导航:首页 > 研究方法 > 行星的研究方法

行星的研究方法

发布时间:2022-06-16 04:58:33

Ⅰ 天文学家是如何发现系外行星的

什么是系外行星?

系外行星,就是太阳系之外的行星。太阳是恒星,太阳系是一个恒星系统,主要由太阳以及八大行星和其它小天体构成。

太阳系内有金木水火土五大行星,再算上地球、天王星和海王星,总共是八大行星。人类对太阳系的深入探索已经有半个世纪了,人类已经向八大行星分别发射了数十个探测器,其中人类向火星和金星发射的探测器数量最多。通过对太阳系八大行星的研究,科学家们根据相关数据,建立了关于行星的形成及演化理论。

银河系很大,直径大约10万到20万光年,银河系里估计有2000亿颗恒星。太阳是一颗黄矮星,银河系中像太阳这样的黄矮星大约有60亿颗,占银河系恒星总量的3%。银河系中有这么多恒星,按理来说,它们应该也像太阳一样拥有几颗行星。其它种类的恒星也可能拥有行星。

以目前的技术水平,人类也就只能观测银河系内很小范围内的系外行星。希望人类有一天可以冲出太阳系,直接向最近的系外行星发射探测器。

好了,今天的内容就到这儿,欢迎在评论区留言。热爱科学的朋友,欢迎关注我。

Ⅱ 科学家是如何测量出“行星”之间距离的

可以观测并确定行星的运动周期T和半长轴A。当时公式中唯一未知的量是引力常数G,直到1797年卡文迪什才利用扭转测量G,很快确定了太阳系中有卫星系统的行星的质量和太阳的质量。那么,对于太阳系外的恒星,如何测量它们的质量亮度,多年来一直困扰着天文学家,直到光谱线和黑体光谱的发现。先说两朵花绽放时的黑体辐射。用不了一两天,人们就会好奇物体是如何发光的。长期以来,人们发现随着温度的升高,铁炉中的铁会先变红后变白。

Ⅲ 都有哪些低成本的探测小行星的方法

天文学家探测行星的方法有: 方法一:天体测量学 天体测量学,主要通过精密追踪一颗恒星在天空中运行轨迹的变化,来确定受其引力拖曳的行星所在。这与径向速度法的原理很类似,只不过天体测量学并不涉及恒星光芒中的多普勒频移。 方法二:利用狭义相对论 这是人类宇宙探索“技术库”里增添的一个新手段。作为新的研究方法,它指导天文学家们去关注恒星的亮度因行星运动而发生的变化——后者的引力作用引发相对论效应,导致组成光的光子以能量的形式“堆积”,并集中于恒星运动的方向。

方法六:径向速度法 这是到目前为止最具有成效的确认行星的方法。 径向速度法找寻的线索,是恒星母星相对地球发生远近运动时,卫星行星受其影响所产生的微小波动。变化虽然小,但使用现代的光谱仪已可以检测出低至1米/秒的速度变化。这种方法通常也叫做“多普勒效应法”,因为它测量的,就是恒星的光受引力拖曳而产生的变化。 方法七:凌日法 凌日法的基本原理,是观察恒星亮度在有行星横穿或路经其表面时发生的细微变化。它的好处是可以从光变曲线测定行星的大小。

Ⅳ 行星物理学的研究方法

十七世纪初。望远镜的诞生为行星及其卫星的物理研究提供了条件。虽然行星的视圆面很小,而且观测受地球大气抖动等因素的影响,但用望远镜通过目视观测还是发现了行星表面的许多特征。十九世纪中叶以后,照相术、测光术、分光术被广泛地应用到行星及其卫星的观测和研究中来。例如:用照相方法拍摄行星的照片;用测光方法测定行星和卫星的累积星等、明度星等、色指数、光度与位相的关系、反照率及表面的有效温度;用分光方法拍摄行星的光谱,并进而确定行星大气的成分,根据谱线位移量测定行星的自转周期等。随后,偏振测量也被广泛地应用到行星物理研究方面,对行星表面不同部分所反射的光的偏振测量,对于了解行星表面结构和特性有十分重要的价值。
二十世纪上半叶,射电天文学诞生后,开始对行星进行射电观测,扩大了对行星及其卫星观测的波段。这种观测通常分为两类,一类是直接接收行星和卫星表面发出的射电辐射,例如对行星而言,已经接收到的有水星、金星、火星、木星、土星、天王星、海王星的射电辐射,其中木星、天王星、海王星还有射电爆发;另一类是雷达观测,用雷达方法可以测定和研究行星表面的特征,甚至可以测绘表面图。
五十年代末以来,相继向月球、金星、火星、水星、木星和土星发射了各种探测器,以逼近飞行、绕转飞行、硬着陆、软着陆、载人飞行等方式,通过照相、自动测量、采样分析以及宇航员的实地考察和取回样品,对月球和行星作了深入的研究。新的发现接踵而至。随着宇宙航行时代的到来,行星物理学已成为当代科学研究的活跃领域之一。

Ⅳ 观测星星有哪些方法

观测星星的整体运动而不仅仅是一条光线。假如,一颗行星在一平面内运行,在引力周围的中心恒星的移动将会引起星球在几年之内向观测者靠近或远离。这将会使恒星的闪烁频率有微小而可测的变化,但其作用甚微,木星引起太阳以每秒12米的径向速度前进或后退,从而产生了小于千万分之3的光线频率的变化。尽管大多数研究星球径向速度的方法只能精确到每秒几百米,但是有些研究者已找到更精确的系统来观测行星。

加拿大维多利亚大学的布鲁斯?坎贝尔和他的同事最近使用莫纳壳西死火山上的3.6米长的加拿大和法国联合研制的夏威夷式的望远镜完成了一项历时7年的研究工作。他们在望远镜信号束中用氰氟化物打开了一个洞,用以标定这颗恒星的光谱。包括德克萨斯大学的麦克唐纳天文台在内的许多研究小组也使用了同样的技术,不同的是,麦克唐纳天文台使用碘胞作为标定光谱的标准。尽管这些研究进行了7年,但至今仍未发现任何行星,他们本应能够在观测的恒星周围发现巨大的行星。

到现在为止这些计划尚无一成功,这使人们认识到想要找到木星大小的一颗行星都是如此艰难,而要找到地球大小的行星更是难上加难。据安吉尔来看,甚至是用改良的光学仪器从地球上来探测地球大小的行星也是不大可能的。因此,大概需要把观测点移到太空中,即使在太空中观测也并非易事。就算可以成功地避开地球大气层的影响,要找到地球大小的行星的清楚影像,需要有2倍于哈勃太空间望远镜大小和10倍光滑度的空间望远镜,这将耗资昂贵,并且在若干年内很难制成。

一个耗资较少的探测地球大小的行星的频率的计划,1994年由加利福尼亚国家航天和航空局埃姆斯研究中心的比尔?布鲁克作为该局“探索”计划的一部分提出。这个计划主要是监测类太阳恒星的明亮度以便研究行星经过它们时引起的变化,效果同样是很不明显的。当地球在太阳前经过时,太阳的亮度只会减少0.01%,但这种变化会持续几个小时,并在一个固定的时间内每年发生1次。这就使得研究小组有可能把这种情况与耀斑或恒星黑子引起的恒星亮度的随意变化相区别。布鲁克说3次这样重复出现的情况就可以证明1个类似地球的行星的存在,并且研究者也可预测下次的通过时间。

只要观测者大体上与恒星的行星运行轨道平面平行,小行星接近恒星就可探测到。但从几何学角度来考虑这种可能性只有1%左右,既然没有办法事先知道从哪些星星着手研究,最好的办法就是同时观测大批的恒星,寄希望于能够找到存在正确平面的行星和恒星,并捕捉到那些正要经过恒星的行星。这种观测办法需要连续不停的监测,并且最好在太空中进行,在那里没有阳光或坏天气的干扰。

布鲁克的研究小组将使用一个视角为100的1米广角的天文望远镜,并配备一组有极高灵敏度的探测仪。这个望远镜将被安置在卫星上与卫星一道进入运行轨道。研究小组选择的观测方向包括类似我们的太阳的5000颗星星。

1995年早些时候,一个由100多个重要人物组成的审查委员会评价说,布鲁克研究小组的计划是唯一可行的探寻类似地球行星的方法。但仍有人怀疑它的实施是否可把费用控制在“探索”计划的财政预算之内,即每个小组不超过1.5亿美元。两个相对独立的专门小组正在对研究小组进行评估,并决定1996年它是否可以归入“探索”计划。

由于类地的行星较小的质量以及对恒星较小的影响,用天体测量学的方法探寻类地的行星就需要精确到1/10微秒的仪器,只有用干涉仪才能达到此效果。从相隔一定距离的两台望远镜发出的光束被混合在一起,去模拟一台带有与两台望远镜间距一样大的镜片的独立望远镜拥有的分辨率。

在位于帕萨迪纳的国家航空和航天局的喷气推进器实验室,米歇尔?绍和他的同事们正在建造红外式干涉仪,可使其用于高精度的天体测量仪中。他们想要探测最多40光年远的天王星和海王星大小的太阳系外行星,正在建造的干涉仪是由两个相距100米的40厘米望远镜组成的。

国家航天和航空局同时正在夏威夷的莫纳克亚死火山上,安装使用了两个类似的10米直径的凯克天文望远镜用于行星研究。一种方法是在主体望远镜周围搭一些小的“分支”望远镜,并与主体部分中一个望远镜平行,构成多种组成部分的干涉仪,米歇尔相信依靠如此高精度的仪器的帮助,寻找大小介于地球与海王星之间的行星应该是可能的。

用天体测量学的方法探测类地行星的最后步骤是具有挑战性的。类似于来自恒星黑子的影响的复杂因素可能会造成很难排除的错误。即使一个天体测量计划最终成功了,我们依然无法知道所寻找的行星是否能够居住。一个由巴黎大学的艾伦?莱热领导进行的达尔文探测计划,将使用以太空为基地的干涉仪寻找生命存在的信号。这部干涉仪是由1~2米为直径、10~30米间距的两个或多个红外线望远镜组成的。

达尔文探测计划的仪器由于许多原因将会观察到红外光谱。首先,恒星与行星之间红外线的对比度比可视光线要大,这是因为类太阳恒星带有高达5100开尔芬的温度,主要在光谱的可视地区发射光线,而行星的温度只有100开尔芬或更少,散射的最大值都集中于红外线外侧,尽管恒星更大的体积和更高的温度使它在所有波长范围内都比行星亮,但在光谱红外线区,亮度的差别则小得多,故而行星更容易被辨别位置。在10微米的波长范围内,地球是太阳系内最亮的行星,尽管它比太阳要暗1000万倍。达尔文小组的干涉仪将会顺利安装好,这样不同的光束将会互相进行破坏性干扰甚至抵消,这使得探测类地行星发射出的微弱信号比较容易。

既然氧气在红外线区内存在易辨认的光谱线,行星的信号可在波长6~9微米的臭氧吸收带内探测到,在这个吸收带内类地行星与它的中心恒星相比较时显得相对明亮。臭氧层的出现预示着在下层的大气中含有大量的氧气,氧气具有很大电抗性,经常很快地移动出大气层中,它的出现预示氧气被生物放射物质所代替发生光能合成。

达尔文探测计划是欧洲航天局(ESA)考虑范围的两个行星探测计划之一。从现在开始到2000年,达尔文探测计划和其对手天体测量——GAIA计划将被进行更细致的研究和评估,最终其中之一会被选中作为欧洲航天局的“地平线2000长远太空”计划(GAIA)的中流砥柱。GAIA可以胜任探测行星的任务,而在技术上,富有挑战性的达尔文研究小组同样可以探测到生命的痕迹。

实际上,确定一颗遥远的行星的距离是所有任务中最艰巨的。甚至那些直接探测行星的方案,也只能看到一个光点。它需要以太空为基地的干涉仪,并配有间隔相当远的望远镜。这些工作用一架航天器是无法完成的,但米歇尔?绍相信不久就可能使用不同的航天器作为这架巨大的干涉仪的部件。他设想将3艘宇宙飞船发射进入太阳系轨道中,排列成边长为1000公里的等边三角形,两个是望远镜,第三个作为光束混合和分析的导航台。研究人员可利用激光对3艘宇宙飞船的距离进行极其精确的测量,这样光束可以正确地混合在一起。这个计划将构成太阳系外行星系统研究的最后一步,并将第一次具体描绘出太阳系外的行星世界。

这的确给我们描绘出一幅充满希望的未来的蓝图。

Ⅵ 凌日法是什么原理人类有哪些探索外星的方法

经常在这个频道里说起开普勒号(Kepler)进行的任务以及它通常使用凌日法(transit method)探索系外行星。也就是说,每当一颗行星位于恒星前,并与之排成一排,刚好挡住其光线,我们就可以用像开普勒号这样的光度计探测到光度的下降。


图解:开普勒号新发现的41颗凌日行星(图源:eoPortal)

最后,有件事要宣布。在这个月底,我和艾萨克·亚瑟(Isaac Arthur)会有一个分为两部分的合作作品,这也是很多人询问想看到的。我们商议并选择了“提升(uplifting)”这一主题,即你可以通过生物或技术上的增强,让一个物种变得更聪明。这个主题已在科幻小说中涉及,其中最明显的是大卫·布林(David Brin)和H.G.威尔斯(H.G. Wells)的作品,但这个概念还有很多其他方面没有得到很好的探讨,特别是在地外生物学方面。

Ⅶ 人类如何探索系外行星有什么新设备吗它是怎么工作的

ARIEL “瞪羚号 ”系外行星探测器是首个完全专注于系外行星大气的航天器。NASA期望借助重要仪器以收集珍贵数据。


这一对仪器将会穿梭到距离地球一百万英里之外的拉格朗日点2(图示L2处)。这一点与NASA将于2021年发射的韦伯空间望远镜相同,应当能在太空中提供一个稳定的位置。韦伯空间望远镜将会通过详细研究行星的一部分来补充ARIEL的工作。

Ⅷ 天文学家探测行星的方法有哪些

天文学家探测行星的方法有:

方法一:天体测量学

天体测量学,主要通过精密追踪一颗恒星在天空中运行轨迹的变化,来确定受其引力拖曳的行星所在。这与径向速度法的原理很类似,只不过天体测量学并不涉及恒星光芒中的多普勒频移。

方法二:利用狭义相对论

这是人类宇宙探索“技术库”里增添的一个新手段。作为新的研究方法,它指导天文学家们去关注恒星的亮度因行星运动而发生的变化——后者的引力作用引发相对论效应,导致组成光的光子以能量的形式“堆积”,并集中于恒星运动的方向。

方法三:脉冲星计时法

这种方法特别适用于发现围绕脉冲星运动的行星。所谓脉冲星,是由恒星衰亡后的残余形成的密度极高的星体。它在高速自转的同时,会发射出强烈脉冲——且由于一颗脉冲星的自转本质上是非常稳定的,所以这种辐射因为自转而非常规律。

方法四:直接成像法

这种方法最大的特点,叫“不言自明”——用不着什么复杂的演算,只需使用功能强大的望远镜,直接给距离遥远的行星拍摄个“证件照”,一并还能取得其“行星护照”——上面包含了这颗行星光度、温度、大气和轨道信息。

方法五:重力微透镜法

重力微透镜法,是指科学家们从地球上观察巨大星体路经一颗恒星正面时发生的现象,进而寻找行星的方法。这是唯一有能力在普通的主序星周围检测出质量类似地球大小行星的方法。

方法六:径向速度法

这是到目前为止最具有成效的确认行星的方法。

径向速度法找寻的线索,是恒星母星相对地球发生远近运动时,卫星行星受其影响所产生的微小波动。变化虽然小,但使用现代的光谱仪已可以检测出低至1米/秒的速度变化。这种方法通常也叫做“多普勒效应法”,因为它测量的,就是恒星的光受引力拖曳而产生的变化。

方法七:凌日法

凌日法的基本原理,是观察恒星亮度在有行星横穿或路经其表面时发生的细微变化。它的好处是可以从光变曲线测定行星的大小。

Ⅸ 科学家首次发现银河系外行星,体积类似土星,科学家是如何寻找系外行星的

如今,关于发现太阳系外行星的消息不绝于耳,甚至发现太阳系外宜居行星的消息也不时传来,已经不是什么新鲜事儿了。那么,距离遥远且自身并不发光的系外行星,是如何被地球上的人类发现的呢?

这些观测数据包括:恒星在天空中运行轨迹的变化、恒星的亮度因行星运动而发生的变化、恒星的二级光变曲线、恒星受行星引力拖曳而产生的多普勒频移……

Ⅹ 行星不发光,科学家是如何发现太阳系外的行星的

科学家有很多方法来寻找地外行星,比如行星凌日法、径向速度法、直接测量法、引力摄动法,重力微透镜法、脉冲星计时法、相对论法等等;其中凌日法是最有效的,目前人类发现大约5000颗地外行星中,有70%都是利用凌日法发现的。


但是这个方法对观测设备的要求极高,还要求行星的尺寸不能太小,距离地球越近越好,同时行星也不能距离母恒星太近,目前天文学家用这种方法发现了数十颗系外行星。

以上七种探测系外行星的方法,都是各有各的优缺点,比如行星凌日法虽然效率非常高,但是当行星的公转轨道垂直于地球方向时,这个办法就失效了,而且行星凌日法不反应行星的大气数据,只有各种方法相辅相成,才能让我们发现更多的地外行星。

阅读全文

与行星的研究方法相关的资料

热点内容
地下水高锰酸钾指数测量方法 浏览:334
纤维桩使用方法 浏览:687
贵州点光源安装方法 浏览:808
化学镀方法和技巧 浏览:494
宝宝怎么治疗最好的方法 浏览:459
csgo连入专属服务器失败解决方法 浏览:939
溶液酸碱性计算方法 浏览:205
战马贴膜的正确方法 浏览:174
复印机安装与操作方法 浏览:21
概率中的个数计算方法 浏览:828
金帅洗衣机使用方法 浏览:654
怎么选择桩的施工方法 浏览:588
联想笔记本限速在哪里设置方法 浏览:485
怎样快速止牙痛土方法 浏览:57
子宫肌层2mm治疗方法 浏览:799
波纹排水管安装方法 浏览:258
华为网络密码在哪里设置方法 浏览:1011
含羞草如何种植方法 浏览:359
小米note微信视频在哪里设置方法 浏览:853
在家制作红枣糕的简单方法 浏览:424