导航:首页 > 研究方法 > 富氢水检测方法气相色谱分析法

富氢水检测方法气相色谱分析法

发布时间:2022-06-23 03:33:15

1. 气相色谱的专业知识

1 气相色谱
气相色谱是一种以气体为流动相的柱色谱法,根据所用固定相状态的不同可分为气-固色谱(GSC)和气-液色谱(GLC)。
2 气相色谱原理
气相色谱的流动相为惰性气体,气-固色谱法中以表面积大且具有一定活性的吸附剂作为固定相。当多组分的混合样品进入色谱柱后,由于吸附剂对每个组分的吸附力不同,经过一定时间后,各组分在色谱柱中的运行速度也就不同。吸附力弱的组分容易被解吸下来,最先离开色谱柱进入检测器,而吸附力最强的组分最不容易被解吸下来,因此最后离开色谱柱。如此,各组分得以在色谱柱中彼此分离,顺序进入检测器中被检测、记录下来。
3 气相色谱流程
载气由高压钢瓶中流出,经减压阀降压到所需压力后,通过净化干燥管使载气净化,再经稳压阀和转子流量计后,以稳定的压力、恒定的速度流经气化室与气化的样品混合,将样品气体带入色谱柱中进行分离。分离后的各组分随着载气先后流入检测器,然后载气放空。检测器将物质的浓度或质量的变化转变为一定的电信号,经放大后在记录仪上记录下来,就得到色谱流出曲线。
根据色谱流出曲线上得到的每个峰的保留时间,可以进行定性分析,根据峰面积或峰高的大小,可以进行定量分析。
4 气相色谱仪
由以下五大系统组成:气路系统、进样系统、分离系统、温控系统、检测记录系统。
组分能否分开,关键在于色谱柱;分离后组分能否鉴定出来则在于检测器,所以分离系统和检测系统是仪器的核心。
5 气相色谱仪几种常用检测器
目前有很多种检测器,其中常用的检测器是:氢火焰离子化检测器(FID) 热导检测器(TCD) 氮磷检测器 (NPD)火焰光度检测器(FPD) 电子捕获检测器(ECD)等类型。
氢火焰离子化检测器(FID):(氢)火焰离子化检测器是根据气体的导电率是与该气体中所含带电离子的浓度呈正比这一事实而设计的。一般情况下,组分蒸汽不导电,但在能源作用下,组分蒸汽可被电离生成带电离子而导电。
工作原理:由色谱柱流出的载气(样品)流经温度高达2100℃的氢火焰时,待测有机物组分在火焰中发生离子化作用,使两个电极之间出现一定量的正、负离子,在电场的作用下,正、负离子各被相应电极所收集。当载气中不含待测物时,火焰中离子很少,即基流很小,约10-14A。当待测有机物通过检测器时,火焰中电离的离子增多,电流增大(但很微弱10-8~10-12A)。需经高电阻(108~l011)后得到较大的电压信号,再由放大器放大,才能在记录仪上显示出足够大的色谱峰。该电流的大小,在一定范围内与单位时间内进入检测器的待测组分的质量成正比,所以火焰离子化检测器是质量型检测器。
火焰离子化检测器对电离势低于H2的有机物产生响应,而对无机物、久性气体和水基本上无响应,所以火焰离子化检测器只能分析有机物(含碳化合物),不适于分析惰性气体、空气、水、CO、CO2、CS2、NO、SO2及H2S等。
热导检测器(TCD):热导检测器(TCD)又称热导池或热丝检热器,是气相色谱法最常用的一种检测器。基于不同组分与载气有不同的热导率的原理而工作的热传导检测器。
工作原理:热导检测器的工作原理是基于不同气体具有不同的热导率。热丝具有电阻随温度变化的特性。当有一恒定直流电通过热导池时,热丝被加热。由于载气的热传导作用使热丝的一部分热量被载气带走,一部分传给池体。当热丝产生的热量与散失热量达到平衡时,热丝温度就稳定在一定数值。此时,热丝阻值也稳定在一定数值。由于参比池和测量池通入的都是纯载气,同一种载气有相同的热导率,因此两臂的电阻值相同,电桥平衡,无信号输出,记录系统记录的是一条直线。当有试样进入检测器时,纯载气流经参比池,载气携带着组分气流经测量池,由于载气和待测量组分二元混合气体的热导率和纯载气的热导率不同,测量池中散热情况因而发生变化,使参比池和测量池孔中热丝电阻值之间产生了差异,电桥失去平衡,检测器有电压信号输出,记录仪画出相应组分的色谱峰。载气中待测组分的浓度越大,测量池中气体热导率改变就越显着,温度和电阻值改变也越显着,电压信号就越强。此时输出的电压信号与样品的浓度成正比,这正是热导检测器的定量基础。
热导池(TCD)检测器是一种通用的非破坏性浓度型检测器,一直是实际工作中应用最多的气相色谱检测器之一。TCD特别适用于气体混合物的分析,对于那些氢火焰离子化检测器不能直接检测的无机气体的分析,TCD更是显示出独到之处。TCD在检测过程中不破坏被监测组份,有利于样品的收集,或与其他仪器联用。TCD能满足工业分析中峰高定量的要求,很适于工厂的控制分析。
氮磷检测器 (NPD):氮磷检测器(NPD)是一种质量检测器,适用于分析氮,磷化合物的高灵敏度、高选择性检测器。它具有与FID相似的结构,只是将一种涂有碱金属盐如Na2SiO3,Rb2SiO3类化合物的陶瓷珠,放置在燃烧的氢火焰和收集极之间,当试样蒸气和氢气流通过碱金属盐表面时,含氮、磷的化合物便会从被还原的碱金属蒸气上获得电子,失去电子的碱金属形成盐再沉积到陶瓷珠的表面上。
工作原理:是在NPD检测器的喷口上方, 有一个被大电流加热的铷珠, 碱金属盐( 铷珠) 受热而逸出少量离子, 铷珠上加有-250V 极化电压, 与圆筒形收集极形成直流电场,逸出的少量离子在直流电场作用下定向移动,形成微小电流被收集极收集,即为基流。当含氮或磷的有机化合物从色谱柱流出, 在铷珠的周围产生热离子化反应, 使碱金属盐( 铷珠) 的电离度大大提高, 产生的离子在直流电场作用下定向移动, 形成的微小电流被收集极收集, 再经微电流放大器将信号放大, 再由积分仪处理, 实现定性定量的分析。
氮磷检测器的使用寿命长、灵敏度极高,可以检测到5×10-13g/s偶氮苯类含氮化合物,2.5×10-13g/s的含磷化合物,如马拉松农药。它对氮、磷化合物有较高的响应。而对其他化合物有的响应值低10000~100000倍。氮磷检测器被广泛应用于农药、石油、食品、药物、香料及临床医学等多个领域。
火焰光度检测器(FPD):火焰光度检测器是利用在一定外界条件下(即在富氢条件下燃烧)促使一些物质产生化学发光,通过波长选择、光信号接收,经放大把物质及其含量和特征的信号联系起来的一个装置。主要由燃烧室、单色器、光电倍增管、石英片(保护滤光片)及电源和放大器等组成。
工作原理:当含S、P化合物进入氢焰离子室时,在富氢焰中燃烧,有机含硫化合物首先氧化成SO2,被氢还原成S原子后生成激发态的S2*分子,当其回到基态时,发射出350~430nm的特征分子光谱,最大吸收波长为394nm。通过相应的滤光片,由光电倍增管接收,经放大后由记录仪记录其色谱峰。此检测器对含S化合物不成线性关系而呈对数关系(与含S化合物浓度的平方根成正比)。
当含磷化合物氧化成磷的氧化物,被富氢焰中的H还原成HPO裂片,此裂片被激发后发射出480~600nm的特征分子光谱,最大吸收波长为526nm。因发射光的强度(响应信号)正比于HPO浓度。
电子捕获检测器(ECD):早期电子捕获检测器由两个平行电极制成。现多用放射性同轴电极。在检测器池体内,装有一个不锈钢棒作为正极,一个圆筒状-放射源(3H、63Ni)作负极,两极间施加流电或脉冲电压。
工作原理:当纯载气(通常用高纯N2)进入检测室时,受射线照射,电离产生正离子(N2+)和电子e-,生成的正离子和电子在电场作用下分别向两极运动,形成约10-8A的电流——基流。加入样品后,若样品中含有某中电负性强的元素即易于电子结合的分子时,就会捕获这些低能电子,产生带负电荷阴离子(电子捕获)这些阴离子和载气电离生成的正离子结合生成中性化合物,被载气带出检测室外,从而使基流降低,产生负信号,形成倒峰。倒峰大小(高低)与组分浓度呈正比,因此,电子捕获检测器是浓度型的检测器。其最小检测浓度可达10-14g/ml,线性范围为103左右。
电子捕获检测器是一种高选择性检测器。高选择性是指只对含有电负性强的元素的物质,如含有卤素、S、P、N等的化合物等有响应.物质电负性越强,检测灵敏度越高。

2. 富氢水如何检测

消费者在选购富氢水之前,先要清楚富氢水的作用机理,水的弱碱性、负电位、离子特性的功效。富氢水中的氢含量很低,所以普通方法很难检测,需要用到飞秒检测方法去测定,通过分子的振动和电子状态进行测定

3. 用气相色谱法怎么测氢气纯度

采用TCD检测器,5A分析筛色谱柱.氦气做载气就可以检测.
建议你上“色谱世界”网站看看吧,这个网站非常专业.对你会有较大帮助的.

4. 气相色谱知识及其操作注意事项

转自:分析测试网络网

气相色谱仪以其分离效率高、灵敏、快速等优点而被各行各业广泛应用。随着气相色谱仪的普及,操作人员如何正确使用仪器,成了一个不可忽视的问题。本文提出了气相色谱仪使用中应注意的几个问题,供广大气相色谱工作者参考。

环境条件

气相色谱仪对环境温度要求并不苛刻,一般在5~35℃的室温条件下即可正常操作。但对于环境湿度一般要求在 20%~85%为宜。在高度潮湿的地区,使用某些型号仪器的氢火焰离子化检测器时,会因湿度大,而导致放大器绝缘性能下降,若在高灵敏度挡上操作,响应值会下降。分析人员在使用仪器时,若遇到上述现象,应采取必要的措施。

气体纯度

气相色谱仪所用气源纯度要求在99.99%以上。目前,许多操作者对于不同检测器要求不同气源纯度的问题没有引起足够的重视,使用中,有可能因气源纯度不高而导致检测器检测限高且基线不稳定。例如用纯度为98%的氢气作为氢火焰离子化检测器的燃气气源,在检测器的 104MΩ灵敏度挡上使用时,可能由于氢气纯度不够(含有甲烷等可燃性气体) ,导致基线严重不稳,好象有永远出不完的峰。如果载气纯度不高,又含有微量氧时,将会影响毛细管柱的寿命。

气流比例的选择

对于氢火焰离子化检测器,需要N2-H2-Air 焰,点燃后应为富氧焰,即空气应过量,以保证氢气完全燃烧,3 种气体的最佳比例]为N2∶H2 = 1∶(0. 85~1) ,Air∶H2 = (6~8) ∶1或空气量更大。在此条件下,检测器灵敏度高、稳定性好,做出的定量校正因子可靠。而现在不少仪器操作者认为点着火就行了,对火焰的性质、气流的比例注重不够,导致定量校正因子不重复,定量误差大。

气路的检漏和清洗

(1) 仪器在验收时已进行过气路检漏,但在使用中若发现某些异常,如灵敏度降低、保留时间延长、出现波动状的基线等,应重新进行气路检漏。

(2) 样品中所含的高沸点组分易附着在气路的管壁上而造成污染,需要经常清洗管路。

(3) 气化室及色谱柱与检测器之间的连接管道,需用无水乙醇或丙酮清洗,并通气吹干。

进样技术

在气相色谱分析中,一般采用注射器或流通阀进样。本文涉及的是注射器进样技术。

进样量

进样量与气化温度、柱容量及仪器的线性响应范围等因素有关,即进样量应控制在能瞬间气化,达到分离要求和在线性响应的允许范围之内。填充柱冲洗法的瞬间进样量为:液体样品或固体样品溶液一般0. 01~10μL ,气体样品一般0. 1~10mL 。在定量分析中,应注意进样量读数的准确性。

注射器中空气的排除

用微量注射器抽取液体样品时,只要重复地把液体抽入注射器又迅速将其排回到样品瓶,就可以排掉注射器中的所有空气。当然在某些情况下,是不允许把样品排回到样品瓶中的。还有一种更好的方法,用计划注射量约2 倍的样品置换注射器3~5 次,每次抽取到样品后,垂直拿起注射器,针尖朝上,推进注射器塞,空气就会被排掉。

进样量的准确性

用经置换过的注射器取计划进样量约2 倍左右的样品,垂直拿起注射器,针尖朝上,让针穿过一层纱布(纱布可吸收从针尖排出的液体) ,推进注射器塞,直到读出所需要的数值,用纱布擦干针尖,这样可以保证进样量的准确。还需要再抽若干空气到注射器中,如若不慎推动了柱塞,空气可以保护液体不被排走。

进样时间

在大部分分析中,进样时间的长短对柱效率影响很大。若进样时间过长,会使色谱区域加宽而降低柱效率。因此,对于冲洗法色谱而言,进样时间越短越好,一般应小于1 秒钟。

易分解与易冷凝物质的分析

目前,不少操作人员,在对所要分析的物质还没有充分了解的情况下,认为只要能用汽化温度将其液体气化为气体,便可用气相色谱仪进行分析。实际上,汽化除能将液体变成气体外,还有一个重要问题不能忽视,即汽化能引起样品本身的分解,或者汽化后又冷凝。出现分解现象,会导致定性定量结果不准确;冷凝现象严重时,会引起载气管道某些环节堵塞,使定量结果不重复。因此,操作者应特别注意这类物质的分析。

朋友可以到行业内专业的网站进行交流学习!
分析测试网络网这块做得不错,气相、液相、质谱、光谱、药物分析、化学分析。这方面的专家比较多,基本上问题都能得到解答,有问题可去那提问,网址网络搜下就有。

5. 气相色谱法样品分析过程,简单叙述分析过程的主要步骤及各仪器部件的主要作用。

气相色谱想比较而言,要比液相色谱简单的多,气相色谱从结构上分为,气源系统,分离系统,检测系统,气源氮氢空,氮气为流动相,氢气空气助燃,首先进样器分为毛细管进样器,和填充柱进样器,这是按你的色谱柱来选择的,一般两者都要配的,毛细管进样器还分为分流毛细管进样和不分流,这是你做的样品浓度来决定用什么,色谱柱是机器的关键,分离的好不好,最主要的还是色谱柱好坏,色谱柱原理简单的说就是相似相溶原理,流动相的组分和色谱柱内填料的组分结合时间不同,那么各成分就会先后的从色谱柱出来,达到分离效果。其次是检测器,现在一般厂家用的都是高灵敏度检测器了,1 FID氢火焰检测器,FID虽然是通用型检测器,但是有些物质在此检测器上的响应值很小或无响应。这些物质包括永久气体 、卤代硅烷、H2O、NH3、CO、CO2、CS2、Ccl4等等。所以,检测这些物质时不应使用FID, FID是用氢气和空气燃烧所产生的火焰使被测物质离子化的。适用于含量分析,有机物分析。2ECD 电子捕获检测器,适用于检测农药残留,ECD都有放射源(一般为63Ni),3NPD氮磷检测器是在FID基础上发展起来的,它与FID的不同在于增加了一个热离子源(由铷盐珠构成),其用 微氢焰。在热离子源通电加热的条件下,含氮和含磷化合物的离子化效率大为提高,故可选择性地检测这 两类化合物。由于用氢气,NPD的安全问题与FID相同。

6. 谁能告诉我气相色谱的每一种检测器都是什么原理

色谱柱是色谱仪的心脏,而检测器就是眼睛,无论分离效果多么好,若没有好的检测器 就看不到结果
常用检测器主要性能

TCD

FTD

ECD

FPD

热导检测器(TCD)
1、结构R1R2R3R4是阻值相等的热敏电阻组成,惠斯登电桥

2、原理
当参比池与测量池都只有一定流量的载气通过时,电桥平衡 (R1R4=R2R3),无信号输出(0mv,走基线),当样品组分+载气通过测量池时,由于组分与载气的导热系数不同,使热敏元件的电阻值和温度发生变化,电桥失去平衡(R1R4≠R2R3),AB两端产生电位差,有信号输出,且信号与组分浓度成正比。
不同物质具有不同的导热系数
3工作条件
(1)载气性质
载气与被测组分导热系数相差愈大
灵敏度愈高 ∵λH2及λHe>>Λn2
∴最好用H2 He作载气
(2)桥电流 R∝I3
要注意桥流,池体温度,载气种类
三者之间的关系
桥流太大钨丝易烧坏
N2作载气,110~150mA
H2作载气,150~250mA
(3)池体温度低,灵敏度高,但池温必须高于柱温,否则组分会在池体内冷凝
4、TCD使用注意事项
(1)为确保热丝不被烧断,在TCD通电前,先开载气
关机时一定要先关电源,后关载气(否则检测器会报废)
(2)载气中含氧气时,使热丝寿命缩短
∴载气必须除氧,而且不要使用聚四氟乙烯作载气输送管∵它会渗透氧气
5、TCD性能与应用
(1)属浓度型Det,进样量一定时峰面积A∝1/Fd
∴用A定量时要保持流速恒定
(2)属通用型Det,可测多种类型组分,特别是可测FID所不能直接测定的许多无机气体
(3)是非破坏型Det∴利用样品收集或与其他仪器联用

氢火焰离子化检测器(FID)
1.结构
主要是离子室
离子室包括:
气体入口
喷嘴
收集极(+)
极化极(-)
2.原理
H2+O2燃烧产生2100℃高温,使被测有机组分电离
∵收集极(+)与极化极(-)间加有恒电压,形成一个静电场,所电离的离子,在电场作用下形成离子电流,通过高阻取出讯号,经放大记录下来。
3.工作条件
a.仪器接地好,屏蔽良好
b.TDet>120℃,使离子室不积水,TDet要高于Tc 20~50℃
c.一般用N2作载气,载气要净化,除有机物
d.气体流量H2:N2:Air=1:1:10
4.特点
a、属质量型,A与Fd无关
属破坏型 ∴不能制备联用
b、适用水和大气中痕量有机物,
对烃类灵敏度高,比TCD高102~104倍
FID不能检测在H2焰中不电离的CO2、CO、H2O、H2S、CS2、N2、NH3等无机物(即水与永久气体等)
其他检测器
一、ECD
2.原理
Ni63放射源放射出β射线与载气N2碰撞产生电子,这些电子在电场作用下向收集极移动,形成恒定的基流,当载气中有电负性组分捕获这些低能量的电子,使基流降低,产生倒色谱峰讯号
3.工作条件
(1)载气纯度,用高纯N2(99.999%) 含O2<10 PPm
若用普通N2(含O2 100 PPm) 则必须净化除氧,水等
∵O2是电负性物质,可使基流降低很多
载气流量40~100ml/min
(2)极化电压:在50mv以内,通常20~50V
∵极化电压过高使电子能量过大,不易被组分捕获
∴不能直接供电,而用脉冲供电,使电子能量较小,易捕获
∴灵敏度提高
4.特点
(1)是选择性Det,对卤素及S,P,O,N等化合物响应大
对烃类无响应,对CCl4响应值比正己烷大108倍
∴可与FID组合定性
(2)灵敏度高,最低检测限度很低
但线形范围窄,约104
3)浓度型Det,峰高定量为宜

二 FPD火焰光度检测器也叫硫磷Det
1.结构:由氢火焰和光度计二部分组成
2.原理
含S,P化合物在富氢焰中燃烧产生激发态S2*或发光HPO*同时发射出不同波长的特征光

S2*的特征光谱为 394nm
HPO*的特征光谱为 526nm
此光谱经干涉滤光片选择,将特定波长光输入倍增管产生光电流,放大后记录
3.工作条件:富氢,H2流量 150~160ml/min
N2流量 40~50 ml/min
4.特点:质量型Det
用于测含S,P化合物, 信号比C-H化合物大10000倍
用P滤光片时,P的响应值/S的响应值>20
用S滤光片时,S的响应值/P的响应值>10
以后有关色谱仪方面的问题可以发贴到http://tieba..com/f?kw=%C9%AB%C6%D7%D2%C7&from=prin色谱仪吧发贴咨询,或者咨询北京科益恒达,希望可以帮您解决问题

7. 水质检测分析方法常用哪些分析方法

1、看:用透明度较高的玻璃杯接满一杯水,对着光线看有无悬浮在水中的细微物质?静置三小时,然后观察杯底是否有沉淀物?如果有,说明水中悬浮杂质严重超标。

2、闻:用玻璃杯距离水龙头尽量远一点接一杯水,然后用鼻子闻一闻,是否有漂白粉(氯气)的味道?如果能闻到漂白粉(氯气)的味道,说明自来水中余氯超标。

3、尝:热喝白开水,有无有漂白粉(氯气)的味道,如果能闻到漂白粉(氯气)的味道,说明自来水中余氯超标。也必须使用净水器进行终端处理。

4、观:用自来水泡茶,隔夜后观察茶水是否变黑?如果茶水变黑,说明自来水中含铁、锰严重超标,应选用装有除铁、锰滤芯的净水器进行终端处理。

5、品:品尝白开水,口感有无涩涩的感觉?如有,说明水的硬度过高。

6、查:检查家里的热水器、开水壶,内壁有无结一层黄垢?如果有,也说明水的硬度过高,(钙、镁盐含量过高),应尽早使用软化处理!注意:硬度过高的水很容易造成热水器管道结垢,因热交换不良而爆管;长期饮用硬度过高的水容易使人得各种结石。

(7)富氢水检测方法气相色谱分析法扩展阅读:

主要意义:

水资源是人类社会发展不可或缺并且不可替代的重要资源之一,对社会经济的发展以及人们的日常生活与生产都发挥着保障的作用。

当前人类社会中的水资源危机问题已经直接对经济的发展起到了限制的作用并且影响着人类的正常生活,所以正视水资源危机以及重视水资源问题具有紧迫性与必要性。而在对水资源质量的调查与把控中,水质分析发挥着重要的作用。

饮用水主要考虑对人体健康的影响,其水质标准除有物理指标、化学指标外,还有微生物指标;对工业用水则考虑是否影响产品质量或易于损害容器及管道。水资源是人类社会发展不可或缺并且不可替代的重要资源之一,对社会经济的发展以及人们的日常生活与生产都发挥着保障的作用。

8. 为什么气相色谱法不能用来检测水

你好!
你所描述的不详细不知你是什么样的检测器?
气相色谱法是可以用来检测水的,必须用TCD(热导检测器)因GC上可以搭载很多种检测器,比如FID(氢火焰检测器)、ECD(电子捕获检测器)、FPD、NPD,等等有很多。各个检测器都有自己检测局限性。
我的回答你还满意吗~~

9. 气相色谱法的分析方法

气相色谱法的分析方法分为以下几个步骤:

1、样品的来源和预处理方法

GC能直接分析的样品必须是气体或液体,固体样品在分析前应当溶解在适当的溶剂中,而且还要保证样品中不含GC不能分析的组分(如无机盐),可能会损坏色谱柱的组分。这样,我们在接到一个未知样品时,就必须了解的来源,从而估计样品可能含有的组分,以及样品的沸点范围。如能确认样品可直接分析。如果样品中有不能用GC直接分析的组分,或样品浓度太低,就必须进行必要的预处理,包括采用一些预分离手段,如各种萃取技术、浓缩和稀释方法、提纯方法等。

2、确定仪器配置

所谓仪器配置就是用于分析样品的方法采用什么进样装置、什么载气、什么色谱柱以及什么检测器。

3、确定初始操作条件

当样品准备好,且仪器配置确定之后,就可开始进行尝试性分离。这时要确定初始分离条件,主要包括进样量、进样口温度、检测器温度、色谱柱温度和载气流速。进样量要根据样品浓度、色谱柱容量和检测器灵敏度来确定。样品浓度不超过mg/mL时填充柱的进样量通常为1-5uL,而对于毛细管柱,若分流比为50:1时,进样量一般不超过2uL。进样口温度主要由样品的沸点范围决定,还要考虑色谱柱的使用温度。原则上讲,进样口温度高一些有利,一般要接近样品中沸点的组分的沸点,但要低于易分解温度。

4、分离条件优化

分离条件优化目的就是要在*短的分析时间内达到符合要求的分离结果。在改变柱温和载气流速也达不到基线分离的目的时,就应更换更长的色谱柱,甚至更换不同固定相的色谱柱,因为在GC中,色谱柱是分离成败的关键。

5、定性鉴定

所谓定性鉴定就是确定色谱峰的归属。对于简单的样品,可通过标准物质对照来定性。就是在相同的色谱条件下,分别注射标准样品和实际样品,根据保留值即可确定色谱图上哪个峰是要分析的组分。定性时必须注意,在同一色谱柱上,不同化合物可能有相同的保留值,所以,对未知样品的定性仅仅用一个保留数据是不够的,双柱或多柱保留指数定性是GC中较为可靠的方法,因为不同的化合物在不同的色谱柱上具有相同保留值的几率要小得多。

6、定量分析

要确定用什么定量方法来测定待测组分的含量。常用的色谱定量方法不外乎峰面积(峰高)百分比法、归一化法、内标法、外标法和标准加入法(又叫叠加法)。峰面积(峰高)百分比法*简单,但*不准确。只有样品由同系物组成、或者只是为了粗略地定量时该法才是可选择的。相比而言,内标法的定量精度,因为它是用相对于标准物(叫内标物)的响应值来定量的,而内标物要分别加到标准样品和未知样品中,这样就可抵消由于操作条件(包括进样量)的波动带来的误差。至于标准加入法,是在未知样品中定量加入待测物的标准品,然后根据峰面积(或峰高)的增加量来进行定量计算。其样品制备过程与内标法类似但计算原理则完全是来自外标法。标准加入法定量精度应该介于内标法和外标法之间。

7、方法的验证

所谓的方法验证,就是要证明所开发方法的实用性和可靠性。实用性一般指所用仪器配置是否全部可作为商品购得,样品处理方法是否简单易操作,分析时间是否合理,分析成本是否可被同行接受等。可靠性则包括定量的线性范围、检测限、方法回收率、重复性、重现性和准确度等。

10. 气相色谱的操作方法

气相色谱仪操作规程一 载气钢瓶的使用规程

1 钢瓶必须分类保管,直立因定,远离热源,避免暴晒及强烈震动,氢气室内存放量不得超过二瓶。

2 氧气瓶及专用工具严禁与油类接触。

3 钢瓶上的氧气表要专用,安装时螺扣要上紧。

4 操作时严禁敲打,发现漏气须立即修好。

5 用后气瓶的剩余残压不应少于980 kPa。

6 氢气压力表系反螺纹,安装拆卸时应注意防止损坏螺纹。

二 减压阀的使用及注意事项器仪表同

1在气相色谱分析中,钢瓶供气压力在9.8-14.7 MPa。

2 减压阀与钢瓶配套使用,不同气体钢瓶所用的减压阀是不同的。氢气减压阀接头为反向螺纹,安装时需小心。使用时需缓慢调节手轮,使用权后必须旋松调节手轮和关闭钢瓶阀门。

3 关闭气源时,先关闭减压阀,后关闭钢瓶阀门,再开启减压阀,排出减压阀内气体,最后松开调节螺杆。

三 热导池检测器的使用及注意事项

1 开启热导电源前,必须先通载气。

2 稳压阀,针形阀的调节须缓慢进行。稳压阀不工作时,必须放松调节手柄。针形阀不工作时,应将阀门处于“开”的状态。

3 各室升温要缓慢,防止超温。

4 更换汽化室密封垫片时,应将热导电源关闭。若流量计浮子突然下落到底,也应首先关闭该电源。

5 桥电流不得超过允许值。

四 氢火焰检测器的使用及注意事项

1 通氢气后,待管道中残余气体排出后,应及时点火,并保证火焰是点着的。

2 使用FID时,离子室外罩须罩住,以保证良好的屏蔽和防止空气侵入。如果离子室积木,可将端盖取下,待离子室温度较高时再盖上。工作状态下,取下检测器罩盖,不能触及极化极,以防触电。

3 离子室温度应大于100℃,待层析室温度稳定后,再点火,否则离子室易积水,影响电极绝缘而使基线不稳。

阅读全文

与富氢水检测方法气相色谱分析法相关的资料

热点内容
手摇转笔刀使用方法 浏览:371
祖母格披肩连接方法 浏览:831
空调外机漏水怎么办有什么方法 浏览:77
自助煲仔饭食用方法 浏览:952
华为mate7图片在哪里设置方法 浏览:454
属性与方法的区别是什么 浏览:757
摔伤疤痕的最佳治疗方法 浏览:313
开学的症状和解决方法 浏览:838
常用的激光打标方法 浏览:435
老天珠鉴定最简单方法 浏览:906
改善敏感肌的有效方法有哪些 浏览:964
在家如何自主学习的方法 浏览:873
太极练胯的方法有哪些 浏览:773
欧盟检测食品水份的方法 浏览:579
碘伏治疗新冠肺炎的方法 浏览:585
灌香肠正确套肠的方法视频教程 浏览:274
有什么方法可以解决鬓角过长 浏览:615
鉴别19年五粮液的方法 浏览:800
not函数的使用方法及实例 浏览:431
空腹喝牛奶胃痛解决方法 浏览:948