导航:首页 > 计算方法 > 三角形的夹角计算方法视频教程

三角形的夹角计算方法视频教程

发布时间:2022-04-30 17:02:31

1. 计算三角形角度

主要的一些公式:
在△ABC中,C=90°,AB=c,AC=b,BC=a。
(1)三边之间的关系:a^2+b^2=c^2。(勾股定理)
(2)锐角之间的关系:A+B=90°;
(3)边角之间的关系:(锐角三角函数定义)
sinA=cosB=a/c ,cosA=sinB=b/c ,tanA=a/b 。
在△ABC中,A、B、C为其内角,a、b、c分别表示A、B、C的对边。
(1)三角形内角和:A+B+C=π。
(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,
a/sinA=b/sinB=c/sinC=2R(R为外接圆半径)
(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍
a^2=b^2+c^2-2bccosA;b^2=c^2+a^2-2cacosB;c^2=a^2+b^2-2abcosC。
三角形的面积公式:
(1)△= 1/2*a*ha=1/2*b*hb=1/2*c*hc(ha、hb、hc分别表示a、b、c上的高);
(2)△=1/2absinC=1/2bcsinA=1/2acsinB;
(3)△=a^2sinBsinC/2sin(B+C)=b^2sinCsinA/2sin(C+A)=c^2sinAsinB/2sin(A+B) ;
(4)△=2R^2sinAsinBsinC。(R为外接圆半径)
(5)△=abc/4R;
(6)△=根号[s(s-a)(s-b)(s-c)] ;s=(a+b+c)/2 ;
(7)△=r•s
解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.解三角形的问题一般可分为下面两种情形:若给出的三角形是直角三角形,则称为解直角三角形;若给出的三角形是斜三角形,则称为解斜三角形
解斜三角形的主要依据是:
设△ABC的三边为a、b、c,对应的三个角为A、B、C。
(1)角与角关系:A+B+C = π;
(2)边与边关系:a + b > c,b + c > a,c + a > b,a-b < c,b-c < a,c-a > b;
(3)边与角关系:
正弦定理 a/sinA=b/sinB=c/sinC=2R(R为外接圆半径)
余弦定理 a^2=b^2+c^2-2bccosA;b^2=c^2+a^2-2cacosB;c^2=a^2+b^2-2abcosC
它们的变形形式有:a=2RsinA,sinA/sinB=a/b,cosA=(b^2+c^2-a^2)/2bc。

2. 怎样求三角形的角度 的公式

给你一些常用的东西:


1、三角形内角和等于180°(内角和定理);
2、三角形的外角和是360°;
3、三角形的外角等于与其不相邻的两个内角之和。
推论:三角形的一个外角大于任何一个和它不相邻的内角。
4、一个三角形的3个内角中最少有2个锐角。
5、在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。

6、三角形两边之和大于第三边,两边之差小于第三边。
7、直角三角形的两条直角边的平方和等于斜边的平方(勾股定理)。
勾股定理逆定理:如果三角形的三边长a,b,c满足

,那么这个三角形是直角三角形。
8、直角三角形斜边的中线等于斜边的一半。
9、三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点。
10、三角形三条中线的长度的平方和等于它的三边的长度平方和的3/4。
11、等底同高的三角形面积相等。
12、底相等的三角形的面积之比等于其高之比,高相等的三角形的面积之比等于其底之比。
13、三角形的任意一条中线将这个三角形分为两个面积相等的三角形。
14、等腰三角形顶角的角平分线和底边上的高、底边上的中线在一条直线上(三线合一)。
其他
15、在同一个三角形内,大边对大角,大角对大边。
16、在△ABC中恒满足tanA tanB tanC=tanA+tanB+tanC。
17、三角形具有稳定性。

3. 三角形角度计算公式

首先利用勾股定理:b^2=c^2-a^2求出b的长度,然后利用正弦定理b/(sinB)=c/(sin90)得出sinB的值,最后得sinB=((c^2-a^2)开根号)/c,就能求得所需的值。

(3)三角形的夹角计算方法视频教程扩展阅读:

直角三角形是一个几何图形,是有一个角为直角的三角形,有普通的直角三角形和等腰直角三角形两种。其符合勾股定理,具有一些特殊性质和判定方法。

第一种方法可以称为 “同径法
”,最早为13世纪阿拉伯数学家、天文学家纳绥尔丁和15世纪德国数学家雷格蒙塔努斯所采用。“同径法
”是将三角形两个内角的正弦看作半径相同的圆中的正弦线(16世纪以前,三角函数被视为线段而非比值),利用相似三角形性质得出两者之比等于角的对边之比。

纳绥尔丁同时延长两个内角的对边,构造半径同时大于两边的圆。雷格蒙塔努斯将纳绥尔丁的方法进行简化,只延长两边中的较短边,构造半径等于较长边的圆。17~18世纪,中国数学家、天文学家梅文鼎和英国数学家辛普森各自独立地简化了“同径法”。

18世纪初,“同径法”又演化为“直角三角形法”,这种方法不需要选择并作出圆的半径,只需要作出三角形的高线,利用直角三角形的边角关系,即可得出正弦定理。19世纪,英国数学家伍德豪斯开始统一取R=1,相当于用比值来表示三角函数,得到今天普遍采用的 “作高法”。

第二种方法为“外接圆法”,最早为16世纪法国数学家韦达所采用。韦达没有讨论钝角三角形的情形,后世数学家对此作了补充。

4. 怎样算三角形的角度

余弦定理赛。
另一条边用勾股定理算出25的平方加170的平方然后开根 第3边就用C表示吧
算出C了以后就简单了赛。
a^2=b^2+c^2-2*b*c*CosA 余弦定理算出COSA 就知道A 角是多少了。同理可以得B角和C角。
例:第三边楼主自己算出,我没计算器。算麻烦。暂时用C表示。
算长直角边和斜边所夹角。用B角表示吧
COSB=(C平方加170的平方减去25的平方)除以2乘以C乘以170.
就可以把COSB的值得出。然后B角就是ARCCOSB的值

5. 三角形角度计算公式是什么

三角形角度计算公式:

1、cosA=b^2+c^2-a^2/2bc或a^2=b^2+c^2-2bccosA

2、cosB=c^2+a^2-b^2/2ca或b^2=c^2+a^2-2accosB

3、cosC=a^2+b^2-c^2/2ab或c^2=a^2+b^2-2abcosC

三角形的分类

1、锐角三角形:三角形的三个内角都小于90度。

2、直角三角形:三角形的三个内角中一个角等于90度,可记作Rt△。

3、钝角三角形:三角形的三个内角中有一个角大于90度。

6. 三角形的边长,角度怎么

已知三角形边长,计算三角形的角度过程如下:

1、设三角形中角A所对应的边长是a,角B所对应的边长是b,角C所对应的边长是c。再利用公式:

①CosA=(c^2+b^2-a^2)/2bc

②CosB=(a^2+c^2-b^2)/2ac

③CosC=(a^2+b^2-c^2)/2ab

算出每一个角的余弦值,利用计算器上的反余弦函数功能就可以计算出各自的角度值。

2、如果三角形是钝角三角形,计算出的钝角的余弦值是负的,角度也就是负的,这时要加上180度才是钝角的角度。(注:a^2+b^2-c^2=0说明C的角度等于90度)

(6)三角形的夹角计算方法视频教程扩展阅读:

一、已知三角形边,求角度,这种求法称之为“解三角形”。解三角形一般需要用到如下定理:

1、正弦定理

a/sinA=b/sinB=c/sinC=2R(2R在同一个三角形中是恒量,R是此三角形外接圆的半径)。

2、余弦定理

①a²=b²+c²-2bccosA

②b²=a²+c²-2accosB

③c²=a²+b²-2abcosC

二、三角形中已知某条件求未知量(如已知三边,求三个内角度数),一般有对应的公式:

1、以下情况利用正弦定理:

①已知条件:一边和两角(如a、B、C,或a、A、B)

一般解法:由A+B+C=180°,求角A,由正弦定理求出b与c,在有解时,有一解。

②已知条件:两边和其中一边的对角(如a、b、A)

一般解法:由正弦定理求出角B,由A+B+C=180°求出角C,再利用正弦定理求出C边,可有两解、一解或无解。(或利用余弦定理求出c边,再求出其余两角B、C)①若a>b,则A>B有唯一解;②若b>a,且b>a>bsinA有两解;③若a<bsinA则无解。

2、以下情况利用余弦定理:

①已知条件:两边和夹角(如a、b、C)

一般解法:由余弦定理求第三边c,由正弦定理求出小边所对的角,再由A+B+C=180°求出另一角,在有解时有一解。

②已知条件:三边(如a、b、c)

一般解法:由余弦定理求出角A、B,再利用A+B+C=180°,求出角C在有解时只有一解。

参考资料:解三角形-网络

7. 计算三角形夹角

已知三点坐标就可以求出三条直线的斜率K1,K2,K3.(公式K=(Y2-Y1)/(X2-X1))
然后用夹角公式得到一夹角的度数.设夹角是Q
tanQ=|k2-k1|/|(1+k2k1)|

8. 三角形怎么算角度

主要的一些公式:
在△ABC中,C=90°,AB=c,AC=b,BC=a。
(1)三边之间的关系:a^2+b^2=c^2。(勾股定理)
(2)锐角之间的关系:A+B=90°;
(3)边角之间的关系:(锐角三角函数定义)
sinA=cosB=a/c ,cosA=sinB=b/c ,tanA=a/b 。
在△ABC中,A、B、C为其内角,a、b、c分别表示A、B、C的对边。
(1)三角形内角和:A+B+C=π。
(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,
a/sinA=b/sinB=c/sinC=2R(R为外接圆半径)
(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍
a^2=b^2+c^2-2bccosA;b^2=c^2+a^2-2cacosB;c^2=a^2+b^2-2abcosC。
三角形的面积公式:
(1)△= 1/2*a*ha=1/2*b*hb=1/2*c*hc(ha、hb、hc分别表示a、b、c上的高);
(2)△=1/2absinC=1/2bcsinA=1/2acsinB;
(3)△=a^2sinBsinC/2sin(B+C)=b^2sinCsinA/2sin(C+A)=c^2sinAsinB/2sin(A+B) ;
(4)△=2R^2sinAsinBsinC。(R为外接圆半径)
(5)△=abc/4R;
(6)△=根号[s(s-a)(s-b)(s-c)] ;s=(a+b+c)/2 ;
(7)△=r•s
解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.解三角形的问题一般可分为下面两种情形:若给出的三角形是直角三角形,则称为解直角三角形;若给出的三角形是斜三角形,则称为解斜三角形
解斜三角形的主要依据是:
设△ABC的三边为a、b、c,对应的三个角为A、B、C。
(1)角与角关系:A+B+C = π;
(2)边与边关系:a + b > c,b + c > a,c + a > b,a-b < c,b-c < a,c-a > b;
(3)边与角关系:
正弦定理 a/sinA=b/sinB=c/sinC=2R(R为外接圆半径)
余弦定理 a^2=b^2+c^2-2bccosA;b^2=c^2+a^2-2cacosB;c^2=a^2+b^2-2abcosC
它们的变形形式有:a=2RsinA,sinA/sinB=a/b,cosA=(b^2+c^2-a^2)/2bc。

9. 三角形角度计算

1三角形
三角形是由同一平面内不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形,在数学、建筑学有应用。
常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
2三角形分类
判定法一:
1、锐角三角形:三角形的三个内角都小于90度。
2、直角三角形:三角形的三个内角中一个角等于90度,可记作Rt△。
3、钝角三角形:三角形的三个内角中有一个角大于90度。
判定法二:
1、锐角三角形:三角形的三个内角中最大角小于90度。
2、直角三角形:三角形的三个内角中最大角等于90度。
3、钝角三角形:三角形的三个内角中最大角大于90度,小于180度。
其中锐角三角形和钝角三角形统称为斜三角形。

阅读全文

与三角形的夹角计算方法视频教程相关的资料

热点内容
真实奶茶制作方法视频 浏览:143
千日疮治疗常用方法 浏览:818
有弧度的手机贴膜方法 浏览:32
八代思域油耗高解决方法 浏览:425
浙江口齿不清解决方法 浏览:173
落地双摇臂抱杆使用方法图片 浏览:583
106乘25怎么算简便方法 浏览:642
美白祛斑的简单方法 浏览:669
红酒怎么醒最正确的方法 浏览:45
如何掌握思想道德的正确修养方法 浏览:181
支付宝设置提示声音在哪里设置方法 浏览:36
保险主顾开拓的常用方法 浏览:511
洗衣机安装好的方法 浏览:345
长轴承安装方法有哪些 浏览:504
两相潜水泵的安装方法 浏览:394
中职学校课堂教学方法的调查研究 浏览:971
两驱绞盘安装方法 浏览:837
聚酯用什么方法破碎 浏览:200
可莱丝如何使用方法 浏览:36
有什么方法避免开关触点氧化 浏览:290