导航:首页 > 研究方法 > 能进行数字分析的数学方法

能进行数字分析的数学方法

发布时间:2022-06-02 10:05:28

1. 数字规律如何分析

数字规律的分析:学会观察、学会探究、发现规律、应用规律是数学学习的一个重要环节.近年来有关数字规律探索中考试题频频出现,能有效考查学生的探索研究、猜想归纳能力.解决这类问题往往通过观察、比较、猜想、归纳等一系列探索活动,从特殊到一般,把潜在的规律挖掘出来。

找规律的类型简直数不清。有的是所给数字间有规律,有的是隔一个数字间有规律。还有的是相邻两个数字之间的差呈某种规律。 规律可能有同加同减同乘一个数或一个数列,或者平方。



找规律填空的意义,实际上在于加强对于一般性的数列规律的熟悉,虽然它有很多解,但主要是培养你寻找数列一般规律和猜测数列通项的能力(即运用不完全归纳法的能力),以便于在碰到一些不好通过一般方法求通项的数列时,能够通过前几项快速准确地猜测到这个数列的通项公式。

然后再用数学归纳法或反证法或其它方法加以证明,绕过正面的大山,快速地得到其通项公式。所以找规律填空还是有助于我们增强解一些有难度又有特点的数列的。

2. 统计分析学习之数值分析方法

统计分析学习之数值分析方法
最近补了一些统计学的知识,大多都在这些年的学习中接触过,这里做个总结,以便回头方便看。
从以下几个方面对数值进行分析:
数值的位置
平均数与中位数
这个最常见的就是平均值和中位数了,平均值指的是数据在数值上的中心位置,是所有数和的平均,而中位数是一个样本序列在数值上的中间,序列长度为奇数是,中位数就是最中间的那个。我们可以吧平均数理解为样本序列在数学上的中间位置,把中位数理解为样本序列在物理上的中间位置。
加权平均数
权值对于学过算法或者图论的小伙伴都不陌生,权值不同则认为每个数据的权值(可以简单理解为重要性)不同,在上边提到的平均数中是认为每个数的权值相同。那加权平均数就是求平均时对每个数值乘上了他的权值。
ps,加权的样本序列就比普通的样本序列多了一维的信息量。
几何平均数
这是个很有意思的平均数,在之前并没有接触过,它是n个数值乘积的n次方根,既然是几何平均数,那小伙伴们可以把它放在欧几里得空间来理解它的意义。
众数
样本序列中出现次数最多的数,这个在一些基本算法的面试题中经常出现,比如怎么在海量数据中找出重复次数最多的一个?(这个主要是采用分而治之的思想,外加hash等方法,有兴趣的可以网络一下)
四分位数
四分位数是百分位数的一种特殊情况,但是这个数值的位置具有比较高的工程使用价值,在统计分析中出现频率很高,比如后边用到的箱形分析法等跟此关系很大。
数值的离散程度
数据的离散程度也可以成为数据的变异程度,学过聚类算法的小伙伴说离散程度应该比变异程度更容易理解一些。有极差、四分位数间距、方差、标准差等指标(MAE、MSE等指标对机器学习的小伙伴应该都不陌生)。这个变异程度可以放在欧几里得几何空间来理解,都是描述数值之间分散的程度。注意:1.极值是最容易计算的,但是它比较容易受到异常值影响,单独计算时的工程意义并不大。2.四分位数间距能很好的避免异常值影响,甚至能进一步的检测异常值。(箱形法)
3.样本方差是总体方差的无偏估计,标准差是方差的正平方根。
分布形态和相对位置
偏度
偏度是分布形态的最常用度量。偏度的计算公式这里就不贴出来了,也可以通过平均数和中位数的关系来判断偏度。其关系如下所示:偏度为正值 = 数据右偏 = (平均数>中位数)偏度为0 = 数据对称 = (平均数=中位数)
偏度为负值 = 数据左偏 = (平均数<中位数)
切比雪夫定理
学概率论的时候都接触过这个,这里就不做过多解释。他能帮我们指出与平均数的距离在某个特定个数的标准差之内的数据值所占的比例。(与平均数的距离在z个标准差之内的数据项所占比例至少为(1-1/z^2),其中z是大于1的任何实数)。
异常点的检测
异常点也成为离群点(outlier),对于机器学习的小伙伴也不陌生,在统计工程上常用的方法有简单的统计量分析,比如最大值最小值是否超出合理的范围,还有就是比较经典的箱形法。
以上方法是基于统计的方法,其在多维数据上表现的很无力。除此之外还有基于位置,基于偏差和基于密度的方法。还有一些比较新的论文,是基于信息熵(Correntropy)和深度学习的异常点检测算法。有兴趣的小伙伴可以下一些论文看看。

3. 数学方法包括哪些

所谓方法,是指人们为了达到某种目的而采取的手段、途径和行为方式中所包含的可操作的规则或模式.人们通过长期的实践,发现了许多运用数学思想的手段、门路或程序.同一手段、门路或程序被重复运用了多次,并且都达到了预期的目的,就成为数学方法.数学方法是以数学为工具进行科学研究的方法,即用数学语言表达事物的状态、关系和过程,经过推导、运算与分析,以形成解释、判断和预言的方法.
数学方法具有以下三个基本特征:一是高度的抽象性和概括性;二是精确性,即逻辑的严密性及结论的确定性;三是应用的普遍性和可操作性.
数学方法在科学技术研究中具有举足轻重的地位和作用:一是提供简洁精确的形式化语言,二是提供数量分析及计算的方法,三是提供逻辑推理的工具.现代科学技术特别是电子计算机的发展,与数学方法的地位和作用的强化正好是相辅相成.
在中学数学中经常用到的基本数学方法,大致可以分为以下三类:
(1)逻辑学中的方法.例如分析法(包括逆证法)、综合法、反证法、归纳法、穷举法(要求分类讨论)等.这些方法既要遵从逻辑学中的基本规律和法则,又因为运用于数学之中而具有数学的特色.
(2)数学中的一般方法.例如建模法、消元法、降次法、代入法、图象法(也称坐标法,在代数中常称图象法,在我们今后要学习的解析几何中常称坐标法)、比较法(数学中主要是指比较大小,这与逻辑学中的多方位比较不同)、放缩法,以及将来要学习的向量法、数学归纳法(这与逻辑学中的不完全归纳法不同)等.这些方法极为重要,应用也很广泛.
(3)数学中的特殊方法.例如配方法、待定系数法、加减(消元)法、公式法、换元法(也称之为中间变量法)、拆项补项法(含有添加辅助元素实现化归的数学思想)、因式分解诸方法,以及平行移动法、翻折法等.这些方法在解决某些数学问题时也起着重要作用,我们不可等闲视之.

4. 关于数学建模数据分析的方法

建议使用层次分析法,就是将指标通过专家打分,分别赋权重,然后构造一个指标函数,在通过Spss或其他统计软件,进行求解。

模型的建立:目标函数的建立,以第一个,即经济效益为例,你可以查阅经济书本,找到这些指标同经济效益的关系,来建立函数,一般是线性模型;
模型的求解:
你先用Spss,进行这5个指标的因子分析,得到贡献率高的因子,并得到它的权重系数,这就是你指标函数的权重值,这样你的指标函数就求出来了;
接着你可以用其他软件(一般我用matlab),将具体历年的数据代入指标函数,得到理念的经济效益值,最后做一个历年效益数据分析。
理论就是这样,实际就要自己操作了。

5. 数学常用的数学思想方法有哪些

数学常用的数学思想方法主要有:用字母表示数的思想,数形结合的思想,转化思想 (化归思想),分类思想,类比思想,函数的思想,方程的思想,无逼近思想等等。

1.用字母表示数的思想:这是基本的数学思想之一 .在代数第一册第二章“代数初步知识”中,主要体现了这种思想。

2.数形结合:是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国着名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。

3.转化思想:在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。

4.分类思想:有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关系等都是通过分类讨论的。

5.类比:类比推理在人们认识和改造客观世界的活动中具有重要意义.它能触类旁通,启发思考,不仅是解决日常生活中大量问题的基础,而且是进行科学研究和发明创造的有力工具.

6.函数的思想 :辩证唯物主义认为,世界上一切事物都是处在运动、变化和发展的过程中,这就要求我们教学中重视函数的思想方法的教学。

7.方程:是初中代数的主要内容.初中阶段主要学习了几类方程和方程组的解法,在初中阶段就要形成方程的思想.所谓方程的思想,就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的的解题思路和策略,

(5)能进行数字分析的数学方法扩展阅读:

函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。

从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。整体思想方法在代数式的化简与求值、解方程(组)、几何解证等方面都有广泛的应用。

6. 数据分析方法

常见的分析方法有:分类分析,矩阵分析,漏斗分析,相关分析,逻辑树分析,趋势分析,行为轨迹分析,等等。 我用HR的工作来举例,说明上面这些分析要怎么做,才能得出洞见。

01) 分类分析
比如分成不同部门、不同岗位层级、不同年龄段,来分析人才流失率。比如发现某个部门流失率特别高,那么就可以去分析。

02) 矩阵分析
比如公司有价值观和能力的考核,那么可以把考核结果做出矩阵图,能力强价值匹配的员工、能力强价值不匹配的员工、能力弱价值匹配的员工、能力弱价值不匹配的员工各占多少比例,从而发现公司的人才健康度。

03) 漏斗分析
比如记录招聘数据,投递简历、通过初筛、通过一面、通过二面、通过终面、接下Offer、成功入职、通过试用期,这就是一个完整的招聘漏斗,从数据中,可以看到哪个环节还可以优化。

04) 相关分析
比如公司各个分店的人才流失率差异较大,那么可以把各个分店的员工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、员工年龄、管理人员年龄等)要素进行相关性分析,找到最能够挽留员工的关键因素。

05) 逻辑树分析
比如近期发现员工的满意度有所降低,那么就进行拆解,满意度跟薪酬、福利、职业发展、工作氛围有关,然后薪酬分为基本薪资和奖金,这样层层拆解,找出满意度各个影响因素里面的变化因素,从而得出洞见。

06) 趋势分析
比如人才流失率过去12个月的变化趋势。

07)行为轨迹分析
比如跟踪一个销售人员的行为轨迹,从入职、到开始产生业绩、到业绩快速增长、到疲惫期、到逐渐稳定。

7. 数据分析的基本方法有哪些

数据分析的三个常用方法
1. 数据趋势分析
趋势分析一般而言,适用于产品核心指标的长期跟踪,比如,点击率,GMV,活跃用户数等。做出简单的数据趋势图,并不算是趋势分析,趋势分析更多的是需要明确数据的变化,以及对变化原因进行分析。
趋势分析,最好的产出是比值。在趋势分析的时候需要明确几个概念:环比,同比,定基比。环比是指,是本期统计数据与上期比较,例如2019年2月份与2019年1月份相比较,环比可以知道最近的变化趋势,但是会有些季节性差异。为了消除季节差异,于是有了同比的概念,例如2019年2月份和2018年2月份进行比较。定基比更好理解,就是和某个基点进行比较,比如2018年1月作为基点,定基比则为2019年2月和2018年1月进行比较。
比如:2019年2月份某APP月活跃用户数我2000万,相比1月份,环比增加2%,相比去年2月份,同比增长20%。趋势分析另一个核心目的则是对趋势做出解释,对于趋势线中明显的拐点,发生了什么事情要给出合理的解释,无论是外部原因还是内部原因。
2. 数据对比分析
数据的趋势变化独立的看,其实很多情况下并不能说明问题,比如如果一个企业盈利增长10%,我们并无法判断这个企业的好坏,如果这个企业所处行业的其他企业普遍为负增长,则5%很多,如果行业其他企业增长平均为50%,则这是一个很差的数据。
对比分析,就是给孤立的数据一个合理的参考系,否则孤立的数据毫无意义。在此我向大家推荐一个大数据技术交流圈: 658558542 突破技术瓶颈,提升思维能力 。
一般而言,对比的数据是数据的基本面,比如行业的情况,全站的情况等。有的时候,在产品迭代测试的时候,为了增加说服力,会人为的设置对比的基准。也就是A/B test。
比较试验最关键的是A/B两组只保持单一变量,其他条件保持一致。比如测试首页改版的效果,就需要保持A/B两组用户质量保持相同,上线时间保持相同,来源渠道相同等。只有这样才能得到比较有说服力的数据。
3. 数据细分分析
在得到一些初步结论的时候,需要进一步地细拆,因为在一些综合指标的使用过程中,会抹杀一些关键的数据细节,而指标本身的变化,也需要分析变化产生的原因。这里的细分一定要进行多维度的细拆。常见的拆分方法包括:
分时 :不同时间短数据是否有变化。
分渠道 :不同来源的流量或者产品是否有变化。
分用户 :新注册用户和老用户相比是否有差异,高等级用户和低等级用户相比是否有差异。
分地区 :不同地区的数据是否有变化。
组成拆分 :比如搜索由搜索词组成,可以拆分不同搜索词;店铺流量由不用店铺产生,可以分拆不同的店铺。
细分分析是一个非常重要的手段,多问一些为什么,才是得到结论的关键,而一步一步拆分,就是在不断问为什么的过程。

8. 数学常识中数值分析法有哪些特点

‍‍

在数值分析中用到迭代法的情形会比直接法要多。例如像牛顿法、二分法、雅可比法、广义最小残量方法(GMRES)及共轭梯度法等。在计算矩阵代数中,大型的问题一般会需要用迭代法来求解。许多时候需要将连续模型的问题转换为一个离散形式的问题,而离散形式的解可以近似原来的连续模型的解,此转换过程称为离散化。例如求一个函数的积分是一个连续模型的问题,也就是求一曲线以下的面积若将其离散化变成数值积分,就变成将上述面积用许多较简单的形状(如长方形、梯形)近似,因此只要求出这些形状的面积再相加即可。

利用离散化的方式,可以假设赛车在0:00到0:40之间的速度、0:40到1:20之间的速度及1:20到2:00之间的速度分别为三个定值,因此前40分钟的总位移可近似为(2/3h×140km/h)=93.3公里。可依此方式近似二小时内的总位移为93.3公里 + 100公里 + 120公里 = 313.3公里。位移是速度的积分,而上述的作法是用黎曼和进行数值积分的一个例子。

‍‍

9. 数学思想·数学方法有哪些

1
、对应思想方法

对应是人们对两个集合因素之间的联系的一种思想方法,
小学数学一般
是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)
与表示具体的数是一一对应。

2
、假设思想方法

假设是先对题目中的已知条件或问题作出某种假设,
然后按照题中的已
知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确
答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可
以使要解决的问题更形象、具体,从而丰富解题思路。

3
、比较思想方法

比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手
段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量
变化前后的情况,可以帮助学生较快地找到解题途径。

4
、符号化思想方法

用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数
学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量
之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表
达大量的信息。如定律、公式、等。

5
、类比思想方法

类比思想是指依据两类数学对象的相似性,
有可能将已知的一类数学对
象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换
小学各年级课件教案习题汇总
一年级二年级三年级四年级五年级
律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比
思想不仅使数学知识容易理解,
而且使公式的记忆变得顺水推舟的自然
和简洁。

6
、转化思想方法

转化思想是由一种形式变换成另一种形式的思想方法,
而其本身的大小

阅读全文

与能进行数字分析的数学方法相关的资料

热点内容
调整金牛座的最佳方法 浏览:381
以实践为基础的研究方法及意义 浏览:545
魅蓝拦截的信息在哪里设置方法 浏览:402
雕刻牛字最简单的方法 浏览:35
武汉恋爱挽回方法操作步骤 浏览:431
戒掉手机的四个方法 浏览:574
快速有效治疗尖锐湿方法 浏览:226
最简单的方法画hellokitty 浏览:844
反渗透膜解决方法 浏览:485
扯面的正确方法和技巧 浏览:494
文彦博树洞取球方法好在哪里 浏览:854
四川泡洋姜的正确泡水方法 浏览:497
黑檀手串的鉴别方法图解 浏览:818
延迟满足实验研究方法 浏览:161
种植业污染解决方法 浏览:894
论文的研究方法有那些 浏览:124
孩子学习方法不对该如何 浏览:838
艾莱依真假鉴别方法 浏览:799
在家怎么制作果冻方法 浏览:50
关于氮和硫的化学计算方法 浏览:627