‘壹’ 计算行列式常用的7种方法
(1)行列式和他的转置行列式相等。
(2)变换一个行列式的两行(或两列),行列式改变符号 即变为之前的相反数。
(3)如果一个行列式有两行(列)完全相同,那么这个行列式等于零。
(4)一个行列式中的某一行(列)所有元素的公因子可以提到行列式符号的外面。
(5)如果一个行列式中有一行(列)的元素全部是零,那么这个行列式等于零。
(6)如果一个行列式有两行(列)的对应元素成比例,那么这个行列式等于零。
(7)把行列式的某一行(列)的元素乘以同一个数后加到另一行(列)的对应元素上,行列式不变。
根据行列式的特点,适当变形(利用行列式的性质——如:提取公因式;互换两行(列);一行乘以适当的数加到另一行(列)去;把所求行列式化成已知的或简单的形式。其中范德蒙行列式就是一种。这种变形法是计算行列式最常用的方法。
(1)总结行列式的有效计算方法扩展阅读:
①行列式A中某行(或列)用同一数k乘,其结果等于kA。
②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
④行列式A中两行(或列)互换,其结果等于-A。
⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。
‘贰’ 总结行列式的几种常用计算方法
行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或 | A | 。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。
行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。
中文名
行列式
外文名
determinant(英文)déterminant(法文)
表达式
D=|A|=detA=det(aij)
应用学科
线性代数
适用领域范围
数学、物理学
快速
导航
性质
数学定义
n阶行列式
设
是由排成n阶方阵形式的n2个数aij(i,j=1,2,...,n)确定的一个数,其值为n!项之和
式中k1,k2,...,kn是将序列1,2,...,n的元素次序交换k次所得到的一个序列,Σ号表示对k1,k2,...,kn取遍1,2,...,n的一切排列求和,那么数D称为n阶方阵相应的行列式.例如,四阶行列式是4!个形为
‘叁’ 行列式的计算方法
简单地说,行列式的主要功能体现在计算机科学中
现在数学课上学习行列式,就是为了让我们理解一些计算原理
我先讲行列式怎么计算吧
二阶行列式(行列式两边的竖线我不会打,看得懂就行):
a b
c d
它的值就等于ad-bc,即对角相乘,左上-右下的那项为正,右上-左下的那项为负
三阶行列式:
a b c
d e f
g h i
它的值等于aei+bfg+cdh-afh-bdi-ceg,你在纸上用线把每一项里的三个字母连起来就知道规律了
计算机就是用行列式解方程组的
比如下面这个方程组:
x+y=3
x-y=1
计算机计算的时候,先计算x,y系数组成的行列式D:
1 1
1 -1
D=-2
然后,用右边两个数(3和1)分别代替x和y的系数得到两个行列式Dx和Dy:
3 1
1 -1
Dx=-4
1 3
1 1
Dy=-2
用Dx除以D,就是x的值,用Dy除以D,就是y的值了
‘肆’ 行列式的计算方法有哪些
2,3阶行列式的对角线法则,
4阶以上(含4阶)是没有对角线法则的!
解高阶行列式的方法
一般有
用性质化上(下)三角形,上(下)斜三角形,
箭形(爪形)
按行列展开定理
Laplace展开定理
加边法
递归关系法
归纳法
特殊行列式(如Vandermonde行列式)
‘伍’ 行列式的计算方法总结是什么
最直接的就是按行按列展开 3阶的还行 阶数高了 就麻烦了 主要方法就是 比如按行展开的 就是这一行中的每一个元素乘以对应的代数余子式最后再加起来
第二种方法呢 就是根据行列式的性质来做,有如下性质:
(1)行列式和他的转置行列式相等
(2)变换一个行列式的两行(或两列),行列式改变符号 即变为之前的相反数
(3)如果一个行列式有两行(列)完全相同,那么这个行列式等于零
(4)一个行列式中的某一行(列)所有元素的公因子可以提到行列式符号的外面
(5)如果一个行列式中有一行(列)的元素全部是零,那么这个行列式等于零
(6)如果一个行列式有两行(列)的对应元素成比例,那么这个行列式等于零
(7)把行列式的某一行(列)的元素乘以同一个数后加到另一行(列)的对应元素上,行列式不变
最长用的是性质2,4,7
‘陆’ 计算行列式的方法
行列式的计算方法包括化成三角形行列式计算、降阶法、拆成行列式之和、利用范德蒙行列式、数学归纳法、逆推法、加边法等,行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或 | A | 。
‘柒’ 浅谈行列式的几种计算方法
定义法,展开行列式的项,进行计算
使用对角线法则(萨鲁斯法则),适合3阶及以内的行列式计算
使用Laplace定理,按行或按列展开行列式,降阶计算
将行列式某一行或列,拆成两部分之和,得到两个行列式之和
使用初等变换,将行列式化成三角阵,然后主对角线元素相乘
利用特征值之积等于行列式
‘捌’ 行列式的计算技巧与方法总结
2 -2 4 6
1 1 3 2
-1 3 0 4
2 2 4 1
第1行交换第2行-
1 1 3 2
2 -2 4 6
-1 3 0 4
2 2 4 1
第2行,第3行,第4行, 加上第1行×-2,1,-2-
1 1 3 2
0 -4 -2 2
0 4 3 6
0 0 -2 -3
第3行, 加上第2行×1-
1 1 3 2
0 -4 -2 2
0 0 1 8
0 0 -2 -3
第4行, 加上第3行×2-
1 1 3 2
0 -4 -2 2
0 0 1 8
0 0 0 13
主对角线相乘52
‘玖’ 行列式有什么计算方法呢
一 化成三角形行列式法
先把行列式的某一行(列)全部化为 1 ,再利用该行(列)把行列式化为三角形行列式,从而求出它的值,这是因为所求行列式有如下特点: 1 各行元素之和相等; 2 各列元素除一个以外也相等。
充分利用行列式的特点化简行列式是很重要的。
二 降阶法
根据行列式的特点,利用行列式性质把某行(列)化成只含一个非零元素,然后按该行(列)展开。展开一次,行列式降低一阶,对于阶数不高的数字行列式本法有效。
三 拆成行列式之和(积)
把一个复杂的行列式简化成两个较为简单的。
四 利用范德蒙行列式
根据行列式的特点,适当变形(利用行列式的性质——如:提取公因式;互换两行(列);一行乘以适当的数加到另一行(列)去; ...) 把所求行列式化成已知的或简单的形式。其中范德蒙行列式就是一种。这种变形法是计算行列式最常用的方法。
五 数学归纳法
当 与 是同型的行列式时,可考虑用数学归纳法求之。
六 逆推法
建立起 与 的递推关系式,逐步推下去,从而求出 的值。
有时也可以找到 与 , 的递推关系,最后利用 ,
得到 的值。
七 加边法
要求:1 保持原行列式的值不变; 2 新行列式的值容易计算。根据需要和原行列式的特点选取所加的行和列。加边法适用于某一行(列)有一个相同的字母外,也可用于其第 列(行)的元素分别为 n-1 个元素的倍数的情况。
八 综合法
计算行列式的方法很多,也比较灵活,总的原则是:充分利用所求行列式的特点,运用行列式性质及上述常用的方法,有时综合运用以上方法可以更简便的求出行列式的值;有时也可用多种方法求出行列式的值。
九 行列式的定义
一般情况下不用。