点出各井油底、水顶位置,并分析不同资料的可靠程度。在研究油藏油水分布规律的基础上,在油底与水顶之间划分油水接触面。

图7-2 确定油水界面图 (据韩定荣,1983)

2) 应用毛管压力曲线确定油水接触面。应用油层岩心的毛管压力曲线,再结合油水相对渗透率曲线,人们能够较准确地划分出油水接触面。如图7-3所示,实验室测定的毛管压力曲线 (汞-空气系统) 可换算为油藏条件下的毛管压力曲线 (油-水系统),而且纵坐标上的毛管压力可转换成自由水面以上的高度表示。如果一个油田,通过岩心分析、测井解释或其他间接方法取得含油饱和度数值时,就可直接做出含油饱和度随深度的变化图,即油藏毛管压力曲线。若已知油层某部位的含油饱和度,就可在曲线上查得某部位距油水接触面的相对高度,进而可求出油水接触面深度。

图7-3 利用毛细管压力曲线与相对渗透率曲线划分油水接触面示意图

3) 利用压力资料确定油水接触面。在一个圈闭上,只要有一口井获得工业性油流,而另一口井打在油层的边水部分,且这两口井通过测试获得了可靠的压力和流体密度的资料,就可以利用这两口井的压力资料、油和水密度资料计算油水接触面。图7-4示,1号井钻在油藏的顶部,测得的油层地层压力为po,2号井钻在油藏的边水部分,测得的水层地层压力为pw。在油藏内,2号井的地层压力pw为:

油气田开发地质学

式中:Ho——1号井油层中深海拔高度,m;Hw——2号井水层中深海拔高度,m;How——油水接触面海拔高度,m;ΔH——1号井与2号井油、水层中深的海拔高度差,m;ρo——油的密度,g/cm3;ρw——水的密度,g/cm3

图7-4 利用测压资料确定油水接触面示意图

当构造圈闭上只有一口油井,而边部无水井时,可以利用区域的压力资料和水的密度资料代替钻遇水层的井的测压资料来计算油水接触面深度。

确定了岩性边界、断层边界、油水边界 (油气边界),也就圈定的含油范围,这样可以计算含油面积。

(2) 油层有效厚度

油层有效厚度是指油层中具有产油能力部分的厚度,即工业油井内具有可动油的储层厚度。划分有效厚度的井不能理解为任意打开一个单层产量都能达到工业油流标准,而是要求该层产量在全井达到工业油井标准中有可动油流出即可。因此,作为油层有效厚度必须具备两个条件:一是油层内具有可动油;二是在现有工艺技术条件下可供开采。所以,在工业油流井中无贡献的储层厚度不是有效厚度,不是工业油流井不能圈在含油面积内,不划分有效厚度。

研究有效厚度的基础资料有岩心录井、地层测试和试油资料、地球物理测井资料。我国总结了一套地质和地球物理的综合研究方法:以单层试油资料为依据,对岩心资料进行充分试验和研究,制定出有效厚度的岩性、物性、含油性下限标准,并以测井解释为手段,应用测井定性、定量解释方法,制定出油气层划分标准,包括油、水层标准,油、干层标准及夹层扣除标准,用测井曲线及其解释参数确定油、气层有效厚度。

1) 有效厚度物性标准

当油层的有效孔隙度、渗透率及含油饱和度达到一定界限时,油层便具有工业产油能力,这样的界限被称之为有效厚度的物性标准。由于一般岩心资料难以求准油层原始含油饱和度,通常用孔隙度和渗透率参数反映物性下限。

确定有效厚度物性下限的方法有测试法、经验统计法、含油产状法及钻井液浸入法等。

◎测试法:测试法是根据试油成果来确定有效厚度物性下限的方法。对于原油性质变化不大,单层试油资料较多的大油田,可直接做每米采油指数和空气渗透率的关系曲线。每米采油指数大于零时,所对应的空气渗透率值,即为油层有效厚度的渗透率下限 (图7-5)。

图7-5 单位厚度采油指数与渗透率关系曲线

利用单层试油资料与岩心测定的孔隙度、渗透率资料交绘图来确定有效厚度的物性下限。如图7-6所示,图中指出产油层渗透率下限为18×10-3μm2,孔隙度下限为17%。

图7-6 试油与物性关系图

◎经验统计法:根据美国通常使用经验统计法,对于中低渗透性油田,将全油田的平均渗透率乘以5%,就可作为该油田的渗透率下限;对于高渗透性油田,或者远离油水接触面的含油层段渗透率平均值乘以比5%更小的数字作为渗透率下限。他们认为,渗透率下限值以下的砂层的产油能力很小,可以忽略。

◎含油产状法:在取心井中,选择一定数量的岩心收获率高,岩性、含油性较均匀,孔隙度、渗透率具有代表性的油层进行单层试油,确定产工业油流的油层的含油产状下限,进而确定储层物性下限。如图7-7所示,本例试油证实油浸和油斑级的油层不产工业油流,因此饱含油和富含油级的油层是有效油层,它们的物性下限为有效厚度的物性下限。

图7-7 油层物性界限岩样分布图

◎钻井液侵入法:在储层渗透率与原始含油饱和度有一致关系的油田,利用水基钻井液取心测定的含水饱和度可以确定有效厚度物性下限。水基钻井液取心中,钻井液对储层产生不同程度的侵入现象。渗透率较高的储层,钻井液驱替出原油,使取出岩样测定的含水饱和度增高;渗透率较低的储层,钻井液驱替出原油较少;当渗透率降低到一定程度的储层,钻井液不能侵入,取出岩样测定的含水饱和度仍然是原始含水饱和度。因此,含水饱和度与空气渗透率关系曲线上出现两条直线,其交点的渗透率就是钻井液侵入与不侵入的界限 (图7-8)。钻井液侵入的储层,反映原油可以从其中流出,因此为有效厚度。钻井液未侵入的储层,反映原油不能从其中流出,因此为非有效厚度。交点处的渗透率就是有效厚度下限。用相同方法也可以定出孔隙度下限。

图7-8 钻井液侵入法确定渗透率下限图

2) 有效厚度的测井标准

有效厚度物性标准只能划分取心井段的有效厚度。对于一个油田,取心井是有限的,大量探井和开发井只有测井资料,要划分非取心井的有效厚度,必须研究反映储层岩性、物性及含油性的有效厚度测井标准。

油层的地球物理性质是油层的岩性、物性与含油性的综合反映。因此,它也能间接地反映油层的 “储油能力” 和 “产油能力”。显然,当油层的地球物理参数达到一定界限时,油层便具有工业产油能力,这界限就是有效厚度的测井标准。

在测井曲线上划分有效厚度的步骤是:首先根据油水层标准判断哪些是油 (气) 层,哪些是水层;然后在油水界面以上,根据油层、干层标准区分哪些是工业油流中有贡献的有效层,哪些是无贡献的非有效层 (即干层);最后在有效层内扣除物性标准以下的夹层。所以有效厚度测井标准包括油、水层解释标准,油、干层标准及夹层标准。对油、气、水分布复杂,剖面上油气水交替出现的断块油藏、岩性油藏,确定有效厚度的关键是制定可靠的油水层解释标准 (图7-9);对于具有统一油水系统、砂泥岩交互出现的油藏,关键是制定高精度的油、干层标准 (图7-9)。

图7-9 某油田油、水、干层测井解释标准

3) 油层有效厚度的划分

油层有效厚度划分时,先根据物性与测井标准确定出有效层,然后划分出产油层的顶、底界限,量取总厚度,并从总厚度中扣除夹层的厚度,从而得到油层有效厚度。

利用测井资料划分油层顶、底界限,量取油层总厚度时,应当综合考虑能清晰地反映油层界面的多种测井曲线,如果各种曲线解释结果不一致时,则以反映油层特征最佳的测井曲线为准。例如,我国东北部某大油田,采用微电极、自然电位、视电阻率3条曲线来量取产层总厚度 (图7-10)。

对于具有高、低阻夹层和薄互层的油层来讲,除量取油层总厚度外,还必须扣除夹层的厚度。由于低阻夹层多为泥质层,故量取低阻夹层厚度应以自然电位曲线作为判别标志,以微电极和视电阻率曲线作验证,最后,以微电极曲线所量取的厚度为准。量取高阻夹层的厚度应以微电极曲线显示的尖刀状高峰异常为判别标志 (图7-11)。用油层总厚度减去夹层厚度便得油层有效厚度。

(3) 油层有效孔隙度

油层有效孔隙度的确定以实验室直接测定的岩心分析数据为基础。对于未取岩心的井采用测井资料求取有效孔隙度,并与岩心分析数据对比,以提高其精度。计算的地质储量是指油藏内的原始储油量,应使用地层条件下孔隙度参数。采用地面岩心分析资料时,应将地面孔隙度校正为地层条件下孔隙度。有效孔隙度的获得有两种途径:一是岩心分析有效孔隙度;二是测井解释有效孔隙度。

图7-10 油层有效厚度量取方法示意图

图7-11 扣除夹层示意图

通过钻井取心,将砂岩储层取到地面后,由于压力释放、弹性膨胀,孔隙度有所恢复,所以一般在地面常压下测量的岩心孔隙度大于地层条件下的孔隙度。计算储量时应将地面孔隙度校正为地层条件的孔隙度。

实验室提供了不同有效上覆压力下的三轴孔隙度,利用这些数据就能够对地面孔隙度进行压缩校正。根据美国岩心公司研究,三轴孔隙度转换为地层孔隙度的公式为:

φfg-(φg3

式中:φf——校正后的地层孔隙度,小数;φg——地面岩心分析孔隙度,小数;φ3——静水压力作用下的三轴孔隙度,小数;ε——转换因子。

D. Teeuw通过对人造岩心模型的理论计算和实际岩心测试,得出转换因子为:

油气田开发地质学

式中:λ——岩石泊松比,即岩石横向应变和轴向应变的绝对值的比值,是无因次量。

确定岩样所在油藏有效上覆压力下的三轴孔隙度和地面孔隙度后,即可算出每块岩样的地层孔隙度。为寻求本地区地面孔隙度压缩校正规律,可制定本地区关系图版或建立相关经验公式。油区可利用这种图版或相关经验公式,将大量常规岩心分析的地面孔隙度校正为地层孔隙度。

(4) 油层原始含油饱和度

原始含油饱和度是指油层在未开采时的含油饱和度Soi,一般先确定油层束缚水饱和度Swi,然后通过1-Swi求得原始含油饱和度。

确定含油饱和度的方法有岩心直接测定、测井资料解释、毛细管压力计算等方法。

1) 岩心直接测定

使用油基钻井液取心,测定束缚水饱和度,然后计算出原始含油饱和度。

油基钻井液取心井成本高,钻井工艺复杂,工人劳动条件差。我国一般用密闭取心代替油基钻井液取心。密闭取心采用的是水基钻井液,利用双筒取心加密闭液的办法,以避免岩心在取心过程中受到水基钻井液的冲刷。

近几年来,美国高压密闭冷冻取心工艺获得成功。这种取心方法是在取心筒内割心至岩心起出井口前,岩心筒始终保持高压密封的条件。岩心到井口后立即放在干冰中冷冻,使油、气、水量保持原始状态。此方法价格高昂,取心收获率仅在60%左右。

前苏联采用井底蜡封岩心的取心方法取得较好的效果。具体做法是在地面用石蜡充满取心筒,在取心过程中,岩心进入熔化的石蜡中,阻止钻井液与岩心接触。多数情况下,地面可取得蜡封好的岩心。

2) 测井解释原始含油饱和度

由于油基钻井液取心和密闭取心求原始含油饱和度成本高,一般一个油区只有代表性几口井,即使有的油田有1~2口油基钻井液取心井,它的饱和度数据也不能代表整个油田,因此经常用测井资料解释原始含油饱和度。往往测井解释原始含油饱和度偏低,有时偏低达5%~10%。为了弥补测井解释这一弱点,在有油基钻井液取心井或密闭取心井的地区,都要寻求测井参数和岩心直接测定的原始含油饱和度的关系,以提高测井解释精度。

3) 利用实验室毛细管压力资料计算原始含油饱和度

实验室的毛细管压力曲线是用井壁取心、钻井取心的岩样测定的,而每一块岩样只能代表油藏某一点的特征,只有将油藏上许多毛细管压力曲线平均为一条毛细管压力曲线才能代表油藏的特征,才有利于确定油藏的原始含油饱和度。J函数处理是获得平均毛细管压力资料的经典方法。用平均毛细管压力曲线确定油藏原始含油饱和度步骤如下:

(1)将室内平均毛细管压力曲线换算为油藏毛细管压力曲线

实验室毛细管压力表达式:

油气田开发地质学

油藏毛细管压力表达式:

油气田开发地质学

式中:σL,θL及 (pcL——分别为实验室内的界面张力、润湿角及毛细管压力;σR,θR及 (pcR——分别为油藏条件下的界面张力、润湿角及毛细管压力。

上两式相除,得:

油气田开发地质学

(2)将油藏条件下的毛细管压力换算为油柱高度

油气田开发地质学

式中:H——油藏自由水面以上高度,m;(pcR——油藏毛细管压力,MPa;ρw和ρo——分别为油藏条件下油与水的密度,g/cm3

图7-12A为室内毛细管压力曲线转换为自由水面以上高度表示的含水饱和度关系图。

(3)确定油层原始含油饱和度

图7-12A可转换为油水饱和度沿油藏埋藏深度分布图 (图7-12B)。根据该图可查出油层任意深度所对应的原始含水饱和度,则可求出原始含油饱和度。

图7-12 毛管压力曲线纵坐标的变换 (据范尚炯,1990)

(5) 地层原油体积系数

地层原油体积系数是将地下原油体积换算到地面标准条件下的脱气原油体积的重要参数。凡产油的预探井和部分评价井,应在试油阶段经井下取样或地面配样获得准确的地层流体高压物性分析数据。

(6) 地面原油密度

地面原油密度应根据一定数量有代表性的地面样品分析结果确定。

Ⅷ 石油产业的基本特征是什么

石油工业从诞生到现在的近一个半世纪里,经历了翻天覆地的变化,除了表现出一般工业发展的基本规律和特征之外,更由于石油资源本身的特殊性和石油工业重要的经济、政治、军事意义,呈现出如下特征。
(1)高投入、高风险、高回报。
由于石油资源在地下蕴藏情况的复杂性和人类科学技术水平的限制,石油勘探迄今仍是一项需要极大资金投入而未来收益具有高度不确定性的风险投资行业。但也正是因此,石油工业成为一旦成功就能获得极大投资回报的高利润行业。正所谓高投入、高风险、高回报。
第二次世界大战结束时,一般勘探井(野猫井)的成功率仅为1%,但一旦获得成功,所获利润同投资的比率可以高达千倍之多。直到今年,即使技术最为先进的西方大石油公司每年所钻勘探井的成功率平均也仍不到50%。除了上述商业风险外,石油公司还会面临潜在的政治风险,例如资源国政府做出对石油公司投资和经营环境不利或预料之外的政策调整(产权、财政政策等的改变)。即使如此,石油公司仍然愿意“铤而走险”,决不会放过任何一个可能的机会。因为,石油工业的利润是如此巨大,成为各家石油公司无法拒绝的诱惑。甚至在东道国要求获得风险勘探后利润的85%~90%的情况下,国际各大石油公司依然会坚持在该国从事油气业务。这也表明了石油勘探和开发中的利润是多么可观。
(2)产业垄断性。
同其他行业相比,石油行业形成集中垄断的时间最早、垄断程度较高、企业规模较大。西方最大的50家垄断工业公司中,石油及与石油相关的企业占据了30多家。而在2006年世界500强的前10名中,石油公司就占据了5席之多。并且,石油行业的资本密集度和石油开采的高额成本也成为许多公司想进入该行业的天然壁垒。从某种意义上讲,石油产业的垄断性特征与其投资巨大、风险较高、利润极丰的基本特征密切相关。除非资金雄厚、技术人才密集的大型或特大型企业或是借助于国家资本的企业集团,一般的企业很难经营得起。
一个多世纪以来,石油公司通过垄断形成的垄断价格赚取了巨额利润。事实上,从19世纪70年代直到今天,国际石油价格在某种意义上一直都是“垄断价格”。
19世纪70年代中叶,洛克菲勒集团率先完成了对美国和世界石油工业的独家垄断,并在1882年组成了资本主义世界里的第一个托拉斯。此后,虽然这一独家垄断局面由于其他垄断集团的出现而进入了“寡头垄断”、“垄断竞争”或“不完全竞争”阶段,参与成员也不断变化,但其基本的性质却始终未变。尤其是在1928—1973年这一段时期,石油七姊妹对国际石油产业进行了长达45年之久的垄断统治,左右国际石油价格,对行业的发展产生了十分重大的影响。70年代中期,以OPEC为主的第三世界石油资源国收回石油主权后,曾一度出现过OPEC主导世界石油价格的局面。直到1986年之后,才逐渐形成了美、英等发达国家的主要跨国石油公司与OPEC中的沙特阿拉伯等六个主要国家共同影响国际石油行业的寡头垄断局面。
然而,这种垄断又恰恰是在激烈的竞争过程中形成的。垄断非但没有消灭竞争和斗争,反而使竞争和斗争更加激烈。这种竞争和斗争主要包括垄断集团同广大的中小生产者的竞争和斗争,垄断集团同力图挤入垄断者行列的新兴起的大石油公司间的竞争和斗争以及各垄断集团之间的竞争和斗争。
(3)资源不可再生性和分布不均衡性。
石油产业属于资源采掘型产业,生存发展受到石油资源的约束。主要反映在两个方面:一是因为石油资源的有限性及不可再生性;二是一块油藏的产量具有随着开采而逐步递减的规律。这意味着其可持续发展必须依靠新增储量的接替,其成长性也体现在这一点。因此,石油资源占有量对于各家石油公司以至各个国家的重大意义不言自明。
然而,世界油气资源分布极不均衡。以OPEC为代表的少数产油国占据了世界绝大部分的已探明油气资源。而世界石油的主要消费地则是石油储量相对较少的发达国家和发展中国家。这种石油产、销之间的地域性差别,构成了极为复杂的石油地缘结构,使得石油产业同国际政治产生了千丝万缕的联系,并由此引发了一系列的问题与冲突。
(4)战略属性。
进入20世纪以来,石油逐渐成为世界军用、民用各类交通工具不可替代的能源,尤其是在第二次世界大战以后,进一步成了许多国家的主要能源和新兴的石油化学工业的重要原材料,是各国经济、政治、军事及日常生活稳定的基础和保障。但由于石油资源的有限性和不可再生性,以及资源分布的不均衡,使得各国对石油资源的争夺愈发激烈,其战略属性由此凸显。
从1859年世界现代石油工业建立到19世纪末,石油不过是一种新兴的作照明用的矿物燃料。19世纪80年代前后,人类发明了以石油为能源的内燃机。随后在19世纪80年代到20世纪初,人类相继发明了以燃油内燃机为发动机的汽车、飞机等新型交通及军事运载工具和武器,并把石油用作战车、军舰的燃料。石油成了平时关系到一国的综合国力,战时关系到一国胜败存亡的重要战略物资,成了各大国必争的资源。第二次世界大战后,石油的重要军事地位进一步加强,同时由于其用途扩大到发电、采暖等许多方面,在各国一次能源消费中所占比重逐步上升,成为世界主要能源。随着科学技术的进步,石油和天然气又成为世界新兴的、关系到各国社会生活各个方面及产值以千亿美元计的石油化工工业的主要原料,更成了各国须臾不可短缺的重要物资。因此,石油的商品属性日渐淡化,而其关系到一个国家整体经济与国防安全的战略属性却日益增强。
(5)政治属性。
由于石油及其产品的广泛用途,关系到一个国家的国计民生,因而决定了其具有很强的政治属性。第二次世界大战之后的半个多世纪中,特别是进入21世纪以来,保证本国石油供应、取得石油资源和建立本国的石油工业已成为各国政府密切关注的重要问题。
除美国外,世界各主要发达国家的石油工业和主要的石油公司基本上都是在各国政府的大力扶植甚至直接参与下建立起来的,并且从一开始就直接或间接地负有保证本国石油供应的明确责任,例如,英国石油公司、法国的道达尔公司和埃尔夫公司以及意大利的埃尼集团等,至于曾经发挥过重大作用的日本石油公团则更是日本政府设立的一个为保证日本石油供应的官方机构。即使一贯被认为是私人公司的美国石油公司,其所开展的每一项重大海外活动也无不是秉承美国政府的意志并且在美国政府的政治、经济、外交甚至军事的大力支持下才得以发展的。此外,以OPEC为主的各发展中国家的石油公司,绝大多数也都是这些国家为维护本国利益而建立起来的国有公司。
实际上,从21世纪开始以来,世界石油工业的活动和发展已同世界各国对内对外的各种经济、政治、社会、外交、军事政策和活动紧密地联系在一起,成为各国实现本国国家目标的一种重要工具。世界上没有不支持本国石油工业发展的国家,也不存在不靠国家的支持而建立和发展起来的石油工业,由此就必不可免地造成了各国政府的石油政策及其每一重大变动,必然迅速地对这些国家的石油工业和石油市场,乃至世界石油工业和国际石油市场产生重大的影响。
(6)科技是决定石油工业发展和命运的根本力量。
科学技术的进步,从根本上改变着石油工业的面貌。19世纪中叶,由于当时科学技术的局限性,石油仅能作为一种照明用的普通矿物资源。随着内燃机等重大科技发明,石油的重要价值才被逐步发现,成为整个20世纪至21世纪人类社会不可替代的重要能源。因此,可以说相关产业的科技水平成了石油工业发展的前提条件。

1860—2005年世界原油产量变化趋势而石油工业自身的科技水平也同样主导着石油工业的命运。第一次石油科学技术革命发生在20世纪20—30年代,石油工业由初始阶段进入了大发展时期。先进技术的使用,使石油勘探与开采从仅仅利用油气苗、山沟河谷的露头确定井位,发展到在背斜理论指导下找油开井的阶段,原油产量大幅提升,也极大地带动了石油及相关行业的发展。
时间全球年产油量新理论新技术第一次技术革命1920—1930年由9437万吨上升至19316万吨石油地质由找油苗露头转入地下,开始采用地震反射波法,发现一批背斜构造油藏;采油以MER(最大有效产量)概念为主;钻井以内燃机作为动力,有了牙轮钻头第二次技术革命1960—1970年由10亿吨上升至20亿吨板块构造理论、有机地球化学、现代沉积学的进展发现一批岩性地层油藏;开始应用计算机;二次采油以强化注水为主,有了油藏工程概念;热采工业化;钻井采用喷射钻井,开始有定向井,海上油田出现新技术革命当代维持30亿吨左右计算机、信息技术影响深远,油气系统、盆地模拟、油藏描述、数值模拟大量采用;水平井、分支井技术得到发展;地震分辨率不断提高,非地震勘探方法重新兴起;化学驱油在中国取得突破;海洋石油大发展;全球信息高速公路、互联网络的应用,数字化虚拟现实技术的引入将使科技面貌大改观

三次技术革命及其给世界石油产业带来的变化20世纪60—70年代,在世界主要发达国家,石油逐渐取代了煤,成为各国最为重要的能源。石油工业的科技创新也层出不穷,形成石油“新技术群”,极大地促进了行业的发展,使石油工业经历了第二次科学技术革命。
自80年代中期开始,以信息技术应用为主要特征,并与生物工程、新材料技术相结合的第三次技术革命一直延续至今,并仍在向纵深发展,其影响将更加深远。
随着石油生产向深度和广度发展以及科学技术自身的进步,仅靠单一学科已很难解决客观实际问题,这就要求加强多学科的综合和各有关部门之间的配合,多学科工作团组概念随之出现。多学科工作团组一般由地质、地球物理、油藏工程、钻井工程、测井、采油和地面工程人员组成,并组织研究、协调各部门之间的配合,实施各种调整方案。在石油开采日益复杂的今天,这种方式具有极大的优势,尤其是在老油田开发和提高采收率的应用方面越来越受重视。很多油田都因此取得了明显的产量和经济效益提升。
综合集成在现代石油科技中意味着从企业组织各个部分,综合原始数据和信息,将不同人员的知识、技能和思想有机地集成起来,在较少的时间内做出更好的决策。能做到这一点的企业凭着发达的信息整合处理能力,大大提升了运营效率,控制运营成本,并成为具有极强竞争力的石油企业。
此外,盆地模拟、油藏表征、油藏经营、高分辨率地震勘探、三维及四维地震勘探、层析成像、核磁测井、油气混相输送、油气生产自动化与优化运行、远程生产、深海作业等新概念、新理论、新工艺、新方法层出不穷,使石油技术革新进步达到了前所未有的速度,深刻影响了石油工业的生产、经营以至工作方式和思想观念,极大地改变着今天石油工业的面貌。

Ⅸ 剩余油研究方法

剩余油通常用剩余可动油饱和度或剩余可采储量来表征。为了求取剩余可动油饱和度或剩余可采储量,国外现有确定剩余油饱和度的测量技术可分为3类:单井剩余油饱和度测量、井间测量、物质平衡法。单井剩余油饱和度测量包括岩心分析 (常规取心、海绵取心)、示踪剂测试、测井 (裸眼井测井和套管并测井)、单井不稳定测试;井间测量包括电阻率法、井间示踪剂测试;物质平衡法是利用注、采的动态资料来求取油藏的剩余油饱和度。

美国和前苏联等国非常重视油田开发后期的剩余油分布研究。美国于1975年组织有关专家编写了 《残余油饱和度确定方法》一书,系统介绍了各种测量方法,并对其进行了分析比较。前苏联研究油田水淹后期剩余油分布情况主要采用了以下方法:(1)物质平衡法;(2) 以岩心分析及注水模拟为基础的方法;(3)地球物理方法;(4)水动力学方法。

我国许多老油田在剩余油分布研究方面做了许多工作,主要是应用水淹层测井解释、油藏数值模拟、油藏工程分析及地质综合分析等4项技术,搞清剩余油的层间、平面、层内分布及其控制因素,寻找油藏开发的潜力所在,提出油藏调整挖潜措施。

1. 常规测井资料求取水淹层剩余油饱和度

开发后期含水饱和度Sw是评价水淹层的基本参数,So=1-Sw则为相应的剩余油饱和度。它们都是研究储层水淹后含油状况最直接的参数。

在测井解释中,阿尔奇公式仍是电阻率法求饱和度的基本公式:

油气田开发地质学

式中:Sw——含水饱和度,%;φ——岩石孔隙度,小数;So——含油饱和度,小数;Rt——地层真电阻率,Ω·m;a,b——与岩性有关的系数;Rz——油层水淹后变成混合液电阻率,Ω·m;m——孔隙指数,与岩石孔隙结构有关;n——饱和指数,与孔隙中油、气、水分布状况有关。

为了省去确定方程中a与m,将上式变为:

Sw=[F·b·Rz/Rt]1/n

式中:F——地层因素,即为100%饱和水的岩石电阻率与地层水电阻率的比值。

根据胜坨油田二区40块岩样岩电实验资料研究,发现F值不仅与φ有关,而且与Rz有关。通过多元回归分析,建立的关系式为:

F=eK

式中:K1,K2,…,K5——经验系数,由回归统计得。

为了确定含水饱和度中的b和n值,根据胜坨油田3口井40块岩样,模拟5种不同矿化度 (5256~92019mg/L) 的地层水,实验测定了258组数据,研究发现b和n为非定值,它们不仅与岩性和油、气、水在孔隙中的分布状况有关,而且与岩样中所饱和的地层混合液电阻率Rz有关,即:

b=A1eA

油气田开发地质学

式中:A1,A2,A3,A4——经验回归系数。

尽管阿尔奇公式是常规测井资料求取剩余油饱和度的理论基础。但是,由于注入水与地层水混合,求取地层水电阻率变成了求取注入水与地层水的混合液电阻率。目前,求取混合液电阻率仍是剩余油饱和度计算的难点。有如下几种方法供参考。

(1) 过滤电位校正自然电位研究与地层混合液电阻率计算

在目前常规测井资料中,自然电位是唯一能够较好反映地层混合液电阻率变化的测井信息。测井中测得的自然电位主要包括薄膜电位 (扩散吸附电位) 和过滤电位,当泥浆柱压力与地层压力之间的压差很小时,过滤电位可以忽略不计。根据国内外资料分析,当压差大于3.4MPa时,过滤电位对自然电位的影响已比较明显。此时,应着手研究过滤电位对自然电位进行校正和分析。从水淹层研究发现,水淹过程中地层压力下降较多,储层内压力变化较大。因此,必须研究过滤电位校正自然电位,以便能准确地计算地层混合液电阻率。

过滤电位大小可以由亥姆霍兹 (Helmholtz) 方程表示:

油气田开发地质学

式中:Uφ——过滤电位,mV;Rmf——泥浆滤液电阻率,Ω·m;ε——泥浆滤液介电常数;ξ——双电层中扩散层的电位降,mV;μ——泥浆滤液的粘度,mPa·s;△P——泥浆柱与地层之间的压力差,MPa;Aφ——与岩石物理化学性质有关的过滤电动势系数 (Aφ=εξ/4π)。

由上式可以看出,过滤电位大小与压差ΔP有关,即泥浆压力减去地层压力。而泥浆滤液电阻率Rmf与泥浆性质、液体粘度有关。

考虑到ξ的确定困难,采用油田实际应用的实验方程:

油气田开发地质学

当地层有过滤电位时,自然电位幅度为:

油气田开发地质学

实际的自然电位 (扩散吸附电位) 为:

油气田开发地质学

自然电位取负值lg(Rmf/Rz)=SSP/K,则:

Rz=10(lgR (SSP=SP-Uφ,K=64.7683+0.2372t)

式中:Rz——地层混合液电阻率;Ω·m;K——扩散吸附电位系数;t——井下温度,℃;ΔP——通过泥浆比重和选择压力系数确定。

(2) 利用冲洗带电阻率计算地层混合液电阻率

在高含水饱和度地层中,由于地层含水饱和度与冲洗带含水饱和度趋于一致(Sw=Sxo),Rz还可以直接用下式计算:

油气田开发地质学

(3) 水样分析资料估算地层混合液电阻率

采用水样分析资料,以其离子浓度换算成等效NaC1离子浓度,再以相应图版转换成样本电阻率。利用各井有代表性的样本地层水电阻率,作为估算和确定地层混合液电阻率的基础资料。水样分析资料及其电阻率变化都比较大,为此利用上述过滤电位校正自然电位,结合水样分析资料,分两个阶段目的层段地层混合液电阻率 (Rz)进行估算选用。

2. 生产测井资料确定水驱油藏产层剩余油饱和度

油水相对渗透率和流体饱和度等参数的关系已有一些学者进行了研究,至今没有公认的二者之间关系的解析方程,在实际应用中大多采用经验公式。根据毛细管渗流模型和毛细管导电模型可以推导出亲水岩石油水相对渗透率和产层流体饱和度关系方程为:

油气田开发地质学

式中:SwD——驱油效率,SwD=(Sw-Swi)/(1-Swi),小数;Sw——含水饱和度,小数;Swi——产层束缚水饱,小数;Sor——产层残余油饱和度,小数;n——阿尔奇方程中饱和度指数;m——经验指数。

油水相对渗透率与含水率的关系:

油气田开发地质学

得含水率与含水饱和度的公式:

油气田开发地质学

利用生产测井解释可以确定产层产水率fw,从而利用上式可计算出产层的含水饱和度Sw,进而得到产层剩余油饱和度So=1-Sw

(1) 产水率的确定

主要利用生产测井持水率 (γw) 资料转化为产层的产水率。对于油、水两相流,持水率主要由以下几种方法来确定。

1) 放射性密度计

油气田开发地质学

式中:ρm——测量的混合液密度,g/cm3;ρo和ρw——油和水密度,g/cm3

2) 压差密度计

油气田开发地质学

式中:ρm——压差密度计读数,g/cm3;θ—油层倾角,(°)。

3) 高灵敏度持水率计直接测得

得到持水率后,将其转化成产层产水率。目前在实际中大多采用滑脱速度模型,根据该模型产层的产水率公式为:

fw=1-(1-γw)(1+γw·VS/U)

式中:Vs——油水滑脱速度,常根据经验图版确定,m/s;U——油水混合液总表观速度,由流量测井求得,m/s。

4) 由地面计量产水率转化到产层产水率

对单一产层或单一砂组情况,也可由地面计量产水率fwd经油、水地层体积系数Bo和Bw转化到油层产水率:

油气田开发地质学

(2) n和m

n和m值的确定对于利用fw计算So起到较大的影响。利用岩心分析油水相对渗透率资料和生产动态资料确定n和m值的方法如下。

首先根据岩心分析油水相对渗透率资料分别求得n和m值:

油气田开发地质学

但由于岩心分析油水相对渗透率资料有限,不可能每个油层都有,利用取心点处的相渗代表整个产层或整个砂组的相渗可能会产生较大的误差,因此必须对已求得的n和m值进行修正,使之更具有代表性。对于每套开发层系,平均含水饱和度可以表示成:

油气田开发地质学

式中: —某套开发层系平均采出程度,小数; ——某套开发层系平均束缚水饱和度,小数。

因此,根据生产动态资料可以做出某套开发层系的平均产水率和平均含水饱和度的关系图版,进而对岩心分析资料确定的n和m值进行验证和修正。

(3)μo和μw的确定

在泡点压力以上的产层原油粘度可以根据Vazques和Beggs经验公式确定:

μoob(p/pb)b

b=956.4295p1.187·exp(-0.013024p-11.513)

式中:μob——泡点压力pb下的地层原油粘度,mPa·s,一般由地面脱气原油粘度和相对密度根据经验公式计算;p——产层压力,MPa。

产层水的粘度μw一般受产层压力影响比较小,通常由地面温度下分析值根据经验公式转化到产层温度下粘度。

(4) Swi和Sor

根据岩心分析数据和测井声波时差 (AC)、自然伽马 (GR) 回归经验公式计算获得。

3. 油藏工程分析研究剩余油分布

油藏工程方法很多如水驱曲线、递减曲线、物质平衡等都可以研究剩余油分布,下面列举几种常用的油藏工程方法。

(1) 利用甲型水驱曲线研究剩余油分布

甲型水驱曲线中b/a值能够反映水驱方式下的水洗程度:

No=blgNw+a

式中:No——累积产油量,104t;Nw——累积产水量,104t;a,b——常数。

当水驱油面积 (F)较大,油层厚度 (H)较厚,原始含油饱和度 (So) 较高时,水驱曲线中的常数a和b值都大,所以a和b应是F,H及So的函数。b值反映了水将油驱向井底的有效程度,b值大则驱油效果好。而a值反映了油藏在某种驱动方式下原油的通过能力。b/a的值小,水洗程度好,属于水淹区,反之则水洗程度差,属于潜力区。

剩余油饱和度 (So) 可以由下式获得:

油气田开发地质学

式中:Soi——产层原始含油饱和度,小数;R——采出程度,小数;fw—油田或油井的含水率,小数;N——动态储量,104t;A1,B1——常数,A1=a/b,B1=b。

动态储量 (N) 可由童氏经验公式计算:

N=7.5/B1

如果编制开发单元各井的甲型水驱曲线,并利用测井资料计算出原始含油饱和度Soi,这样就可以求得各井的剩余油饱和度。

(2) 产出剖面资料计算剩余油饱和度

产出剖面资料能明确地确定井下产出层位、产量及相对比例,是一定时间、一定工作制度下油层产能的客观反映,必然与油层参数有内在联系。目前,由于直接测量评价产层剩余油饱和度方面存在困难,用产出剖面资料评价产层剩余油饱和度具有重要的意义。

在地层条件下,油、气、水层的动态规律一般服从混相流体的渗流理论。根据这一理论,储层的产液性质可由多相共渗的分流量方程描述。当储层呈水平状,油、气、水各相分流量可表示为:

油气田开发地质学

式中:Qo,Qg,Qw——产层中油、气、水的流量,cm3/s;μo,μg,μw——油、气、水的粘度,mPa.s;Ko,Kg,Kw——油、气、水的有效渗透率,μm2;A——渗透截面积,cm2;ΔP/ΔL——压力梯度,MPa/m。

为了解各相流体的流动能力,更好地描述多相流动的过程,往往采用相对渗透率,它等于有效渗透率与绝对渗透率的比值:

Krw=Kw/K,Kro=Ko/K,Krg=Kg/K

根据分流方程,可进一步导出多相共渗体系各相流体的相对含量,它们相当于分流量与总流量之比。对于油水共渗体系,储层的产水率可近似表示为:

油气田开发地质学

在油水两相共渗透体系中,琼斯提出了如下经验公式:

油气田开发地质学

则可推导出含水饱和度Sw的计算公式,进而就可计算出剩余油饱和度So

(3) 小层剩余油饱和度的求取

水驱特征曲线法的出现已有30多年的历史,随着对油水运动机理认识的加深和水驱特性分析式在理论上的成功推导,该方法已突破油藏范围的使用,越来越多地应用到单井和油层组上。但一般在油藏开发中很少收集到自始至终的分层油水生产数据,故无法应用实际资料建立各生产层组 (下称 “目标层组”,可以是油层组,砂岩组或是小层) 的水驱特征曲线,所以以往使用水驱特征曲线法进行剩余油方面的研究,最多取得整个油层组的平均含油饱和度值,它作为剩余油挖潜研究显得太粗,实用价值不大。需进行 “大规模”级别上的驱替特征分析,确定目标层组上各油井出口端剩余油饱和度值。

以某油井j和第k目标层组为例进行讨论 (j=1,2,…,m;k=1,2,…,n,m与n分别是油藏生产井总数和j井所在开发层系划出的目标层组数目)。作为简化,下标j视为默认,不作标记。

根据油水两相渗流理论,可以由渗饱曲线系数推求单井水驱曲线系数:

油气田开发地质学

式中:μo,μw——地层油、水的粘度,mPa·s;Bo,Bw——油、水地层体积系数,小数;do,dw——地层油、水的相对密度;Soi,Swi——原始含油饱和度和束缚水饱和度,小数;N——单井控制石油地质储量,104t;Np——累积产油量,104t;B4,A4——j井渗饱曲线斜率和截距;B1,A1——J井甲型水驱曲线斜率和截距。

对于j井,它的第k目标层组的石油地质储量可以表示成:

油气田开发地质学

式中:hk——j井第k目标层组的油层厚度。

j井第k目标层组对应的水驱特征曲线斜率B1.k

油气田开发地质学

式中:B4.k——j井k层组的渗饱曲线斜率,它和B4都可以由相渗资料分析得到的统计关系式计算:

油气田开发地质学

式中:a1,b1——统计系数;Kk,K——k层组j井点处的地层渗透率和j井合层的地层渗透率,10-3μm2。后者由各层组渗透率依油层厚度加权得到:

油气田开发地质学

第k目标层组甲型水驱曲线:

油气田开发地质学

式中累积产水Wp.k可以由乙型和丙型水驱特征曲线联立解出:

Wp,k=WORk/2.3B1,k

式中:WORk——k层组的水油比。水油比可由含水率fw,k计算:

Wp,k=fw,k/(1-fw,k)

含水率fw,k通过分流方程计算:

油气田开发地质学

式中下标k对应于第k目标层组。对一特定油藏,油水粘度比μwo相同。油水两相的相对渗透率之比Ko/Kw由与k层组对应的渗饱曲线计算:

[Ko/Kw]k=eA

渗饱曲线截距A4.k由相应的统计式根据该井点地层渗透率Kk计算:

A4,k=ea

式中:a2,b2——统计常数。

如果给定k层组j井点处含水饱和度Sw,则由上几式能分别计算出j井在k层组的累积产水量 (Wp,k)、累积产油量 (Np,k)、水驱曲线斜率 (B1,k)、渗饱曲线斜率 (B4,k),将它们代入根据单井水油比和含水率导出的出口端含水饱和度关系式,就可以计算出k层组j井点处的含水饱和度:

油气田开发地质学

对应的剩余油饱和度So为:

So=1-Sw

总的说来,利用生产动态资料求取剩余油饱和度不失为一个简单易行的方法。但是,受含水率这个参数本身的局限,由此而求出的剩余油饱和度是绝对不能反映一个暴性水淹地区的真实剩余油饱和度的。至于根据各种方法将含水率劈分到各小层,从而得到各个小层的剩余油饱和度,则其可信度值得怀疑,只能说是有胜于无。

4. 油藏数值模拟

油藏数值模拟技术从20世纪50年代开始研究至今,已发展成为一项较成熟的技术。在油田开发方案的编制和确定,油田开采中生产措施的调整和优化,以及提高油藏采收率方面,已逐渐成为一种不可或缺的主要研究手段。油藏数值模拟技术经过几十年的研究有了大的改进,越来越接近油田开发和生产的实际情况,油藏数值模拟技术随着在油田开发和生产中的不断应用,并根据油藏工程研究和油藏工程师的需求,不断向高层次和多学科结合发展,它必将得到不断发展和完善。

油藏数值模拟中研究的问题大部分为常规的开采过程,所用模型以黑油模型为主,组分模型的使用有增加的趋势。在混相开采的模拟中,尤其是在实验室研究阶段,也使用组分模型。当使用组分模型时,流体的变化由状态方程来描述。注蒸汽的开采过程模拟也较为普遍。但研究地层中燃烧的模拟少见,因为这种开采方式本来就少见,且难以模拟和费用高。大多数油藏数值模拟向全油田的方向发展,水平井模拟的研究也有较大的发展。

油藏模拟通过各种模型拟合生产历史,可以得出剩余油分布的详细信息,是目前求取剩余油分布的较好方法。但是也存在着模型过于简单、油田生产过程过于复杂、难以较好地拟合等问题。

剩余油分布研究目前最有效的办法仍然是动静资料结合的综合分析方法,只在准确建立各种河流沉积模型的基础上,深入研究储层分布对注采系统的影响,细致地开展油层水淹状况分析,才能对剩余油分布状况得出较正确的认识。

总之,油层的非均质是形成剩余油的客观因素,开采条件的不适应是形成剩余油的主观因素。

5. 数学地质综合分析法

影响剩余油形成和分布的各类地质及生产动态等因素是极其复杂的,因此在剩余油分布研究中需要考虑各种地质和动态因素,有助于提高剩余油预测精度。能考虑多种因素研究剩余油分布的方法很多,这里以多级模糊综合评判方法为例,建立剩余油潜力分析量化模型。

多级模糊综合评判是综合决策的一个有力数学工具,适应于评判影响因素层次性及影响程度不确定性项目。通过对储层剩余油形成条件、分布规律及其控制因素分析研究,剩余油形成主要受沉积微相、油层微型构造、注采状况等多种因素控制。这些因素共同确定了剩余油的分布状况,具体表现为剩余油饱和度、剩余石油储量丰度及可采剩余储量的平面和纵向差异性。

在考虑影响剩余油形成与分布因素的基础上,结合储层严重非均质性特点,选取剩余油饱和度、储量丰度、砂体类型、砂体位置、所处位置、连通状况、微型构造形态、注水距离、射孔完善程度、注采完善程度、渗透率变异系数等11项静态和生产动态指标组成评价因素集。在上述各因素中,剩余油饱和度与剩余储量丰度的大小是各类静态和动态综合作用的结果,是剩余油潜力评价的主要指标。因此,在实际评价中,首先圈定剩余油饱和度及其剩余石油储量丰度高值区,然后应用多级模糊综合评判的数学方法,对剩余油富集区进行综合评判。

在剩余油富集区评价中采用的数学模型为:

设U= {u1,u2,u3,u4,u5,u6,u7,u8,u9,u10,u11} 为评价因素集,V={v1,v2,v3} 为剩余油潜力等级集,评价因素集与剩余油潜力等级集之间的模糊关系用矩阵来表示:

油气田开发地质学

单因素评价矩阵R=[rijn×m(0≤rij≤1),其中rij为第i因素对第j评语的隶属度。矩阵R中的R= {ri2,ri2,ri3} 为第i个评价因素ui的单因素评判,它是V上的模糊子集。隶属度主要根据检查井资料和单层测试资料分级分类统计求取。

由于影响剩余油的诸因素对剩余油潜力划分作用大小程度不同,因此必须考虑因素权重问题。假定a1,a2,a3,a4,a5,a6,a7,a8,a10,a11分别是评价因素u1,u2,u3,u4,u5,u6,u7,u8,u9,u10,u11的权重,并满足a1+a2+a3+a4+a5+a6+a7+a8+a10+a11=1,令A={a1,a2,a3,a4,a5,a6,a7,a8,a10,a11},则A为权重因素的模糊集,即权向量。权系数的求取主要根据实践经验并结合剩余油富集特点综合考虑。

由权向量与模糊矩阵进行合成得到综合隶属度B,则通过模糊运算:

B=A ·R

式中:B——综合评判结果;A——权重系数;R——单因素评价矩阵;·——模糊运算符。

据上式求出模糊集:

油气田开发地质学

根据最大隶属度准则,bi0=max {bj} (1≤j≤3) 所对应的隶属度即为综合评判值,依据综合评判结果B值将剩余油潜力分为3类:B≥0.5为最有利的剩余油富集区;0.1<B<0.5为有利的剩余油富集区;B≤0.1为较最有利的剩余油富集区。

分析各种影响因素可以看出,对剩余油潜力进行综合评价宜采用二级评价数学模型,在实际评价中,首先根据地质综合法和数值模拟结果,圈定剩余油饱和度和剩余油储量丰度高值区,进而对这些井区的砂体类型、砂体位置、所处位置、连通状况、微型构造形态、注水距离、射开完善程度、注采完善程度、渗透率变异系数等参数均按3类进行一级评判,对剩余油饱和度和储量丰度按不同层对各个井区归一化后赋值,然后从以下11个方面对剩余油潜力进行评判,分别为:剩余油饱和度A、储量丰度B、砂体类型C、砂体位置D、所处位置E、连通状况F、微构造形态G、注水距离H、射开完善程度I、注采完善程度J、渗透率变异系数K。

多级模糊综合评判的数学模型简单易行,关键是确定权系数及其评判矩阵。研究中根据影响剩余油富集的重要程度,采取专家打分和因子分析相结合的方法确定权重系数:A={A,B,C,D,E,F,G,H,I,G,K}={0.2,0.15,0.12,0.06,0.08,0.05,0.05,0.07,0.08,0.09,0.05}。由此可见,在各因素中,剩余油饱和度与剩余储量丰度、砂体类型是影响剩余油潜力的主要因素。其次,砂体连通状况、注采完善程度、射孔完善程度对剩余油富集具有重要的控制作用。在具体评价中,对影响剩余油富集的地质因素及注采状况等因素,如砂体类型、微构造类型、注采完善程度等非量化指标,对各种类型按最有利、有利、较有利分别赋予权值 (表8-7),非均质性、注水井距离等定量指标按其值范围赋予权值。

表8-7 剩余油富集区地质因素评价

对M油田A层剩余油富集区进行了多级模糊综合评价。首先根据油藏数值模拟结果和综合地质分析法圈定潜力井组,对各井组按上述11项指标分类进行二级评价,然后根据所建立的模糊矩阵,结合权向量进行综合评判,结果见图8-30。

A层Ⅰ类潜力区主要分布在F5-4,F5-5,F11-11,F9-11,F7-2,F11-4等井区,Ⅱ类潜力区主要分布在F11-5,F10-5,F9-4,F7-3,F7-6,F5-2,F3-2,F2-5等井区,Ⅲ类潜力区主要分布在F9-6,F1-4等油砂体边部,尽管储量动用程度低,剩余油饱和度较高,但有效含油厚度较小,因而潜力较小。

图8-30 A层剩余油潜力评价

Ⅹ 胜利油区经济产量计算方法

苏映宏尚明忠王兴科赵小军侯春华

摘要从油田开发的基本规律和目前的开发经济效益状况出发,运用油藏工程的基本原理和经济学的基本原理,建立了新井经济极限初产油量、老井经济极限含水量和经济极限产油量的计算模型。在此基础上,研究了油田非经济产量的变化规律,并应用此规律预测了未来一定时期油田非经济产量百分比及油田的年度经济产量。该方法的研究与应用对提高油田开发经济效益具有重要意义。

关键词经济产量效益产量低效产量低效井经济极限含水量

一、引言

在市场经济条件下,企业追求经济效益的重要特征之一就是力争使利润最大化和合理化。石油企业追求利润最大化的基本形式应该是最经济地开发出全部的可采储量,或者说使可采储量的开发利润最大化。因此,油田开发应尽可能避免不经济的成分存在。

从胜利油区近几年的生产情况看,平均单井日产油小于1t的井数从1992年的417口井上升到1999年的1222口,井数比例由4.4%上升到10.3%,井数及其比例均成倍上升。这些井中必然有部分处于低效状态下生产,因此,分析低效井及其产量的变化规律对提高油田的开发经济效益具有重要的意义。

国内外经济产量的研究方法比较复杂,所需预测的参数较多,实际操作困难[1]。为适应市场经济的需要,同时也为提高油田开发经济效益,有必要研究一种合理的、易于操作的经济产量计算方法。

二、经济产量计算模型

油田年度经济产油量定义为在经济开发期内能够获得利润的年产油量。在商品经济的条件下,一个油田年度经济产油量的高低和油价及成本水平密切相关,油价提高、成本降低将有利于经济产油量的提高;反之,油价下跌、成本上涨,将导致经济产油量的降低。因此,研究油田经济产油量的问题,其实质是在研究油田产油量客观变化规律(油藏内在的)的基础上,深入研究油价、成本的变动对经济产油量的影响,并建立起相关的数学模型,预测油田未来时期经济产油量的变化。

从平均的、客观的角度来讲,对于一个油田,只要目前的平均吨油成本低于税后油价,油田经营就可以获得利润。油田的年度产油量也可以说是经济产油量,定义为年度宏观经济产油量。但油田总体上的获利状况并不等于油田中的每口油井的产油量都是经济的。事实上,在油田年度宏观经济产油量中,往往包括一些低产低效井的非经济产油量。因此,对于一个油田,年度经济产油量的预测应该是在油田年度宏观经济产油量预测的基础上,剔除其中低产低效油井的非经济产油量,计算模型如下:

胜利油区勘探开发论文集

式中:Qi——已开发油田年度经济产油量,104t;

Qh——油田年度宏观经济产油量,104t;

Qe——油田年度低效产油量,104t;

e——低效产量百分数,%。

三、年度宏观经济产油量预测方法

年度宏观经济产油量就是在经济可采期内的年产油量。经济可采储量及剩余经济可采储量可以由水驱系列法结合经济极限含水量求得。

胜利油区勘探开发论文集

式中:Npj——剩余经济可采储量,104t;

Npo——累积产油量,104t;

a、b——水驱系列甲型水驱曲线系数;

fw,min——经济极限含水,小数(本文后面有推导);

CL——吨液成本,元/t;

P——原油价格,元/t;

Rt——吨油税金,元/t;

W——原油商品率,小数;

qL——平均单井产液量,t/d。

年产油量预测通常采用Arps递减法。Arps递减曲线的3种类型中[2],双曲递减方程是通式,而指数递减和调和递减方程可以认为是双曲递减方程分别在递减指数n→∞和n=1时的两种特例。因此,可以通过最佳拟合计算双曲递减方程递减指数n,来判断递减类型。

由双曲递减方程

胜利油区勘探开发论文集

可得

胜利油区勘探开发论文集

再改写为

胜利油区勘探开发论文集

式中:Qt——递减t时间的产量,104t;

Qi——初始递减时的产量,104t;

Di——初始递减率,小数;

n——递减指数,小数;

t——以选定的递减起点为零点计算的时间,a。

A=lg(QiCn);

B=n;

C=n/Di

首先作lgQt-lg(t+C)曲线,改变 C值,使所选规律段数据的直线回归相关系数最大;由最佳直线拟合斜率值,即可求出递减指数 n。n→∞,为指数递减;1<n<∞,为双曲递减;n=1,为调和递减。

当递减阶段的累计产油量在剩余经济可采储量范围之内时,就可求得递减阶段任一时刻的年度宏观经济产油量。

Arps递减法并不是预测油田年度宏观经济产量的惟一方法。在实际工作中,往往根据油田具体情况筛选出一些适用于本油田的产量变化规律的预测方法

尚明忠等.油田开发趋势预测技术研究.1997.,比如定液求产法、产量构成法、灰色模型法、AR模型等。

四、年度经济产量计算

1.油井生产成本与费用分析

油井生产成本与费用是油气田企业在生产经营活动中按规定发生的一切消耗和费用的总和。包括油气产品开采成本、勘探费用、管理费用、销售费用和财务费用,后三项费用为油气勘探开采过程发生的费用,不计入油气产品开采成本,而当作损益直接从销售收入中扣除。在成本分析中,根据新、老井的具体情况将成本分为最低成本和完全成本两类。其中,最低成本是指在油井生产过程中发生的,只与本井产油量紧密相关的最低费用,主要是动力费、材料费、油气处理费、驱油物注入费;完全成本除了包括简单再生产的成本以外,还包括扩大再生产的成本,如油水井的更新、补充、滚动勘探开发、寻找新储量、增加新产能等。

从分析低效井的角度来看,老井的投资已经收回,只要油井能正常生产,并且所产油的税后产值能大于油井的最低成本,就表示该油井的生产有效。因此,判断老井是否低效采用油井开采的最低成本计算;对新井的判断采用完全成本计算。

2.低效井判别模型的建立

(1)新井低效井判别模型

新井低效井判别模型就是新井经济极限初产油量计算模型。新井经济极限初产油量是指在一定的技术、经济条件下,当油井在投资回收期内的累积产值等于同期总投资、累积年经营费用和必要的税金之和时,该井所对应的初期产油量称为油井的经济极限初产油量。为提高油田整体效益,必须尽量避免新井的产量低于经济极限初产油量。

在投资回收期内,单井经济效益[3]

胜利油区勘探开发论文集

当在投资回收期内累计经济效益为0时,即Pp=0时,得出经济极限初产油量的计算公式:

胜利油区勘探开发论文集

式中:Pp——单井经济效益,104元;Cm——每米钻井投资,元/m;

Sp——单井产值,104元;H——平均井深,m;

K——投资,104元;Ib——单井地面建设投资,104元/井;

CD——经营成本,104元;β——油水井系数,小数;

τo——油井开井时率,小数;Co——单井年操作费成本,104元/井;

T——投资回收期,a;i——操作费年上涨率,小数;

qo——油井平均单井初产油量,t/d;qmin——经济极限初产油量,t/d。

B——平均年综合递减余率,小数;

图1胜利油区吨液成本与平均单井日产液量的关系图

(2)老井低效井判别模型

老井低效井判别模型采用经济极限含水量的计算模型。经济极限含水量是指油田(油井)开发到一定的阶段,其含水量上升到某一数值或产油量下降到某一数值时,投入与产出相抵,含水量如再升高、产油量如再下降,油田开发就没有利润了,油田(油井)此时的含水量称为经济极限含水量,此含水量相对应的产量称为经济极限产量。老井经济极限含水量及经济极限产油量的计算与新井经济极限初产油量的计算都是采用盈亏平衡原理,但不同的是,新井经济极限初产油量的计算是指一定阶段(投资回收期)的投入产出平衡,而老井经济极限含水量及经济极限产油量的计算是指瞬时(一般取一年)的投入产出平衡。

吨液成本是原油开采过程中成本的一种表现形式。在研究老井的成本变化规律时,通过研究胜利油区40多个油田的成本,发现吨液成本

方开璞.已开发油田储量资产化新方法研究.1998.与平均单井产液量有较好的关系(图1)。

其回归关系式为:

胜利油区勘探开发论文集

单井经济效益:

胜利油区勘探开发论文集

当经济效益为0时,得出经济极限含水量的计算公式:

胜利油区勘探开发论文集

将吨液成本与单井产液量的关系式代入可得

胜利油区勘探开发论文集

3.低效产量计算与预测

根据新、老井的低效井判别模型分别对胜利油区1994年以来的井进行了跟踪,得出不同时期、不同油价下低效产量与当年产量的百分比。统计表明,平均单井年产油与时间、平均单井年产油与低效产量百分数有很好的相关关系(图2、图3)。

图2平均单井年产油量随时间变化曲线图

图3低效产量百分数与平均单井年产油量关系曲线图

平均单井年产油Y与时间X的关系式为:

胜利油区勘探开发论文集

相关系数为0.9963。

X=1为1994年。根据该关系式可以预测今后某年的平均单井年产油量。

以油价为15美元/桶为例,平均单井年产油量Y与低效产量百分数X的关系式为:

胜利油区勘探开发论文集

相关系数为0.9967。

在预测平均单井年产油量的基础上,根据平均单井年产油量与低效产量百分数的关系式,可以预测出2000年后某年不同油价下低效产量百分数(表1)。

4.年度经济产量计算

由式(7)计算出年度宏观经济产量;联立式(14)和(15)计算出不同油价下的低效产量百分数;联立式(1)和(2)计算年度宏观经济产油量。表2为胜利油区“十五”期间不同油价下的经济产量计算结果。

表1不同油价下平均单井年产油与低效产量百分数预测结果表

表2胜利油区不同油价下经济产量计算结果表

五、结论

本文提出和实现了油田经济产量计算的研究思路和方法。在合理分析成本的基础上,通过引入吨液成本的概念,简化了成本的分析过程,使长期以来计算经济政策界限的成本问题得到了比较好的解决。研究了吨液最低成本与平均单井产液量的内在规律,建立了低效井的判别模型,计算了低效产量百分数,统计并分析平均单井年产油与时间的函数关系以及低效产量百分数与平均单井年产油的函数关系。同时,预测了今后几年的低效产量百分数,最终计算了经济产量。

致谢研究中得到了开发管理部方开璞总地质师、地质科学研究院凡哲元高级工程师和杨勇工程师的支持和帮助,在此一并致谢。

主要参考文献

[1]李良.经济产量.东营:石油大学出版社,1997.

[2]郎兆新.油藏工程基础.东营:石油大学出版社,1991.

[3]刘清志.石油技术经济学.东营:石油大学出版社,1998.

阅读全文

与油田递减规律研究方法相关的资料

热点内容
震动棒使用方法图解 浏览:702
燕窝胶原蛋白肽果冻食用方法 浏览:251
乐2手机的通话设置在哪里设置方法 浏览:44
不能采用的定量分析方法 浏览:442
锻炼横肉的方法 浏览:27
现在就告白清除手机内存的方法 浏览:969
润滑油粘度的简单测试方法 浏览:449
十字钩正确挂饵方法 浏览:830
如何快速驱蚊最有效的方法 浏览:982
白醋和姜祛斑的正确方法 浏览:373
银锭鉴定方法及图片 浏览:819
白醋加小苏打洗衣服方法如何 浏览:575
汽车防火液使用方法视频 浏览:913
空心铁棒连接方法 浏览:671
跳虱怎么杀除最快方法 浏览:842
承兑票贴息计算方法 浏览:525
避免电脑被盗文件备份方法 浏览:917
合金使用方法视频 浏览:111
gps测量面积方法 浏览:476
cad圆分6等分的正确方法 浏览:387