Ⅰ matlab 中值滤波
1、中值滤波的原理:对于一串连续输入的信号(量化后是一组数据)。如下图所示,是输入的原信号。中值滤波的原理为,重新计算每一个x的输出值(y),新的输出值。
相当于y=new(x),new的操作是,从在以x为中心,长度为2k的原信号中(区间为[x-k+1,x+k]),提取出这段区间内中间的那个值,作为y=new(x)的结果。
Ⅱ 请问中值滤波与均值滤波各自的优缺点
均值滤波和中值滤波的内容非常基础,均值滤波相当于低通滤波,有将图像模糊化的趋势,对椒盐噪声基本无能为力。中值滤波的优点是可以很好的过滤掉椒盐噪声,缺点是易造成图像的不连续性。通过下面三张图可以清楚看到以上两种滤波方法的差异。
利用均值滤波处理后,椒盐噪声被处理成了小的气泡,但与此同时图像开始变得模糊。
拓展资料:
中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。方法是用某种结构的二维滑动模板,将板内像素按照像素值的大小进行排序,生成单调上升(或下降)的为二维数据序列。二维中值滤波输出为g(x,y)=med{f(x-k,y-l),(k,l∈W)} ,其中,f(x,y),g(x,y)分别为原始图像和处理后图像。W为二维模板,通常为3*3,5*5区域,也可以是不同的的形状,如线状,圆形,十字形,圆环形等。
均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。线性滤波的基本原理是用均值代替原图像中的各个像素值,即对待处理的当前像素点(x,y),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在该点上的灰度g(x,y),即g(x,y)=1/m ∑f(x,y) m为该模板中包含当前像素在内的像素总个数。
Ⅲ 数字图像处理中值滤波计算
用matlab
A=你的图像矩阵
imshow(medfilt2(A,[3 3]))
其实口算也可以,把每一个像素和其八邻域的像素排序,取中间那个值作为这个点的像素值。
Ⅳ 计算3x3窗口的均值滤波和中值滤波(向下取整保留整数值)。
均值滤波和中值滤波属于空域图像增强的处理方法,均值滤波去麻点,中值滤波保边缘。
要进行均值滤波首先要生成一个3x3矩阵。算法运算窗口一般采用奇数点的邻域来计算中值,最常用的窗口有3X3和5X5模型。
1、通过2个或者3个RAM的存储来实现3X3像素窗口。
2、通过2个或者3个FIFO的存储来实现3X3像素窗口。
3、通过2行或者3行Shift_RAM的存储来实现3X3像素窗口。
(4)中值滤波计算方法扩展阅读:
注意事项:
1、空间域指图像本身,空域变换直接对图像中的像素进行操作。
2、在进行横向滑动窗口滤波时,窗口中的像素仅仅是丢掉了左侧一列,增加了右侧一列数据,如果丢掉中间重叠的这一部分数据,到下个窗口再重新寻址和读取数据,无疑是计算的沉重负担,所以该算法的核心思想就是充分利用重叠部分,使用直方图来计算中值,不需要排序算法,快,且高效。
3、注意到两个直方图的累加是一个O(1)操作,和直方图的元素个数有关,而直方图元素个数是由图像位深决定的。
Ⅳ 中值滤波
中值滤波是把所取范围内所有像素的值取平均,然后设置为当前像素的值,例如,如果当前像素位置为(3, 3),那么就是把以它为中心的3*3范围的像素值取平均设置为(3,3)的值
是每个像素都是这样处理的~
也就是说,你不能直接在原图像上改,而是要新建一个图像来做~
Ⅵ 何谓中值滤波有何特点
中值滤波是对一个滑动窗口内的诸像素灰度值排序,用其中值代替窗口中心象素的原来灰度值,它是一种非线性的图像平滑法,它对脉冲干扰级椒盐噪声的抑制效果好,在抑制随机噪声的同时能有效保护边缘少受模糊。
中值滤波经常用于去除图像或者其它信号中的噪声。这个设计思想就是检查输入信号中的采样并判断它是否代表了信号,使用奇数个采样组成的观察窗实现这项功能。观察窗口中的数值进行排序,位于观察窗中间的中值作为输出。然后,丢弃最早的值,取得新的采样,重复上面的计算过程。
(6)中值滤波计算方法扩展阅读:
中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。方法是用某种结构的二维滑动模板,将板内像素按照像素值的大小进行排序,生成单调上升(或下降)的为二维数据序列。
Ⅶ VC中值滤波快速算法
unsigned char WINAPI GetMedianNum(unsigned char * bArray, int iFilterH,int iFilterW)
{
/* unsigned char m = mid(
mid(bArray[0],bArray[1],bArray[2]),
mid(bArray[3],bArray[4],bArray[5]),
mid(bArray[6],bArray[7],bArray[8]));
return m;*/
// 循环变量
int i;
int j;
int k;
// 中间变量
unsigned char bTemp;
int iFilterLen=iFilterH*iFilterW;
float average=0;//用于均值加速
//求均值
for (i=0;i<iFilterLen;i++)
{
average+=bArray[i];
}
average=average/iFilterLen;
unsigned char pixel_mid;
pixel_mid=bArray[(iFilterH-1)/2*iFilterW+(iFilterW-1)/2];//滤波窗口中心的取中值前的像素值
if (abs(average-pixel_mid)>10) //均值加速,其中“10”为原中值和均值之差,根据你的实际情况自行设置大小
//if(1) //不用均值加速时选此
{
//超快速中值法(本质就是伪中值法)
//行排列
if (0)
{
for (k = 0; k < iFilterH; k ++)
{
for (j = 0; j < iFilterH-1; j ++)
{
for (i = 0; i < iFilterW-1-j; i++)
{
number++;
if (bArray[i+iFilterH*k] > bArray[i+iFilterH*k+1])
{ // 互换
bTemp = bArray[i+iFilterH*k];
bArray[i+iFilterH*k] = bArray[i+iFilterH*k+1];
bArray[i+iFilterH*k+1] = bTemp;
}
}
还有什么疑问,把邮箱发给我。
Ⅷ 中值滤波的定义
中值滤波对脉冲噪声有良好的滤除作用,特别是在滤除噪声的同时,能够保护信号的边缘,使之不被模糊。这些优良特性是线性滤波方法所不具有的。此外,中值滤波的算法比较简单,也易于用硬件实现。所以,中值滤波方法一经提出后,便在数字信号处理领得到重要的应用。
中值滤波方法:对一个数字信号序列xj(-∞<j<∞)进行滤波处理时,首先要定义一个长度为奇数的L长窗口,L=2N+1,N为正整数。设在某一个时刻,窗口内的信号样本为x(i-N),…,x(i),…,x(i+N),其中x(i)为位于窗口中心的信号样本值。对这L个信号样本值按从小到大的顺序排列后,其中值,在i处的样值,便定义为中值滤波的输出值,写为如图1.
中值滤波是在“最小绝对误差”准则下的最优滤波。
在实际应用中,随着所选用窗口长度的增加,滤波的计算量将会迅速增加。因此,寻求中值滤波的快速算法,是中值滤波理论的一个重要研究内容。中值滤波的快速算法,一般采用下述三种方式:①直方图数据修正法;②样本值二进制表示逻辑判断法;③数字和模拟的选择网络法。
对中值滤波的理论研究,还集中于统计特性分析和根序列的描述方面。当一个信号序列经一特定窗口长度的中值滤波反复处理后,它会收敛于某一个不再变化的序列,这个序列称为中值滤波的根序列。根序列是描述中值滤波特性的一个重要概念。通过对根序列结构的研究,可以确定原信号序列中,哪些成分可以经中值滤波后保留下来,哪些成分将被抑制。这对确定中值滤波器的窗口长度,提供了重要依据。用VLSI实现的中值滤波器芯片,可供实时处理中应用。
Ⅸ 随机噪声消除技术———多级中值滤波器
中值滤波(MF)在信号处理中是一个既简单又有效的方法。由于其具有抑制噪声(尤其是脉冲噪声)和保护边缘的特征,在信号处理领域中得到重视,特别在非平稳信号的处理中取得了较大的成功。
然而中值滤波的一个严重不足是相对滤波窗口而言较为“细小”的信号细节结构被破坏和丢失。在二维图像处理中,中值滤波的这一缺憾要比在一维信号的处理中更加显着,原因主要来自两个方面:第一,二维信号几乎没有根信号,也就是说几乎所有的二维信号经中值滤波以后都要受到不同程度的破坏;第二,图像中的某些诸如细线、拐角等细节结构往往包含重要的信息,这些结构的破坏或丢失往往比噪声本身更为不可接受。一直以来,人们在努力寻求兼有细节保护和噪声抑制的优良特性的滤波器结构。基于这一目标,近年来,人们提出了许多滤波器结构,其中多级中值滤波器(MLM)是针对图像处理提出的一种最具代表性的细节保护中值滤波器之一,这种滤波器通过一组能够比较好地“匹配”图像细节的基本结构———基本子窗口来有效地区分信号结构和噪声,从而达到保护细节结构和滤噪的目的。MLM有许多重要的优良性能,除了细节保护能力,它的简单、直观和易于实现具有很大的吸引力。本方法的研究成果已发表在Geophysics(2006,71(5):105~110,SCI检索)杂志上。
根据原理计算的理论模型见图7-12。
图7-12 二维中值滤波处理效果图
Ⅹ 一道图像中值滤波的计算
I=[1 7 1 8 1 7 1 1
1 1 1 5 1 1 1 1
1 1 5 5 5 1 1 7
1 1 5 5 5 1 8 1
8 1 1 5 1 1 1 1
8 1 1 5 1 1 5 1
1 1 1 5 1 1 1 1
1 7 1 8 1 7 1 1
];
[M N]=size(I);
I1=zeros(M,N);
for i=2:M-1
for j=2:N-1
temp=I(i-1:i+1,j-1:j+1);
temp=sort(temp);
temp=sort(temp');
I1(i,j)=temp(2,2);
end
end
imshow(I,[]);
figure,imshow(I1,[]);