导航:首页 > 研究方法 > 系统观的研究方法

系统观的研究方法

发布时间:2022-06-24 06:01:53

① 有谁能帮忙提供一些有关“系统论”(方法)的论述

随着世界复杂性的发现。在科学研究中兴起了建立复杂性科学的热潮。贝塔朗菲指出,现代技术和社会已变得十分复杂,传统的方法不再适用,“我们被迫在一切知识领域中运用整体或系统概念来处理复杂性问题”。普利高津断言,现代科学在一切方面,一切层次上都遇到复杂性,必须“结束现实世界简单性”这一传统信念,要把复杂性当作复杂性来处理,建立复杂性科学。正是在这种背景下,出现了一系列以探索复杂性为己任的学科,我们可统称为系统科学。系统科学的发展可分为两个阶段:第一阶段以二战前后控制论、信息论和一般系统论等的出现为标志,主要着眼于他组织系统的分析;第二阶段以耗散结构论、协同学、超循环论等为标志,主要着眼于自组织系统的研究。信息学家魏沃尔指出:19世纪及其之前的科学是简单性科学;20世纪前半叶则发展起无组织复杂性的科学,即建立在统计方法上的那些学科;而20世纪后半叶则发展起有组织的复杂性的科学,主要是自组织理论,
系统科学诸学科都着眼于世界的复杂性,确立了系统观点也即复杂性方法论原则,系统观点是对近代科学以分析为主的还原主义方法论和形而上学思维方式的一个反动。根据我们对复杂性的讨论以及系统科学的具体内容,我们可以把复杂性方法论原则概括为以下几个方面:
(1)整体性原则。
系统观点的第一个方面的内容就是整体性原理或者说联系原理。从哲学上说,所谓系统观点首先不外表达了这样一个基本思想:世界是关系的集合体,而非实物的集合体。整体性方法论原则就根据于这种思想。
系统科学的一般理论可简单概括如下:所谓系统是指由两个或两个以上的元素(要素)相互作用而形成的整体。所谓相互作用主要指非线性作用,它是系统存在的内在根据,构成系统全部特性的基础。系统中当然存在着线性关系,但不构成系统的质的规定性。系统的首要特性是整体突现性,即系统作为整体具有部分或部分之和所没有的性质,即整体不等于(大于或小于)部分之和,称之为系统质。与此同时,系统组分受到系统整体的约束和限制,其性质被屏蔽,独立性丧失。这种特性可称之为整体突现性原理,也称非加和性原理或非还原性原理。整体突现性来自于系统的非线性作用。系统存在的各种联系方式的总和构成系统的结构。系统结构的直接内容就是系统要素之间的联系方式;进一步来看,任何系统要素本身也同样是一个系统,要素作为系统构成原系统的子系统,子系统又必然为次子系统构成…。如此,则…→次子系统→子系统→系统之间构成一种层次递进关系。因而,系统结构另一个方面的重要内容就是系统的层次结构。系统的结构特性可称之为等级层次原理。与一个系统相关联的、系统的构成关系不再起作用的外部存在称为系统的环境。系统相对于环境的变化称为系统的行为,系统相对于环境表现出来的性质称为系统的性能。系统行为所引起的环境变化,称谓系统的功能。系统功能由元素、结构和环境三者共同决定。相对于环境而言,系统是封闭性和开放性的统一。这使系统在与环境不停地进行物质、能量和信息交换中保持自身存在的连续性。系统与环境的相互作用使二者组成一个更大的、更高等级的系统。
从系统科学的基本理论概念可以看到,在系统科学看来,系统是现实世界的普遍存在方式,任何一个事物都是一个系统,整个宇宙就是一个总系统。任何事物都通过相互作用而联系在一起,世界是一个普遍联系的整体。所谓系统观点也就是整体的观点、联系的观点。系统科学首先是关于普遍联系的科学。贝塔朗菲指出,系统理论可以定义为“关于‘整体’的一般科学”。在这个意义上,我们可以把系统科学看作辩证法普遍联系观点的具体化、科学化。
整体性原则是系统科学方法论的首要原则。它认为,世界是关系的集合体,根本不存在所谓不可分析的终极单元;关系对于关系物是内在的,而非外在的。因而,近代科学以分析为手段而进行的把关系向始基的线性还原是不能允许的。整体性原则要求,我们必须从非线性作用的普遍性出发,始终立足于整体,通过部分之间、整体与部分之间、系统与环境之间的复杂的相互作用、相互联系的考察达到对象的整体把握。具体来说,第一,从单因素分析进入到系统的组织性、相关性的把握。由于系统的整体突现性,单因素分析无法真实把握整体性质和功能。整体性质和功能根据于部分之间的相互作用,实现于系统与环境之间的相互作用,是系统要素组织化的结果。因此,从组织方式上考察其整体相关性,是把握整体性质的必由之路。第二,从线性研究进入到非线性研究。如前所述,线性方法只能处理局部性的问题,不足以把握全局性、大范围的问题;同时线性方法只能把握相对简单的对象和对象相对简单的方面,不足以把握复杂性。而非线性是一切复杂性的根源,因此,为达到对象整体和复杂性的把握,必须克服线性研究的局限性,建立非线性科学。第三从单向研究进入到多向研究。维数是现代科学的重要概念。系统思想要求克服单向度的、单维的看问题的传统思维方式,转而采用多维的、乃至全维的思维方式。
各门系统科学在其研究中,都自觉贯彻了整体性这一方法论原则。在一定意义上,系统科学的各种具体方法都是整体研究的基本方法。
信息方法是指运用信息观点,把系统存在看作信息系统,把系统运动看作信息传递和转换过程,通过对信息流程的分析和处理,达到对系统运动过程及其规律性的认识的方法。
运用信息方法,首先要根据信息观点把对象处理为一个信息模型申农所提出的通信系统模型,不仅适用于通信系统,也可适用于非通讯系统。具有一般意义。这个环节的主要任务,可称为信息分析。其次,要对信息模型进行定量化处理,即建立数学模型。再次,根据数学模型分析系统性态,预测其行为,确定利用原理和方法。
信息方法具有以下特点抽象性。它完全撇开对象的具体运动形态,把抽象的信息运动作为分析问题的基础。整体性,信息方法直接从系统的整体存在出发,通过系统与环境的信息输入输出关系来综合研究系统的信息过程。动态性。信息方法是一种动态性方法。是对对象进行动态研究的有力手段
2黑箱方法同样是现代科学整体研究的一种重要方法。所谓黑箱就是对认识主体而言,其内部结构还一无所知的客体。可见黑箱包含两个方面的涵义:一方面,黑箱的黑在于内部结构的“黑”。另一方面,黑箱也并不黑,因为任何客体总有可以观察到的外部变化,即行为。
所谓黑箱方法就是在客体结构未知或假定未知的前提下,给黑箱以输入从而得到输出,并通过对输入输出的考察来把握客体的方法。在运用黑箱方法时,首先要对箱子的性质和内容不作任何假定,但要确定有一些作用于它的手段。并以此对箱子进行工作,使人与箱子之间形成一个耦合系统。然后规定箱子的输入,使耦合以确定而可重复的方式形成。最后通过输入输出数据建立数学模型,推导内部联系。这里值得注意的是,黑箱方法考察的不是箱子本身,而是人—箱耦合系统。
绝对的黑箱实际上并不存在,任何客体可以说都是一个“灰箱”,即部分知的客体。因为在人类视野之外,不成其为客体,凡是纳入主体范围的认识对象,总已是有所知的东西了。,因此,绝对的“白箱”实际上也并不存在。白箱方法就是把系统结构按一定关系式表达出来,形成“白箱网络”,并进一步以白箱网络对系统进行再认识,预测系统未来行为,控制系统将来过程。
反馈方法是以原因和结果的相互作用来进行整体把握的方法。维纳指出,反馈是控制系统的一种方法,它的特点是根据过去操作的情况去调整未来行为。所谓反馈就是系统的输出结果再返回到系统中去,并和输入一起调节和控制系统的再输出的过程。如果前一行为结果加强了后来行为,称为正反馈,如果前一行为结果削弱了后来行为,称为负反馈。反馈在输入输出间建立起动态的双向联系。
反馈方法就是用反馈概念分析和处理问题的方法。它成立的客观依据在于原因和结果的相互作用。不仅原因引起结果,结果也反作用于原因。因而对因果的科学把握必须把结果的反作用考虑在内。
功能模拟法是控制论发展出来的一种方法,它是模拟方法发展的新阶段。是现代科学进行整体研究重要途径。与其他模拟方法相比,功能模拟方法具有下列特点;
第一,以行为相似为基础。在控制论看来,一个系统最根本的内容就是行为,即在与外部环境的相互作用中所表现出来的系统整体的应答。与此相应,两个系统间最重要的相似就是行为上的相似。在建立模型的过程中,可撇开结构,而只抓取行为上的等效,从而达到功能模拟的目的。控制论重新定义了行为概念:一个客体任何可从外部探知的改变就是行为。这一规定确立了行为的共同本质,使行为具有了普遍性,为功能模拟法的广泛运用奠定了理论基础。正是依据这一思想,人的智能活动与技术装置的行为相似性得以建立,使智能的机械模拟得以实现。
第二,模型本身成为认识目的。在传统模拟中,模型指使把握原型的手段。对模型的研究,目的是获取原型的信息。例如,卢瑟福的原子的太阳系模型,本身没有任何意义,只是研究原子结构的一个方便的手段。而在功能模拟中,模拟以行为为基础,以功能为目的。模型是具有生物目的性行为的机器。这种机器的研制恰恰就是控制论的本来任务。在这个意义上说,人的行为本身反倒仅仅具有参照意义,这种原型反过来成为模型的手段。这是功能模拟区别于一般模拟的一个根本性特点。
第三,从功能到结构。一般模拟遵循的是从结构到功能的认识路线。而功能模拟相反,它首先把握的是整体行为和功能,而不要求结构的先行知识。但它并不否认结构决定功能,同时它也不满足于行为和功能,它总是进而要求从行为和功能过渡到结构研究,获得结构知识。例如,控制论运用功能模拟法建立了人的智能活动与技术装置的行为相似性,由此发现了神经系统中反馈回路的存在,从而推动了脑模型和神经结构的研究。
功能模拟方法忽略质料、结构和个别要素的分析,暂时撇开系统的结构、要素、属性,单独地研究行为,并通过行为功能把握其结构和性质。这不仅是可行的,而且是研究复杂客体的必要手段,尤其在客体结构知识尚付阙如的情况下,行为对我们把握客体就具有了根本性意义。控制论的技术任务就是要实现智能的机械模拟。若从质料和性质来看,人与机械装置没有任何一致性,因而智能机器是不可能的。但维纳发现,“从结构上看,技术系统与生物系统都具有反馈回路,表现在功能上则都具有自动调节和控制功能。这就是这两种看似截然不同的系统之间所具有的相似性、统一性。确切地说,一切有目的的行为都可以看作需要负反馈的行为。”因此,尽管目的是不可定义的,但从目的的外在表现即目的性行为来看,二者是一致的,因而智能的机械模拟是完全可能的。另一方面,智能活动的物质结构是高度复杂的。人的大脑仅大脑皮层就有约140亿个神经元,神经元的树突和轴突的联系异常复杂,而且大多为后天形成。从结构上来把握智能活动几乎是不可能的。控制论的目标是智能机器,可暂时忽略其结构、要素,仅从行为上来把握。而从行为角度所把握到的是系统在与环境的相互作用中所表现出来的整体存在,通过行为所实现的功能是系统与环境的整体联系。因此,功能模拟法为现代科学提供了对复杂客体进行整体研究的重要途径,即行为功能研究。

(2) 动态性原则
系统观点的第二个方面的内容就是动态演化原理或过程原理。从哲学上看,这一原理不外是说:世界是过程的集合体,而非既成事物的集合体。动态性原则就依据于这一原理。
系统科学的动态演化原理的基本内容可概括如下:一切实际系统由于其内外部联系复杂的相互作用,总是处于无序与有序、平衡与非平衡的相互转化的运动变化之中的,任何系统都要经历一个系统的发生、系统的维生、系统的消亡的不可逆的演化过程。也就是说,系统存在在本质上是一个动态过程,系统结构不过是动态过程的外部表现。而任一系统作为过程又构成更大过程的一个环节、一个阶段。
与系统变化发展相关的重要概念,除了我们前面已经讨论过的可逆与不可逆、确定性与随机性之外,有序与无序也是刻画系统演化形态特征的重要范畴。热力学、协同学、控制论和信息论分别用熵、序参量和信息量来刻画有序与无序。在数学上,一般以对称破缺来定量刻画。通俗地说,所谓有序是指有规则的联系,无序是指无规则的联系。系统秩序的有序性首先是指结构有序。例如,类似雪花的晶体点阵、贝纳德花样、电子的壳层分布、激光、自激振荡等空间有序,行星绕日旋转等各种周期运动为时间有序。结构无序是指组分的无规则堆积。例如,一盘散沙、满天乱云、垃圾堆等空间无序。原子分子的热运动、分子的布朗运动、混沌等各种随机运动为时间无序。此外系统秩序还包括行为和功能的有序与无序。平衡态与非平衡态则是刻画系统状态的概念。平衡态意味着差异的消除、运动能力的丧失。非平衡意味着分布的不均匀、差异的存在,从而意味着运动变化能力的保持。与此相联系,有序可分为平衡有序与非平衡有序。平衡有序指有序一旦形成,就不再变化,如晶体。它往往是指微观范围内的有序。非平衡有序是指有序结构必须通过与外部环境的物质、能量和信息的交换才能得以维持,并不断随之转化更新。它往往是呈现在宏观范围内的有序。
二十世纪下半叶出现的自组织理论从多方面探讨了有序与无序相互转化的机制和条件、不可逆过程所导致的结果,即进化和退化及其关系问题,着重研究了系统从无序向有序、从低序向高序转化也即进化的可能性和途径问题。
1969年,普利高津提出耗散结构论,这一理论从时间不可逆性出发,采用薛定谔最早提出的“负熵流”概念,使得在不违反热力学第二定律的条件下,得出这样的结论:远平衡开放系统可以通过负熵流来减少总熵,自发地达到一种新的稳定的有序状态,即耗散结构状态。耗散系统形成以远离平衡态的开放系统和系统内非线性机制为条件。非稳定性即涨落是建立在非平衡态基础上的耗散结构稳定性的杠杆。在平衡态没有涨落的发生;在近平衡态的线性非平衡区,涨落只会使系统状态发生暂时的偏离,而这种偏离将不断衰减直至消失;而在远平衡的非线性区,任何一个微小的涨落都会通过相干作用而得到放大,成为宏观的、整体的“巨涨落”,使系统进入不稳定状态,从而又跃迁到新的稳定态。
1976年德国理论物理学家赫尔曼•哈肯出版了《协同学导论》一书,1978年第二版增加了“混沌态”一章,建立了协同学理论的基本框架。协同学以信息论、控制论、突变论为基础,并吸取了耗散结构论的成果,继耗散结构理论之后进一步具体考察了非线性作用如何能够造成系统的自组织。协同学认为,系统从无序向有序转化的关键并不在于系统是否和在多大程度上处于非平衡态,只要是一个由大量子系统构成的系统,在一定条件下,它的子系统之间通过非线性的相互作用就能产生协同和相干效应,从也就能够自发产生宏观的时空结构,形成具有一定功能的自组织结构,表现出新的有序状态。哈肯给出了决定论的动力学方程,并同时引入二分支概念。从而提供了系统由一个质态跃迁到另一质态的说明方法。当系统某个参数在域值范围之外,系统处于稳定平衡位置;当系统参数进入域值范围,系统就成为非稳定的,同时又要形成新的平衡位置。自组织系统形成的两个基本条件是:开放系统和涨落的存在。由稳定平衡到非稳定平衡起作用的是外部条件,由非稳定平衡到新的稳定平衡其作用的是系统涨落。哈肯的理论较好地说明了物理学中的自组织现象,如激光、细胞繁殖等。但用它说明生物和社会系统有一定困难。
1971年德国生物学家爱肯正式提出了超循环论。其中心思想是在生命起源和发展中,从化学阶段到生物进化之间有一个分子的自组织过程。这个进化阶段的结果是形成了人们今日所见的具有统一遗传密码的细胞结构。这种遗传密码的形成有赖于超循环组织,这种组织具有“一旦建立就永远存在下去”的选择机制。总之,爱肯认为,“进化原理可理解为分子水平上的自组织”,以最终“从物质的已知性质来导出达尔文的原理”(《控制论、信息论、系统科学与哲学》,中国人民大学出版社,1986年版,471页)
自组织理论关于演化的基本观点概括地说,主要有三点:
第一, 系统内部的相互作用是系统演化的内在根据和动力。
系统要素之间的相互作用是系统存在的内在依据,同时也构成系统演化的根本动力。系统内的相互作用空间来看就是系统的结构、联系方式,从时间来看就是系统的运动变化,使相互作用中的各方力量总是处于此消彼长的变化之中,从而导致系统整体的变化。作为系统演化的根据。系统内的相互作用规定了系统演化的方向和趋势。系统演化的基本方向和趋势有二:首先,从无序到有序、从简单到复杂从低级到高级的前进的、上升的运动,即进化。产生进化的基本根据是非线性作用及其对系统的正效应在系统中居于主导地位。在这一条件下,非线性作用进一步规定了什么样的有序结构可能出现并成为稳定吸引子,同时规定了系统演化可能的分支。其次,从有序到无序、从高级到低级、从复杂到简单的倒退的、下降的方向,也即退化。热力学第二定律已经表明,在孤立或封闭系统内,这一演化趋势是不可避免的。普利高津指出,对于一个处于热力学平衡态或近(线性)平衡态的开放系统,其运动由玻耳兹曼原理决定,其运动方向总是趋于无序。从相互作用上来理解,退化主要基于非线性相互作用对系统的负效应占有了支配地位。
第二, 系统与环境的的相互作用是系统演化的外部条件。
从抽象意义上来理解,任何现实系统都是封闭性和开放性的统一。环境构成了系统内相互作用的场所,同时又限定了系统内相互作用的范围和方式,系统内相互作用以系统与环境的相互作用为前提,二者又总是相互转化的。在这个意义上,系统内的相互作用是以系统的外部环境为条件的。
系统的进化尤其依赖于外部环境。系统的相干作用是在系统内存在差异的情况下表现出来的。没有温度梯度就不会有热传导,没有化学势梯度也不会有质量扩散。但热力学第二定律指出,系统内在差异总是在自发的不可逆过程中倾向于被削平,导致系统向无序的平衡态演化。因此,必须不断从外部环境获得足够的物质和能量才能使系统差异得以建立和恢复,维持远平衡状态,使非线性作用实现出来。因此系统必须对环境保持开放,才能进化。但开放性只是进化的必要条件,而非充分条件。普利高津的耗散结构论指出,孤立系统没有熵流(即系统与外界交换物质和能量而引起的熵),而任一系统内部自发产生的熵总是大于或等于零的(当平衡时等于0)因此孤立系统的总熵大于零。它总是趋向于熵增,无序度增大。当一个系统的熵流不等于零时,即保持开放性时,有三种情况;第一种情况是热力学平衡态,此种系统中,熵流是大于零的,因此物质和能量的涌入大大增加了系统的总熵,加速了系统向平衡态的运动。第二种情况是线性平衡态。它是近平衡态。其熵流约等于零。这种系统一般开始时有一些有序结构,但最终无法抵抗系统内自发产生的熵的破坏而趋平衡态。第三种情况大为不同,这种系统远离平衡态,即熵流小于零,因此物质和能量给系统带来的是负熵,结果使系统有序性的增加大于无序性的增加,新的组织结构就能从中形成,这就是耗散结构。例如生命系统、社会系统等
第三,随机涨落是系统演化的直接诱因
稳定与涨落上刻画系统演化的重要概念。由于系统的内外相互作用,使系统要素性能会有偶然改变,耦合关系会有偶然起伏、环境会带来随机干扰。系统整体的宏观量很难保持在某一平均值上。涨落就是系统宏观量对平均值的偏离。按照对涨落的不同反应,可把稳定态分为三种:恒稳态,对任何涨落保持不变;亚稳态,对一定范围内的涨落保持不变;不稳态,在任何微小涨落下会消失。对于稳定态而言,涨落将被系统收敛平息,表现为向某种状态的回归。在热力学平衡态中,不论何种原因造成的温度、密度、电磁属性等的差异,最终都将被消除以至于平衡态。
但对于远平衡态,如果系统中存在着正反馈机制,那么,涨落就会被放大,导致系统失稳,从而把系统推到临界点上。系统在临界点上的行为有多种可能性,究竟走向哪一个分支,是不确定的。是走向进化,还是走向退化,是走向这一分支,还是走向那一分支。涨落在其中起着重要的选择作用。达尔文的生物进化论证明,生物物种的偶然变异的积累可以改变物种原有的遗传特性,导致新物种的出现。耗散结构论和协同学则定量地证明,随着外界控制参量的变化,原有的稳态会失稳,并在失稳的临界点上出现新的演化分支。一个激光器,仅仅因为外界泵浦功率的改变,就可以稳定地发出自然光、激光或脉冲光,乃至混沌的紊光。由此可见,稳定态对涨落的独立性是相对的,超出一定范围,例如在上述条件下,涨落将支配系统行为。如果涨落被加以巩固,那就意味着新稳态的形成。涨落在系统演化中的重要作用说明,系统演化是必然性与偶然性的辨证统一。普利高津指出,“远离平衡条件下的自组织过程相当于偶然性与必然性之间、涨落和决定论法则之间的一个微妙的相互作用”。(普利高津《从混沌到有序》,上海译文出版社,1987年版,223页)
从存在到演化,这是科学发展的必然。普利高津可以说是这一发展趋势的理论代言人。
普利高津首先指出,近代经典科学乃至现代的相对论和量子力学都是关于存在的科学,机械论自然观统治着近代西方世界的科学观。他说:“对于经典科学的大多数奠基者甚至爱因斯坦来说,科学乃是一种尝试,它要越过表面的世界,达到一个极其合理的没有时间的世界”。“经典科学不承认演化和自然界的多样性”因而,长期以来,时间成为一个“被遗忘的维数”。而机械论自然观则认为“宇宙是单一的、无限的、不动的它不产生自身它是不可毁灭的它是不可改变的”
普利高津进而指出,现代科学正发生着根本性的改变。他说,“经典科学,简单被动世界的神话科学,已属于过去,它没有被哲学批判或经验主义的抛弃所扼杀,但却被科学自身的内部发展所灭亡”。“一种新的统一性正现露出来:在所有层次上不可逆性都是有序性的源泉”。正是依据这一思想,普利高津以耗散结构论在热力学第而定律的框架中解决了生物进化和热力学退化的矛盾。而在1980年出版的《从存在到演化:自然科学中的时间和复杂性》一书中,普利高津总结和阐发了他建立演化科学的纲领。“也许有一种更为精妙的现实形式,它既包括定律,也包括博弈,即包括时间,又包括永恒性” (以上引言转引自《自然辩证法参考读物》清华大学出版社,2003年版,119—120页)。这里,普利高津试图通过对时间的再理解,为存在和演化之间架起一座桥梁。
耗散结构理论建立为自然科学发展开辟了新的方向,协同学、超循环论、混沌理论乃至突变论可以说都是这一理论的继续。自组织理论的发展使我们对自然演化的前提条件、动力根据、诱因途径、组织形式和发展前途等已能够加以较为具体的刻画,对多样性和统一性、质变和量变、肯定和否定、原因与结果、必然性与偶然性、可能性和现实性、进化和退化等的辨证统一关系进一步从科学上得到了说明,从而建立起真正的关于演化的科学。自组织理论的出现和发展影响是重大的,它前承早期的生物进化论、热力学,后连大爆炸宇宙论、暴涨宇宙论以及C—P联合变换不守恒规则,并与它们一起,展示了20世纪演化科学的时代。
系统演化原理的提出,最终确立了现代科学在方法论上的动态性原则。这一原则也可称为历时性原则。这一原则要求:不能把系统看作“死系统”,即已经完成的、静止的、永恒的东西,不能仅满足于静态还原,虽然在研究中我们常常被迫采用理想的“孤立系统”、“封闭系统”的概念,但应始终牢记任何实际系统都是动态的“活系统”。热力学第三定律指出,绝对零度永远不可达到。而量子力学也已证明,即使在绝对零度,还有“零点能”的存在。因此我们必须克服静止的形而上学的思维方式,从系统的动态过程中来把握对象。要从对要素的静态分析上升为要素之间的相互作用、要素在系统整体中的变化的动态把握;从对结构的静态分析上升为对内外相互作用、结构态的形成、保持和转化的动态把握;要从对系统整体的静态分析上升为对系统的发生、发展和消亡的总体过程的动态把握。
动态系统理论是系统科学的核心,突出地表现了系统科学的动态性原则。动态系统理论是关于系统状态转移的动力学过程的理论,其中心课题是把握系统的演变规律。其数学模型通常为动力学方程,或称为演化方程。它以状态变量表示系统状态、把系统所有可能状态的集合称为状态空间,以控制向量表示环境对系统的制约;以稳定性理论、吸引子理论、分叉理论刻画系统的演化。在动力学方程中,一般以微分、差分、积分等表示动态特性的量,来描述动态过程中诸变量之间的关系。在动态系统理论看来,所谓静态系统只能是一种静态假设,它基于这样一种假设:即系统状态迁移可以瞬间完成。这意味着系统必须有无限储能可资利用。但任一实际系统总是有限的,因而状态转移不可能瞬间完成。这就如在牛顿的绝对时空中所谓同时性的绝对性一样。同时性假设要求光速必须是无限的,但实际上光速为有限常数。
动态性原则可以说贯穿于系统科学及其方法的每一个具体内容中。各种具体的系统科学方法无不体现出动态性特征。自组织理论方法内容是系统在相互作用

②  矿产勘查的系统观思维方法

按照唯物辩证法的系统观,世界一切事物都是由其内部相互联系、相互制约着的要素,按一定的层次、结构方式所组成,并同其周围环境相互联系与作用着的整体。也就是说,事物都是作为系统而存在的。这是现代系统科学的哲学基础。系统科学是关于客观世界的系统结构、信息联系、反馈作用、自组织机制和行为功能的一般规律的知识体系。它是系统论、控制论、信息论、耗散结构理论、协同学、超循环理论和系统工程等一类学科的统称。系统科学的出现导致科学思想方法的3次大的转向。即:从“实物中心论”思维向“系统中心论”思维的转变;从“严格决定性”思维向“概率统计性”思维的转变;从“退化历史观”思维向“进化历史观”思维的转变。这是20世纪一次重大的科学思维突破。它不仅进一步深化了人们对现实世界的认识,而且还以其特有的新颖思路,改变了人们的思维方法,成为当今人们解决一些复杂的科学、技术、经济和社会问题的行之有效的方法,并且解决了单用传统方法无法解决的许多跨学科、跨领域的科学难题。矿产勘查活动也是作为一个系统而存在的,在矿产勘查活动过程中必须按系统的观点来观察、分析和处理各种问题。

一、矿产勘查中“系统中心论”思维方法

着名科学家贝塔朗菲把“机体系统论”的思维方法原则提炼并推广到其他学科领域,从而形成了带有跨学科性质的一般系统论。系统论的思想方法在于,它抽象地研究系统,而不管它是基本粒子、太阳系、家庭和社会,即抛开系统赖以依存的具体物质基础,着重考察系统中整体与部分、结构与功能、系统与环境的关系,并运用数学手段和工具确立适用于所用课题系统的一般思想方法和原则,从而起到某种方法论的作用。

传统科学的“实物中心论”是指把个别对象置于研究中心的思维方式。将个别研究对象分解为各个部分予以分别考察,然后采取对部分认识的加和方式作为对研究对象整体的认识。这种思维方式在认识简单组织和机械叠加性的事物时是可以的;这种思维方式是就对象本身来认识个别事物,是从单质、单层次、单思维、单变量和单因果关系的思维视角来认识对象的。

系统论向人们提供了一套超越以往科学思维框架的新的理性思维形式。现代科学的“系统中心论”是指把具有整体性特征的复杂对象作为研究的思维方式。这种思维方式在考察对象时是以全面联系和功能上的非加和性的观点来认识事物,是从多质、多层次、多维、多变量和复杂因果关系的思维视角来认识事物。“系统中心论”将有机系统置于研究的中心,而个别实物对象则成为系统有机组成要素,在考察问题时主要不是关心实物的物理性质和机械运动规律,而是它的组成要素之间的关系,即整体性、关联性、结构性、功能性、非线性、协同性、有序性等。这种思维方法代表着当代科学思想方法的主流和走向,表现着人们对现实世界的理解方式已经从以认识个别部分为主转向以认识系统整体为主,从认识实体为主转向以认识系统和关系为主。

“系统中心论”的思维方法适用于研究有组织的复杂的对象。这些研究对象一般具有如下特点:一是非加和性,即整体实现了部分所没有的性质,亦即“整体大于各组成部分之和”;二是非线性关系,即组成系统的各要素之间发生非线性的反馈作用,这是整体中新增加出来东西的来源;三是所研究的部分,其数量在两个以上;四是等级性,即可以从3种层次水平上来描述对象:从它所具有的外在整体性的角度,从其内在结构的角度,从把对象理解为更大系统的子系统的角度。矿产勘查活动,无论从矿产勘查目标的判定、找矿靶区的选定,到具体勘查项目的实施活动中引进“系统中心论”思维方法是可行的,也是建立正确的矿产勘查思维方法的有效途径。

在现代岩石学研究中,已不再是简单的描述性研究,而成因岩石学和岩石动力学已成为岩石学的研究中心。为确定岩石的成因,必须把描述性岩石学、同位素岩石学、岩石化学、成因矿物学、构造学作为研究系统的组成要素,其中任何单一要素都不能反映出岩石在成因过程上整体的功能。其整体功能只能通过各要素之间的非线性关系得以体现。也就是说,岩石的成因认识过程不是各要素的简单组合,而是通过各要素间的相互作用表现出来的总体功能。

在矿床勘探中,对矿体的认识也是一个复杂的系统。应用“系统中心论”的勘探思维方法能有效地达到认识矿床这一目的。对矿体的认识是由控矿构造、蚀变特征,矿体规模、形态、产状,矿体空间变化,矿体成分、结构构造,含矿热液性质,勘探工程控制程度,勘探人员观察与认识能力等诸多要素构成的系统。这一矿体认识系统又从属于矿床勘探的更大系统。矿床勘探系统又包括矿体认识、区域地质、水文地质、矿石采选冶性质、自然经济地理、社会经济环境、人财物及时间、勘探人员素质及组织形成等。就矿体认识这一系统而言,其各要素只能反映矿体的某一侧面,而各要素机械相加的总体特征又不是以全面反映矿体的整体特征,对矿体的空间变化,形成规律及形成模式的认识必须把矿体各要素按其结构性和非加和性质原理及非线性的反馈作用原理来考虑。以热液矿床为例,控矿构造控制矿体的规模、形态及产状、控制矿体形成规律、含矿热液的性质制约着矿体的成分、蚀变和形成模式;含矿热液性质又反作用于控矿构造、勘探工程部署和揭露,影响对矿体空间分布的认识,勘探者观察与认识能力直接关系到各要素的研究成果和成矿模式的可靠性。只有在把各要素当作动态的相互作用过程来加以思考,才能达到完整认识矿体这一目的。因此,研究一个事物,必须从整体出发,从分析入手,通过对组织系统各要素之间的非线性相互作用的考察中,发现“整体大于各组成部分之和”的机制。运用把孤立的部分与过程统一起来,由部分间动态相互作用引起的功能同系统目标统一起来的“系统中心论”思维方法,才能起到推动矿产勘查思维的作用。

矿产勘查中“系统中心论”思维方法的研究对象是有组织的,可分解为相互作用要素的复杂的系统。这一系统体现出部分所没有的性质,符合“整体大于各部分之和”的原理。“系统中心论”思维过程:一是考察研究对象,是否具有上述性质;二是分解出可相互作用的各要素,并分别研究各要素的个体特征,对于单一要素可采用“实物中心论”的思维方法加以分析;三是以动态、过程的观念来思考各要素间的相互作用,用要素相互作用引起的系统变化来推导整个系统的整体特征,即把各要素和系统发展过程统一起来,而不是简单地将各要素特征进行综合。从若干要素之间的相互联系中,归纳出在整体上具有、而各要素在孤立的情况所不具有的新的属性或新规律性。

二、矿产勘查中“概率统计性”思维方法

人们都普遍认为事物的发展是有规律的,但是以什么样的规律发展,这在认识上存在着两种不同的思维形式,一是传统科学探寻事物发展联系的“严格决定性”思维。二是随着系统论的发展而出现的现代探寻事物发展联系的“概率统计性”思维。

严格决定性思维方式认为,任何一个系统,只要知道了它的初始状态,就可以根据普遍的动力学定律,推演出它随时间的变化所经历的一系列状态。严格决定性思维是经典的科学思维方式,是传统科学从时间的可逆性和现实世界的简单性原则出发的必然产物。严格决定性思维对于简单的系统是有效的。比如,根据牛顿运动定律和万有引力定律,可以测定地球运动轨道,预报日食和月食。然而,对于一些复杂的事物则无法做到这一点。比如,天气预报不能准确预报几个月后的天气,也不能根据刚发生的地震来推断若干年后是否再发生地震。又如,在某一地区的地层中发现矿体,是否在不同地区同一层位有同样的矿体?总之,一旦处理多自由度、多体系的系统问题时,就脱离了严格决定思维模式,而只能作出概率统计性的预测。

“概率统计性”思维方式认为无论是在自然界,还是在社会领域中,大多数事物的发展变化并不受单值的确定的因果关系的制约,而是具有几种不同的可能性,究竟出现哪一种结果,往往带有偶然性或随机性。“概率统计性”思维代表了现代科学思维的一个基本方向,也是系统论在科学思维方面的重要成果。

客观世界的事物关系是复杂的,不能都归为单一的因果关系,更不能归结为纯粹的机械决定论的因果关系。正因为偶然性和随机性关系的存在,世界上才没有完全相同的事物,新事物才层出不穷,物质世界才丰富多彩。照“概率统计性”思维模式认为,事物发展变化规律服务于该统计性的规律,亦即可以大量的概率统计、平均值中看出随机现象的发展变化趋向。“概率统计性”思维方式提示人们在认识复杂事物发展的问题时,要注意到影响事物发展变化的多种因素,用概率统计方法来探讨事物发展变化的规律。

矿产勘查中的“概率统计性”思维方法首先要求把勘查目标,不论是勘查计划的制定,找矿靶区的确定,还是具体勘探项目的实施,都应理解为——受到许多因果关系制约的复杂的发展变化系统。其次不能依据某一因素的初始研究状态,按某一规律来推测目标,对目标的推测要依据大量的概率统计的总体趋势来确定。例如,在成矿预测过程中,不能依据某一地区存在矽卡岩型矿床就按岩体与碳酸盐岩的接触带这一规律来划分成矿预测区,而是要对该区内所有有关矿种的不同成因矿床进行统一分析,找出成矿类型的概率统计趋势,并结合成矿系列进行成矿预测。同时要考虑到地球物理、地球化学、成因矿物、蚀变及找矿标志等影响预测结果的因果关系,才能得到成功率高的预测结果。在矿床勘探时,对金矿等矿体变化较大的矿体的认识也是采取了概率统计的思维方式。无论对矿体的品位变化还是厚度变化,仅就局部的数个观察点,很难找出变化规律,矿体变化显得杂乱无章,不能依据这些杂乱点来推测矿体的变化规律。然而对矿体作大量的观察后,进行概率统计分析,就会显示出总体的变化趋势。这就是矿体变异函数分析方法。这其中就包含有“概率统计性”思维方法。由严格决定性思维向概率统计性思维的转变,实质上是简单性思维向复杂性思维的转变。

三、矿产勘查中的“进化历史观”的思维方法

系统科学的最新成果,诸如耗散结构理论、协同学和超循环理论,突出了客观世界中物质系统演化过程的方向性及其意义,即时间的矢量指向未来的过程不可逆性。这种“进化历史观”的思维方式相对于传统科学关于时间反演的不变性和演化过程的退化趋势等“退化历史观”的思维方式是一次思维方式上的转变。两种思维方式在地质学上亦显现出其中矛盾表现。

传统科学考察过程时采用的“退化演化观”的思维方法。它认为时间是没有方向性的,在认识过程中,用现在可以表现过去,即事物发展过程是可逆的。如,牛顿力学方程F=m(d2r/dt2),如果将时间改变符号,t改变为-t,该方程是不变的,它既可以决定未来,又可以说明过去。着名的薛定谔方程也是如此。地质学中传统的将今论古原则,就包含有这种“退化历史观”的思维方法。用现代发生的地质作用和成矿作用来说明过去几亿、几百万年前的地质作用过程。这也是受到当时的科学思维发展所影响的结果。

普利高津所创立的耗散结构是一种关于非平衡系统的自组织理论。它研究各种不同系统的无序向有序转化的共同规律和特点。因此它适合于不同的学科领域。在耗散结构理论中把历史和进化的观念引进到自然科学中,使时间这一概念不再是一个与可逆过程联系在一起的简单的运动参量,而是在非平衡世界中内部进化的度量,是与不可逆过程联系在一起的。同时认为远离平衡态的开放系统能够在一定外界条件下,随时间的推移,通过内部非线性的相互作用,在随机涨落的诱发下,自行产生组织性和相干性,即自组织现象。耗散结构理论不仅提出了时间演化的不可逆性,也反映出从无序到有序、从退化到进化的历史演化过程。从而体现出其在思维方式上的转变。

事实上,在生物进化论和地质渐变论等理论中,也都把历史进化包含于自然科学领域。地质学及其所包容的矿产勘查学是一门“历史性”的学科。地质演化是在非平衡系统中,通过各种地质作用的自组织性、相干性,由低级向高级、由简单向复杂的方向演化。因此,在这样一个具有历史性的学科中,必须要充分重视“进化历史观”的科学思维方法。

将今论古的时间可逆性思维是以现在的情况来推断过去,其中可加上其他工作方法,如同位素方法、实验方法、模拟或跟踪追溯过去地质作用等方法。它是地质学和矿产勘查学中经常使用的方法。然而就其根本思维方法来看,是与地球演化的不可逆性相矛盾的。

矿产也是不可逆性的演化的结果。古老时代的成矿作用是比较简单的,越演化成矿作用越复杂、越多样化。这一点从不同时代成矿作用类型的比较就可以得到结论。而且太古代的成矿作用在古生代和中生代不会重复产生。从矿种来看,25亿年前太古代主要是铁及一些金、锌、铬,没有铅矿。到几亿年,出现大量稀土、铅矿。到古生代至中生代,大量的金属都可以成矿。尤其是中生代是我国主要成矿时期,如汞矿、锑矿、金矿、钨、锡、锑、钼等矿床。而到白垩纪,第三纪才大量出现天然气和石油。从中可以看到,在太古代是和铜共生的,数量少,类型简单:而到中生代锌和铜、铅、金、银等多种元素共生,数量也多,类型也复杂多样。由此可见,成矿作用,矿产种类,类型,成矿元素等随着时间推移,越来越丰富多彩,具有不可逆的演化进程。

对上述矿产的演化进程完全用“将今论古”的原则就不合适。用现在的情况推断过去,过去没有,或者过去有也是比较简单。这是一种思维方法和物质演化相矛盾的思维方法。然而地球是一具有40多亿年历史的特殊研究对象,又没有可以类比的星球,只有“将古论今”与地球各个组成部分的演化关系相联系起来的思考才是一个科学的思维方法。如果只强调“将今论古”,很显然会得出错误的看法。因此,强调在以认识地质与矿产的演化及其结果时,要采用“进化历史观”的思维方法。

四、用系统科学的观点指导找矿工作

矿产在整个经济社会大系统中是局部的一个要素,本身又是一个特定的系统。因此,遵循客观规律要求,应当运用唯物辩证法系统的、联系的观点来认识和指导矿产勘查工作。

1.用系统的整体性原理部署找矿工作

系统是由要素和一定结构形式组成的整体。整体性是系统的第一个基本特征。整体性存在于各组成要素以一定结构形式而产生的相互作用之中。从系统科学整体性原理出发,矿产勘查应当统筹安排,充分发挥整体的功能,在具体工作中一是要求用全面的整体观点指导矿产勘查工作;二是要求正确处理全局与局部的关系。

用全面的整体的观点来指导矿产勘查工作,首先要求我们考虑问题、处理问题要着眼于整体。因为有些事从局部看是合理的,而从全局看是不合理的、不可解的。只有从整体看可行,具体的事才可以办。这也就是亚里士多德所说的,整体不等于各个孤立部分的总和。作为整体,首先要有一个整体的目标和任务要求,整体的各个要素都为实现整体的目的任务而协同动作,同时要对构成这个整体的各个要素统筹兼顾、全面安排。从空间角度看,要求把全国的勘查工作作为一个整体考虑;就一个地区而言,要求把所在地区的找矿工作作为一个整体;作为一个具体勘查项目,要求对有关这个项目的各方面问题考虑周到。

在矿产勘查中处理局部与全局的关系时,一是要做到局部服从全局;二是要重视局部对全局的制约。全局和局部之间的关系是辩证的关系,系统整体对其构成要素起主导和统帅作用,并规定和支配着所属各个要素的地位和性能。系统的组成要素也可反过来制约着整体的性质和状况。例如,对一个矿床评价来说,也要处理好局部与全局的关系,评价矿床的因素是多方面的,包括矿床地质因素,采、选、冶性能和技术因素,市场价格经济因素都影响着矿床评价的全局。如吉林省永吉县倒木河金矿就是因为含砷高、选矿技术没有完全解决而不能得到很好的开发利用。

2.用系统的结构性原理指导找矿

系统是各要素按一定结构组成的。要素组成系统时,并不是杂乱无章的,而是按一定结构组成的。所谓结构性就是系统内各要素之间合乎规律的,相对稳定的相互联系、相互结合、相互作用的方式。系统的总体功能取决于系统的结构,系统是要素和结构的统一整体。系统的要素和结构相同,其整体性能相同。系统的要素相同而结构不同,则整体性能就不相同。金刚石和石墨这两种矿物的组成要素都是碳(C),但由于结构不同,结果使金刚石成为最硬的矿物(硬度10),而石墨成为最软的矿物之一(硬度为1),由此可见结构的重要性。在找矿工作中,要注意不断调整和优化矿产勘查的矿种结构、队伍结构、技术结构、预查——普查——详查——勘探的次序结构等,使整个地质勘查能在结构合理和优化的基础上进行。

结构性对系统的发展起重要作用。结构的有序性是系统稳定发展的必要条件,合理的结构能促进事物(系统)的发展。例如,目前我们矿产勘查行业结构、矿产勘查队伍结构不尽合理,这些不利于矿产勘查事业的发展。在各勘查单位也存在管理人员、野外调查人员、综合研究人员、生产辅助人员等结构问题。在具体的勘查工作中也存在各种勘查手段的选择、资金和设备等合理配置、人员优化组合等结构性问题。为此,以系统科学的思维方法合理安排结构关系对取得理想的找矿效果非常重要。

3.用系统的层次性原理指导找矿

系统的层次性是指规定系统和要素(子系统)之间地位、等级和相互关系的特性。系统都有一定的层次,都是由不同层次的子系统按一定结构所组成的复杂的结合体。就全国地质工作而言,是一个包括地质勘查、地质科研、地质教育、地质装备及仪器生产、地质新闻出版事业等子系统组成的大系统。在地质勘查子系统中又有矿产勘查、基础地质、环境地质等几个次一级的子系统(要素)。在矿产勘查中又有更低一级的子系统、非金属矿产地质勘查等等。在能源矿产勘查中又有石油、天然气、煤、地热及放射性等矿产勘查层次。从系统的层次性原理看,必须处理好国家、省(区、市)、地(市)、具体地勘单位之间,具体找矿项目之间,总体设计与子项目之间,矿产区与矿段、矿石之间等各层次性关系,有条不紊、层次分明地开展工作。

4.用系统的开放性原理指导找矿

系统的开放性是指系统同其周围环境,即与其他系统之间的相互关系、相互作用。世界上孤立的系统是不存在的,任何系统都要与周围环境发生一定的联系,都要进行物质、能量和信息的交换和转换。矿产勘查与周围环境有关,如交通条件、气候条件、地理条件、施工条件、资金条件、林业条件、环保条件、土地使用条件等等都对勘查工作有很大影响。这些条件好,将有利矿产勘查工作开展,能促进矿产勘查工作发展。条件不好,则会对找矿工作带来制约。所以,在研究与部署矿产勘查工作时,就要考虑周围环境和外部条件。但反过来,在考虑外部环境时还要注意到矿产勘查工作对外部环境的积极影响,要辩证地思维两者之间的关系。外部条件不好,固然会制约找矿,但找矿的重大突破,也会促进和改善外部条件,我国攀枝花、白云鄂博、金川等矿产资源的勘查、开发使之建设为现代化城市就是例证。

③ 系统学的研究方法

对于简单系统和简单巨系统,自然科学的理论和方法(包括运筹学、控制论、信息论、数学以及耗散结构理论、协同学、突变论等)是可以很好地描述和研究的,并取得了很大的成功。70年代末以来有人把上述理论方法应用到复杂巨系统,也取得了一定的成功,如超循环理论。但对整个复杂巨系统的研究,特别是对社会系统的研究,上述理论方法有很大的局限性。例如对策论,就其理论框架而言,是研究社会系统的理想工具。但对策论已取得的成就,还不能处理社会系统的复杂性,问题在于对策论把人的社会性、复杂性、心理和行为的不确定性大大简化了,以至把复杂巨系统问题变成了简单巨系统或简单系统的问题了。
为了寻找研究复杂巨系统的有效方法,钱学森根据国内外对复杂巨系统的工作经验提出定性定量相结合的系统研究方法。这个研究方法是在以下三种复杂巨系统的丰富实践基础上,提炼、概括而抽象出来的。这就是:
①在社会系统中,由几百个或几千个变量所描述的定性定量相结合的系统工程技术对社会经济问题的研究和应用;
②在人体系统中,中西医相结合的临床方法的大量研究和应用;
③在生态环境系统中,地理区域规划方法的研究和应用。
定性定量相结合的系统研究方法,具有以下特点:
①把定量研究和定性研究有机结合起来;
②把宏观研究和微观研究结合起来;
③把多种学科结合起来进行交叉研究;
④把科学技术方法和经验知识结合起来。
经验知识虽不属于科学技术范畴,但对认识、研究复杂巨系统仍有着重要作用。以上这些特点表明,这个方法不仅对解决复杂巨系统问题具有重要现实意义,而且对发展系统学的理论具有深远的科学意义。

④ 系统研究法的什么是系统研究法

系统是由两个或两个以上的相互影响、相互作用的部分组成的有机体。任凭企业的有关环境和市场营销活动过程实际上也是一个系统。企业的市场营销系统,简单地说是由企业(卖主)和目标市场(买主)这两个基本部分组成的。在这两部分之间,通过商品货币和信息这两套流程联结起来,实现系统的运行。但是,一个企业的市场营销系统实际上是很复杂的,一般包括以下几个有机的组成部分:
①企业(卖主);
②市场营销渠道企业;
③目标市场(买主);
④竞争对手;
⑤企业周围的各种公众;
⑥ 宏观环境力量等。
一个企业要想成功地为其目标市场服务,提高经营效益,在作市场营销决策时就必须全面调查研究并考虑到企业本身、目标市场、市场营销渠道企业、竞争对手、周围公众和宏观环境等各方面的情况,统敌兼顾,处理好各种关系,从而使市场营销系统内的各有关方面保持一种协调性,实现系统的合理有效运行,取得营销的成功。这就是所谓的系统研究方法。

⑤ 系统观念是具有什么性的思想和工作方法

系统观念是具有基础性的思想和工作方法。

系统观念是马克思主义基本原理的重要内容,强调系统是由相互作用、相互依赖的若干组成部分结合而成的、具有特定功能的有机体;要从事物的总体与全局上、从要素的联系与结合上研究事物的运动与发展,找出规律、建立秩序,实现整个系统的优化;

用开放的复杂系统的观点、用从定性到定量的综合集成方法研究经济社会问题。我国的“两弹一星”、北斗卫星导航系统、“神舟”系列飞船等重大工程就是坚持系统观念、运用系统方法的成功案例。实践表明,系统观念、系统方法是组织管理重大工程、重大事业不可或缺的方式方法。

(5)系统观的研究方法扩展阅读

坚持系统观念是统筹“十四五”时期经济社会发展的科学方法。当前,我国发展环境面临深刻复杂变化,发展不平衡不充分问题仍然突出,经济社会发展中的矛盾错综复杂,必须从系统观念出发加以谋划和解决,全面协调推动各领域工作和社会主义现代化建设。

要运用系统观念,加强前瞻性思考、全局性谋划、战略性布局、整体性推进,统筹国内国际两个大局,办好发展安全两件大事,坚持全国一盘棋,更好发挥中央、地方和各方面积极性,着力固根基、扬优势、补短板、强弱项,注重防范化解重大风险挑战,实现发展质量、结构、规模、速度、效益、安全相统一。

⑥ 什么是系统观念

系统观念是马克思主义基本原理的重要内容,强调系统是由相互作用、相互依赖的若干组成部分结合而成的、具有特定功能的有机体;要从事物的总体与全局上、从要素的联系与结合上研究事物的运动与发展,找出规律、建立秩序,实现整个系统的优化;用开放的复杂系统的观点、用从定性到定量的综合集成方法研究经济社会问题。

我国的“两弹一星”、北斗卫星导航系统、“神舟”系列飞船等重大工程就是坚持系统观念、运用系统方法的成功案例。实践表明,系统观念、系统方法是组织管理重大工程、重大事业不可或缺的方式方法。

(6)系统观的研究方法扩展阅读;

我国国家制度和国家治理体系具有多方面的显着优势,为我们在社会主义现代化建设中坚持系统观念提供了有力保障。在全面建设社会主义现代化国家新征程中,必须统筹国内国际两个大局,办好发展安全两件大事,坚持全国一盘棋,更好发挥中央、地方和各方面积极性,着力固根基、扬优势、补短板、强弱项,注重防范化解重大风险挑战,实现发展质量、结构、规模、速度、效益、安全相统一。

⑦ 地球科学的研究方法有哪些

地球科学的研究方法:

一是地球系统观研究 ,在全球尺度上研究地球系统的各组成 (岩石圈、水圈、气圈和生物圈 )的相互作用及其运行机制和演化。

二是地球复杂性研究 ,研究地球系统的开放性、多层次时空结构、不稳定性、不平衡性和不均一性 ,研究地球系统相互作用的多因素和多样性以及它们之间的复杂的相互作用 ,不同组成、不同层次、不同作用的相互作用 ,以及作用过程和系统、子系统的整体行为和演化的非线性和不可逆性 。

三是跨学科综合研究 ,在地球科学研究中 ,多学科研究 ,特别是跨学科研究已经成为不可逆转的趋势 ,并成为主要研究方式。

⑧ 系统思维方法的系统思维研究的方法主要有

整体法
是在分析和处理问题的过程中,始终从整体来考虑,把整体放在第一位,而不是让任何部分的东西凌驾于整体之上。整体法要求把思考问题的方向对准全局和整体、从全局和整体出发。但同时它不排斥重视局部,是在整体观的指导下使局部问题得到解决,以实现整体功能的最大发挥。
结构法
进行系统思维时,注意系统内部的结构性。系统由各部分组成,部分与部分之间组合是否合理,对系统有很大影响。这就是系统中的结构问题。好的结构,是指组成系统的各部分间组织合理,是有机的联系。从结构的方面着手研究问题能使思维清晰、有条不紊,在这个过程中也能尽量避免错误。
要素法
每一个系统都繁杂的因素构成的,其中相对具有重要意义的因素称之为构成要素。要使整个系统正常运转并发挥最好的作用或处于最佳状态,必须对各要素考察周全和充分,充分发挥各要素的作用。
功能法
是指为了使一个系统呈现出最佳态势,从大局出发来调整或是改变系统内部各部分的功能与作用。在此过程中,可能是使所有部分都向更好的方面改变,从而使系统状态更佳,也可能为了求得系统的全局利益,以降低系统某部分的功能为代价。

⑨ 系统论有哪些基本观点

系统论是研究系统的结构、特点、行为、动态、原则、规律以及系统间的联系,并对其功能进行数学描述的新兴学科。系统论的基本思想是把研究和处理的对象看作一个整体系统来对待。

最简明的系统定义,莫过于“相互联系着的要素构成的整体”。这个定义由三层递进的含义,第一,系统是整体;第二,整体由要素构成;第三,要素是相互联系的。层层递进,缺一不可。

系统论的核心思想是系统的整体观念。贝塔朗菲强调,任何系统都是一个有机的整体,它不是各个部分的机械组合或简单相加,系统的整体功能是各要素在孤立状态下所没有的性质。

关于要素和联系的重要性,可以再举几个例子。譬如社会系统,是由人和人之间的联系组成的。描述人和人之间的联系有个专有名字——关系。

在社会系统中,除了战争和生育,不能大规模的主动的减增人口,而社会的发展、变革主要是改变人和人之间的关系。人群之间联系紧密了,合作也就产生了。改变了人群的联系,也就改变了社会。

(9)系统观的研究方法扩展阅读

基本方法

系统论的基本思想方法,就是把所研究和处理的对象,当作一个系统,分析系统的结构和功能,研究系统、要素、环境三者的相互关系和变动的规律性,并优化系统观点看问题,世界上任何事物都可以看成是一个系统,系统是普遍存在的。

大至渺茫的宇宙,小至微观的原子,一粒种子、一群蜜蜂、一台机器、一个工厂、一个学会团体、……都是系统,整个世界就是系统的集合。

系统是多种多样的,可以根据不同的原则和情况来划分系统的类型。按人类干预的情况可划分自然系统、人工系统;按学科领域就可分成自然系统、社会系统和思维系统;按范围划分则有宏观系统、微观系统。

按与环境的关系划分就有开放系统、封闭系统、孤立系统;按状态划分就有平衡系统、非平衡系统、近平衡系统、远平衡系统等等。此外还有大系统、小系统的相对区别。

阅读全文

与系统观的研究方法相关的资料

热点内容
台式电脑密码忘3个最简单的方法 浏览:288
足贴使用方法图 浏览:756
电脑直联网络摄像头方法 浏览:638
尿酸肾衰竭怎么治疗方法 浏览:103
幼儿园活动反思有哪些方法 浏览:51
功率表的使用方法 浏览:583
气动测量孔距的方法 浏览:701
海边锻炼身体方法 浏览:39
铸铁煎锅使用方法 浏览:734
如何改善睡觉多动的方法 浏览:336
北京缘之天森鲜炖燕窝的食用方法 浏览:546
角质凝露的使用方法 浏览:822
猪肉快速退毛方法 浏览:715
怎么求圆环面积简单方法 浏览:957
260除以4简便方法 浏览:320
在低电压中常用的熄弧方法有哪些 浏览:636
国风包装设计研究方法 浏览:604
宁波工程钢筋除锈剂方法有哪些 浏览:951
胯围测量正确方法图片 浏览:977
疤痕妊娠怎么治疗方法 浏览:966