A. 苯板容重怎么计算公式
单位体积所具有的质量称为密度,公式ρ=m/V(kg/m3);单位体积所具有的重量称为容重,公式γ=G/V(N/m3),容重等于密度和重力加速度的乘积,即γ=ρg。
单位
容重=密度*g=kg/m3*g,单位是牛/立方米(N/m³)
亦称“土壤假比重”。一定容积的土壤(包括土粒及粒间的孔隙)烘干后的重量与同容积水重的比值。它与包括孔隙的1立方厘米烘干土的重量用克来表示的土壤容重,在数值上是相同的。一般含矿物质多而结构差的土壤(如砂土),土壤容积比重在1.4-1.7之间;含有机质多而结构好的土壤(如农业土壤),在1.1-1.4之间。
土壤容积比重可用来计算一定面积耕层土壤的重量和土壤孔隙度;也可作为土壤熟化程度指标之一,熟化程度较高的土壤,容积比重常较小。
参考资料来源:网络-土壤容重
参考资料来源:网络-容重
B. 保温层的最佳保温层厚度
我国寒冷地区的既有住宅建筑多属砖混结构,建筑围护结构热工性能差、墙体不保温,造成了全年采暖空调能耗居高不下。改进建筑围护结构热工性能是节能改造的关键,而外墙节能在建筑节能中占有非常重要的位置,本文采用生命周期法对北方地区的城市居民楼简单的平屋顶住宅建筑进行能耗模拟,通过比较几组具有不同厚度保温层的负荷指标,分析了保温层厚度对建筑负荷的影响,并确定了最佳的经济保温层厚度。保温层“经济厚度”的计算方法, 不但考虑了传热基本原理, 而且考虑了保温材料的投资费用、能源价格、贷款利率、导热系数等经济因素对保温层厚度的影响。据生命周期分析法的原理,利用单位面积围护结构(仅考虑屋顶)的采暖总耗费的数学模型,得出了一个简单的保温层经济厚度的计算式。最后通过几组数据进行验证,并推广为其他常见保温材料的最佳保温层厚度,进一步验证所得结论的正确与合理性。
目前,我国对房屋建筑的保温隔热性能提出了更高的要求,而目前很多城市居民楼尚且都还是简单的平顶屋。外保温是目前大力推广的一种建筑保温节能技术。外保温与内保温相比,技术合理,有其明显的优越性,使用同样规格、同样尺寸和性能的保温材料,外保温比内保温的效果好。外保温技术不仅适用于新建的结构工程,也适用于旧楼改造,适用于范围广,技术含量高;外保温包在主体结构的外侧,能够保护主体结构,延长建筑物的寿命;有效减少了建筑结构的热桥,增加建筑的有效空间;同时消除了冷凝,提高了居住的舒适度。根据一系列的节能政策、法规、标准和强制性条文的指导下,我国住宅建设的节能工作不断深入,节能标准不断提高,引进开发了许多新型的节能技术和材料,在住宅建筑中大力推广使用。但我国目前的建筑节能水平,还远低于发达国家,我国建筑单位面积能耗仍是气候相近的发达国家的3倍~5倍。北方寒冷地区的建筑采暖能耗已占当地全社会能耗的20%以上,且绝大部分都是采用火力发电和燃煤锅炉,同时给环境带来严重的污染。所以建筑节能还是本世纪我国建筑业的一个重要的课题。而同时墙体和屋顶作为建筑物的重要围护物件, 而其保温层厚度又是决定于建筑保温水平的重要参数,于是针对增强保温性能和节省热能损失和能源浪费,设计最佳保温层厚度有着重要的意义。 a. 假设研究对象为室内空气维持在设定适宜值的空调建筑。
b. 冬季建筑物采暖热负荷包括围护结构的耗热量和冷风渗透的耗热量,其中认为冷风渗透的耗热量不直接影响围护结构的热阻,而在计算保温层最佳厚度时只考虑屋顶耗热量的影响。
c. 假设屋顶结构体及保温层材料均匀,热传导系数是常数。
d. 室内温度和室外温度保持不变,且热传导过程已处于稳定状态。
e. 室内空气与围护结构内表面之间允许温度差摄氏4度,即在冬季平顶屋室内空气比内墙壁高4摄氏度。
f. 北方地区屋顶,夏季太阳日照下的表面温度最高达摄氏75度,冬季为摄氏零下40度。 模型中使用的主要参数说明
Q 单位面积的透过屋顶损失的热量,W/ m2
K 围护结构的传热系数,W/(m2·℃)
ΔT 室内外温差,℃。
Qn 年采暖耗热量,J/m2
HDD 采暖度日数,℃·d
Ri 由里到外屋顶结构材料的传热阻,m2·K/W
R 保温层的热阻,m2·K/W
di 由里到外屋顶结构材料的厚度,m
d 保温层的厚度
i 材料各层的导热系数,W·m/K
λ 保温层的导热系数,W·m/K
W 单位面积年采暖总费用,¥/ m2;
WT 单位面积保温层的投资费用,¥/ m2;
WN 单位面积年采暖耗热费用
WY 单位面积采暖年运行费用,¥/ m2·a
PWF 贴现系数
i 银行利润
I 现贴率
g 通货膨胀率
N 使用年限
P 单位体积保温材料的造价
C 单位时间的电价,¥/h
H 空调单位面积单位时间的发热量, J/h
η 采暖系统的总效率
Vi 采暖或降暖日数,d (1)厚度为d的均匀介质,两侧温度差为ΔT,则单位时间由温度高的一侧向温度低的一侧通过单位面积的热量Q与ΔT成正比,即: Q=kΔT, k为热传导系数,其中k= ,R为介质的传热阻
(2)PWF-贴现系数(Present Worth Factor),是把今后某一日期收到或支付的款项,折算为现值的过程。一元资金在不同时期的现值,叫做贴现系数,即将资金的将来值折算成现值。
(3)所谓采暖度日数 HDD(Heating Degree Days) 是指一段时间 ( 月、季或年 ) 日平均温度低于 65 °F(18.3 ° C) 的累积度数。如果日平均温度高于 65 °F,那么这一天无采暖度日数。
问题的分析
屋顶是建筑物的重要围护结构,为确保其保持室温,减少热损的功能. 尤其是在严寒地区,在保证寒冷地区冬季室内气温达到应有的标准的情况下,还需把其采暖费用作为重要考虑因素。保温层厚度是决定建筑保温水平的重要参数。一般随着保温层厚度的增加,围护结构的绝热性能提高,从而降低建筑负荷,采暖设备造价和采暖系统运行费用也相应降低;但同时,围护结构的建造费用也相应增加,因此,一定存在某一特定的保温层厚度,即经济厚度d ,使建筑物总费用(建造费用和经营费用之和)最小。于是考虑建立关于总费用W的目标函数,其包括保温层的投资费用和采暖耗热费用,其中对于采暖好热费用,考虑经济和节能,采用生命周期法,建立节能建筑设计的数学模型。建立关于保温层厚度d的关系式,得到计算经济厚度的关系,使得目标函数W最小,对应的即为最佳厚度d。由此得到最佳保温厚度,变换保温材料时只需替代导热系数,结合数据得到最佳保温材料。 在我们建立的模型中目标函数的总费用分两部分,即单位面积保温层的投资费用WT和单位面积采暖耗热费用WN。
WT的确定
已知单位体积保温层的造价P(包括保温材料费用,运输费用,施工费用,施工管理费用等),易得
其中d为保温层的厚度 (1)
年采暖耗热量费用
围护结构的传热系数K
根据公式概念有 , (2)其中Ri为围护结构建筑材料的传热阻,R为保温层的传热阻。
且易知R及Ri可由公式 算得,其中d为材料的厚度, 为材料的导热系数。
采暖度日数HDD
根据概念,为优化计算,冬季采暖度日数取为HDD20,即在一段时间的采暖日时间内平均温度低于20°C的累积度数。而在夏季降暖日数取为HDD25,即在一段时间内的降暖时间内高于25°C的累积度数,或者说如果日平均温度底于 25°C,那么这一天无降暖度日数。实际上也认为20°C与25°C分别为室内冬夏两季的适应温度。
对于采暖(降暖)度日数的计算方法有:
采用HDD=ΔT/2*V ,即取使室内达到适宜温度时最高温差的一半作为采暖(降暖)时间内的平均温差,其中ΔT为屋顶外表面的最低温度(最高温度)与室内冬季(夏季)适宜温度的差。V为采暖(降暖)总日数。
于是设屋顶外表面冬季最底温度为T1℃,夏季最高温度为T2℃ ,采暖日数为V1,降暖日数为V2,则有:
HDD20=(20-T1)/2*V1 (3)
HDD25=(T2-25)/2*V2 (4)
贴系数的确定
若g=i,PWF=(1+i)-1;
若g< i,则I=(i-g)/(1+g);
若g> i,则I=(g-i)/(1+i);
则有PWF=[1-(1+I)-N]/I (5)
单位面积年热损失Qn
单位面积年热损失用采暖度日数计算,一年分夏冬两个季节
(6)
=
3.4.6 单位面积采暖年运行费用WY
WY=
(7)
3.4.7单位面积年采暖耗热费用
(8)
综合(1)至(8)则有:
(9)
且如前所述,建筑采暖总费用W存在一个最小值d,其对应的厚度值即为所求最佳厚度d.
对W关于d求导数,有 ,求得
(10) 珍珠岩保温层的最佳厚度计算
以北方城市居民平顶屋住房为例,夏季取屋顶表面温度最高达摄氏75度,冬季为摄氏零下40度。在计算中选用格力 KFR-26GW/K(2658)D-N5空调,其参数: 功率:1P/制冷量:2600W。经换算得格力空调单位面积单位时间的发热量为H=0.72J/h。电价来源于长春供电局:C=0. 47 元/ kWh 。依据2007年的贷款利率为i=7.83%,通货膨胀率为g=4.8%,设定使用年限N=10.经计算可得:贴现系数PWF=8.58。认为年采暖日数为4个月,降暖日数为2个月,即有V1=120,V2=60,(单位:天)。
采用珍珠岩保温层,其导热系数在0.047-0.054(单位:w/m.k)之间,且造价为:186元/立方米,假定取 。取采(降)暖系统的总效率 。
表一:
屋顶围护结构 导热系数,W·m/K 厚度
mm 传热阻
m2·K/W
围护结构的传热系数
涂料 0.041 10 0.024
水泥砂浆 0.930 15 0.016
楼板 0.174 200 1.15
三毡四油防水材料 0.668 10 0.014
珍珠岩保温层 0.054 —— ——
图一:珍珠岩保温层d与采暖总费用W关系
在建筑采暖过程中,实际上保温层的投资费用WT随保温层厚度d的增加呈线性增大,而年采暖(降暖)所用耗热费用WN与保温层厚度d之间是非线性关系,开始随d增大而迅速降低,当d达到一定值时,WN变得平缓,从而导致单位面积年采暖总费用W随着d的增加,先是减小而后增长,在d=28.15mm时取得最小值,即为满足(10)式的珍珠岩最佳保温层厚度。
此计算也同样适于其他保温材料最佳保温厚度的确定,在后文将作详细说明。
不同材料的保温层最佳厚度的比较分析
各常见保温材料导热系数及单位造价,及计算所得最佳厚度和年采暖费用如下表二:
保温层材料 导热系数,W·m/K
单位造价,
元/立方米 最佳厚度,
mm
单位面积年采(降)暖总费用,元
聚氨酯泡沫
0.020 580 9.70 11266.00
珍珠岩保温层 0.054 186 28.15 10484.15
苯板 0.047 300 20.68
12419.24
挤塑板 0.025 430 12.59
8934.74
聚氨酯保温板 0.028 320 15.46 8158.05
聚乙烯PEF 0.038 320 18.00
9501.77
图二:不同材料保温层的最佳厚度
实际上保温效果:聚氨酯泡沫最好,挤塑板次之,苯板最差;
耐冷热性能:聚氨酯泡沫最好,挤塑板次之,苯板最差;
吸水率(性):挤塑板最低,聚氨酯次之,苯板最易吸水;
使用寿命:聚氨酯泡沫最长,挤塑板次之,苯板最差;
价格:聚氨酯泡沫最高,挤塑板次之,苯板最低;
聚氨酯现场发泡(喷涂)可直接现场喷涂成型(液体膨胀),成型、运输方便;其他两种板材需要运输、粘贴,较为麻烦且会存在一定的破损,有拼接缝存在。 对于室内外的温差计算,本文采用室内达到适宜温度时与外界最高温差的一半作为一段时间内的平均温差,然而实际上温度差随着外界气候、环境、时间等因素时刻发生变化。为此,对于室外温差的计算应考虑建立动态负荷和保温层厚度之间的关系式。
本文是是着重从经济学的角度来确定最佳保温层厚度。然而实际上保温层厚度的选择不仅关系到节约能源问题,同时也关系到环境保护问题,能源日益短缺的及国内乃至世界日趋严重的近日更加显得重要和必须。倘若在围护保温层材料的选择上考虑其对环境的影响,以及其所需消耗热源燃料产生的污染物量进行评估,使得选取的厚度在经济和环境的效益最佳。
在设置集中采暖的建筑物,其围护结构的传热阻除了根据技术经济的比较确定,而且要符合国家有关节能标准的要求,对于居住平顶屋等建筑围护结构的最小热阻应按一下计算公式计算的结构进行附加,其最小的传热阻按一下计算确定:
式中 Rmin——围护结构最小传热阻(m2·K/W)
ti——冬季室内计算温度,一般取20°C。
te——围护结构冬季室外计算温度,单位:°C。
n——温差修正数系数,外墙,平屋顶取1.00。
ΔT——室内空气与围护结构内表面之间的允许温差°C。
Rk——围护结构内表面换热阻(m2·K/W)
于是,在所建模型中增加评估条件:最小保温层厚度d应满足 ,这在实际工程中,对于围护保温层的厚度确定亦有着重要的意义。 由于实际情况的千变万化,因此我们得到的数据和假定的在实际操作中总存在着微小的误差,因此一个好的模型绝不能由这些微小变动而导致结果的较大改变。为了我们所做的模型能进行比较全面的测试,同时考虑到实际情况,我们选用适宜参数的条件下,设定了一些合理的初始条件,利用计算机进行模型检验,得到包括珍珠保温层在内的一系列保温材料的最佳保温厚度,并且其计算结果亦与实际工程设计中采用的保温层厚度比较接近。
保温层厚度的选择关系到节能建筑的造价和运行成本的经济性问题。生命周期耗费分析法计算保温层经济厚度的数学模型,考虑了建筑物在其生命周期中的采暖能耗,具有科学简单、方便等特点。当缺少采暖系统数据资料时,利用设计规范针对性和适应性较好,对于工程设计具有一定的参考和应用价值,可用于新建或旧有建筑改造以及新型保温材料的设计计算。但是在呼吁以人为本,全面协调可持续发展的今天,从经济和环境两方面综合考虑保温层厚度,应该更为合理,意义更为重大。
C. 怎样计算苯板的公斤数
一般以理论重量或出厂标识重量参数得出总数据。
常见苯板的重量参数:
EPS聚苯板的常用规格:
每立方米重量(千克) 尺寸(长宽cm) 厚度(cm)。
12 60X120 2、2.5、3、5。
14 60X120 2、2.5、3、5。
16 60X120 2、2.5、3、5。
18 60X120 2、2.5、3、5。
(3)火苯板耗电计算方法扩展阅读:
使用效果:
1、对建筑物主体结构进行保护,延长建筑物寿命。由于外保温是将保温层置于结构外侧,降低了由于温度变化导致的结构变形产生的压力,并减少空气中有害物质和紫外线对结构的侵蚀。
2、有效消除“热桥”以往采用内保温,“热桥”是难以避免的,而外墙保温有效地防止热桥的产生,避免结露。
3、使墙体潮温情况得到改善,一般内保温需设隔汽层,而采用外保温保温材料的透温性能远远强于主体结构,在墙体内部一般不会发生冷凝现象,结构层的整个墙身温度提高了进一步增强了墙体的保温性能。
4、有利于室温保持稳定,采用外墙外保温,由于墙体蓄热能力较大的结构层在墙体内侧,有利于室温保持稳定。
5、增加房屋使用面积。可以避免二次装修对保温层的破坏。
D. (EPS)聚苯板的容重计算方法
如果长1200mm,宽600mm,厚50mm的苯板 ,Kg/m3,那么这个长宽高放在电子称上称一下,得出的数除以1200*600*50最后出来的数就是容重。
聚苯板用作保温层,全称聚苯乙烯泡沫板,又名泡沫板或EPS板。是由含有挥发性液体发泡剂的可发性聚苯乙烯珠粒,经加热预发后在模具中加热成型的具有微细闭孔结构的白色固体。
拓展资料
聚苯板特点:
1、优异的保温隔热性能;
2、高强度抗压性能;
3、优越的抗水、防潮性能
4、防腐蚀、经久耐用性能
主要用途
1>用于建筑墙体、屋面保温、复合保温板材的保温层;
2>用于车辆、船舶制冷设备和冷藏库的隔热材料;
3>用于装潢雕刻各种模型。
4>用作防水层的保护层。
膨胀聚苯板吸水率
膨胀聚苯板(eps板)吸水率与其挤塑聚苯板(XPS板)比较来说偏高,容易吸水,这是该材料的一个缺点。其保温板的吸水率对其热传导性的影响很明显,随着吸水量的增大,其导热系数也增大,保温效果也随之变差,所以这点要特别注意。
聚苯板和挤塑板是目前用于外墙保温的两种主要板材,二者都具有一定的保温隔热性能,
区别:
一、 挤塑,板比 聚苯板的导热系数小。在选用厚度上比聚苯板有很大优势。
二、 挤塑板比聚苯板的抗压强度或压缩强度大,所以,挤塑板常用和上人屋面保温与地下室及地坪保温。
三、 挤塑板,比聚苯板的不足之处为:密度大,结构密实,显脆性,不透气,而且表面 光滑 ,没有经界面处理,粘结性较小。
实践表明20mm厚的XPS挤塑保温板,其保温程度相当于50mm厚发泡聚苯乙烯,120mm厚的水泥珍,珠岩。
再来看对二者优缺点的介绍。
EPS保温系统有如下的优越性:
1)、已经行成体系,技术成熟。
2)、保温效果佳。
3)、价格不特别昂贵,使整个系统价格适当。方便用户接受。
4)、没有复杂的施工工艺。
EPS系统的缺点:
1)因为板材自身的性质问题,其强度不大。
2)板材出厂时应经过一段成熟期,需放置一段时间才能够使用。
2、XPS保温系统
XPS系统的优点在于:
1)具有较EPS很好的保温隔热性能。对同种的建筑物外墙,其使用厚度能低于其它类型的保温材料。
2)因为内层的闭孔结构。所以它具有良好的抗湿性。
XPS系统的缺点:
1)板材比较脆,不好弯折,板上有应力时应力集中,容易让板材损坏、开裂。
2)透气性低,几乎不透气。
3)价格和EPS系统相比较高。
4国内尚且没有国家标准;欧美、韩国等保温技术先进国家尚且没有推广使用。
5其结构的伸缩性低
E. 外墙苯板工程量怎么计算,,要简单快捷易懂的计算方法
如果是套定额的话,就外墙的投影面积减去窗洞口的面积,洞口侧边面积也不增加,如遇到线条的话就另套装饰线条的定额子目。如果是包工程的话,就是外墙投影面积了(不需要减去窗洞口面积这是一般的做法,看合同怎么定立的,价格一般在14元/m2(人工费)) 如果算工程量的话就就外墙的投影面积减去窗洞口的面积,乘以厚度算立方米(一般为80mm厚)。窗口侧边的按1.5公分宽(采用20mm厚的就可以了)
F. 请问谁知道外墙保温板的消耗量如何计算
外墙保温板的消耗量计算方法:保温面积*厚度+损耗(一般按照5%控制)。这个也可以根据自己工程的实际情况,进行实测。高层损耗少,别墅损耗多。
外保温面积×保温板厚度就是整个工程的保温板耗量,加上边角和窗户的切割损耗乘个0.01基本上就够了。
(6)火苯板耗电计算方法扩展阅读:
外墙保温分类:
1、岩棉板无机类耐火A级,导热系数0.041-0.045防火,阻燃吸湿性大,保温效果差;
2、无机活性保温材料耐火A级,导热系数0.050-0.055防火保温隔热效果好,施工简便(无需网格布、抗裂砂浆等),与建筑物同寿命,抗水抗裂抗空鼓;
3、陶瓷保温板无机类耐火A级,导热系数0.08-0.10防火不燃,不吸水,施工方便,使用耐久;
4、玻化微珠、珍珠岩等浆料无机类耐火A级,导热系数0.07-0.09防火性好,耐高温保温效果差,吸水性高;
5、膨胀聚苯板(EPS板)有机类耐火B2级,导热系数0.037-0.041保温效果好。
G. (EPS)聚苯板的容重计算方法
图纸上所标注的容重不是用来计算的,而是对EPS产品的一个(密度)规格要求。通常为18、20、22等。
H. 挤塑聚苯板的标准
膨胀聚苯板薄抹灰外墙外保温系统JG149-2003的标准和JGJ144-2004的技术规程
在国内,挤塑板(XPS)应用于外墙外保温还没有相关的国家和行业标准,然而XPS已经越来越多的被应用于外墙外保温中。结合挤塑板外保温工程应用的一些经验,本文就挤塑板的材料性能要求及外保温应用技术和同行作一些探讨。
虽然中华人民共和国建筑工业行业标准JG149-2003(薄抹灰膨胀聚苯乙烯保温板外墙保温系统)是针对膨胀聚苯板(EPS)提出的,中华人民共和国建筑工业标准JGJ144-2004(外墙外保温工程技术规程)更是把挤塑聚苯板(XPS)拒之标准以外,但目前国内XPS还是大量被应用于外墙外保温系统中。近几年国内EPS的价格降了许多,且XPS与EPS相比有导热系数小、抗压强度高、系统刚度高等优点,由于国内没有XPS外墙外保温体系的相关标准,很多厂家都推出了自己企业的内部标准,由于每个厂家的内部标准要求不一致,导致工程应用中出现了一些失败的案例,但也不乏成功的例子。结合我公司在该体系做法的一些经验,对XPS外墙外保温体系与同行做一些探索和分析。
一、XPS板质量标准探索
XPS之所以不为国家及地方标准认可和推荐,主要是业内普遍认为XPS存在透气性差,表面光滑,易于翘曲变性等因素。既然XPS已在工程中大量的被使用,我们就不能忽略这些因素的影响,应该对外墙外保温用挤塑板的相关性能指标提出更合理的标准。关于XPS的国家标准GB/T10801.2-2002在2003年就制定了,在近几年的实际工程应用中,可以看出国标GB/T10801.2-2002中相关指标已不再符合XPS外墙外保温体系的实际情况,下面对照国家标准GB/T10801.2-2002的相关指标作一些探讨:
1、规格尺寸(毫米)
现国家标准:长度1200,1250,2450,2500。宽度600,900,12009p
国内厂家实际标准:常用的有1200、1800两种
在实际工程应用中,过大尺寸的挤塑板,会导致工人较难平整粘贴。满粘聚合物砂浆后质量比较重,不利施工。
标准建议:建议参照行业标准JGJ 144—2004(外墙外保温工程技术规程)推荐的尺寸1200*600毫米。
2、允许偏差(mm)ww
现国家标准:长度和宽允许偏差 ±7.5毫米,对角允许偏差±7毫米。厚度允许偏差±毫米2(厚度﹤50=(以规格1200*600的板为基准)。
国内厂家实际标准:参照国标。
在实际工程应用中,此误差会导致施工困难,成为外保温开裂脱落的一个诱因。
标准建议:建议参照行业标准JG 149-2003中EPS板允许偏差,长度允许偏差±2.0,宽度允许偏差±1.0,对角允许偏差±3.0。厚度允许偏差±1.5(厚度﹤50。(单位:毫米)
3、表面处理
现国家标准:未作强制性规定。
国内厂家实际标准:光面,压花,人工打毛,涂刷界面砂浆。
在实际工程应用中,有的厂家提出,改善了粘结聚合物砂浆的粘结性能,但在光面挤塑板上粘贴,效果还是不太理想,光面挤塑板粘结力约仅为打毛板60%,所以挤塑板板表面进行处理是很有必要的。
标准建议:外墙用挤塑板禁止光面直接使用,强制进行表面处理,并要做挤塑板与粘结砂浆的粘结强度拉拔试验。
4、抗折抗弯抗拉
现国家标准:无
国内厂家实际标准:无。
在实际工厂应用中,挤塑板的抗折抗弯抗拉强度是整个外保温体系稳定性和耐久性不可忽略的重要因素。
标准建议:实际积累数据较少。
5、颜色,外观
现国家标准:产品表面平整,无夹杂物,颜色均匀 。不应有影响使用的可见缺陷,如起泡,裂口,变形等。
国内厂家实际标准:参照国标
实际工程应用中,某些品牌的挤塑板平整度欠佳,影响施工质量。
标准建议:对外墙用挤塑板平整度指标可以参照行业标准JG 149-2003中EPS板的平整度允许偏差。
6、燃烧性能
现国家标准:按GB8624分级达到B2级。
国内厂家实际标准:受成本和技术能力制约,比较忽视阻燃性问题。实际工程应用中,有大量非阴燃型挤塑板。
标准建议:制定标准等级,严禁使用非阴燃挤塑板。
7、透湿性能
现国家国准标:X250带表皮,小于3.0。不带表皮W200,小于3.5。
国内厂家:参照国标。
实际工程应用,有设计人员提出挤塑板透气性太差而选用聚苯板。外墙用EPS水蒸汽透过系数值在4.5左右,通过打磨处理或不带皮的XPS板的水蒸汽透过系数值能达到3.5左右。
建议使用标准:建议使用打磨板或经过表面处理的挤塑板,可略提高透气性。
通过以上分析探讨,XPS板使用在外保温的一些不足之处是可以通过其生产工艺和施工方法的改进而得到弥补的,只是我们对于XPS的认识和应用时间比较短,也缺少相关的标准,但XPS板在墙体保温节能方面具有广泛用途。
二 XPS板外体温应用探讨
国家今年刚发布了和EPS薄抹灰外墙保温体系有关的三个建材工业行业标准:JC561.1-2005(增强用玻璃纤维网布);JC/T992-2005(墙休保温用膨胀聚苯乙烯板胶粘剂);
JC/T 993-2005(外墙外保温用膨胀聚苯乙烯板抹面胶浆)。
这对XPS薄抹灰外墙保温体系也是值得错鉴的,所以在XPS板外保温应用中对材料有分析这里就不再探讨了,下面主要从XPS板保温层的固定和XPS外墙外保温系统的饰面做法作一些探讨。
1、XPS保温层的固定
保温层的固定质量直接影响到整个系统的稳定性,目前聚苯板保温层的固定方法通常是采用粘贴与铆固相结合的方法。按JG 149-2003(薄抹灰膨胀聚苯乙烯保温板外墙外保温系统)对铆栓拉拔力(0.3KN/个)的规定,以3倍风压安全系数计算,铆栓的数量为:3×风压计算值÷0.3,由此计算建筑物不同高度所用铆栓数的结果。
在20m高的墙面,铆栓的用量为17(个/m2),而在100m高度,则高达29(个/ m2)。另外,按铆栓拉拔力(0.3KN/个)计,相当于达到0.1Mpa的粘结抗拉强度所需的铆栓数量为333个/ m2。
布置如此高密度的铆栓显然是不可能的,这也从另一方面说明,提高系统稳定性(抗风压等)真正的途经只能是提高整休的粘结强度。而聚苯板类外保温体系抗拉强度最薄弱的环节是粘结胶浆与保温层之间,即是由聚苯板本身的强度决定的。板整体的粘结力与粘贴面积成正比,因此增大粘结胶浆和聚苯板的粘结面积,就能提高聚苯板粘结胶浆的粘接力。
按照JGJ 144-2004(外墙外保温工程技术规程),粘结面积不小于40%,我们将传统的点粘法工艺改为条粘法,聚苯板背面的空腔均匀分布,粘结面积提高10%-20%,而且聚苯板整体的抗风压能力也提高了很多。参照JGJ 144-2004中6.1.2条规定,建筑物高度在20m以下时,如果饰面为涂料,可以不使用铆栓固定,在20m以上的建筑物铆栓也不宜多用,铆栓也只是起到辅助的作用。
2、XPS外墙外保温系统的饰面做法
XPS外墙外保温系统的饰面涂料做法可以参照JG 149-2003(薄抹灰膨胀聚苯乙烯保温板外墙外保温系统)的相关规定。
XPS外墙外保温系统的饰面面砖做法比较特殊,现行的国家行业标准“膨胀聚苯板薄抹灰外墙外保温系统” JG149-2003中没有说明在保温层上直接粘贴面砖的具体做法。北京市地方标准“外墙外保温技术规程DBJ/T01-38-2002中规定,当设计要求局部外饰面为面砖时,有条件的允许贴砖高度不宜超过6米,且在每个楼层间安装金属托架。由此看出在外墙保温板上直接粘贴面砖的安全重要性。而且有些省市有建筑物超过50M(或大于18层)严禁粘贴面砖的规定。
在外保温系统上粘贴面砖,主要存在以下几个方面的问题,一是粘贴面砖后,系统装饰层的自重增加了,容易将聚苯板撕裂;二是由于面砖与聚苯板的线膨胀系数有一定的差异,在温度的作用下容易引起系统的开裂;三是粘贴面砖后,在系统的表面易形成隔水层,阻碍了系统中水蒸气的渗透路径;四是系统的防火构造考虑不周等。
参照JG 158-2004(胶粉聚苯颗粒外墙外保温系统),饰面粘贴面砖,抗裂层采用抗裂砂浆复合热镀锌电焊网,并用塑料铆栓固定的工艺。有很多厂家粘贴面砖工艺,抗裂层采用抗裂砂浆复合加强型网格布,并用塑料铆栓固定的工艺。抗裂层使用电焊网和网格布最大的不同在于:用电焊网时铆固件能起到很好的双重作用:固定保温层和传递饰面荷载到墙体。前面分析过,聚苯板类外保温体系抗拉强度最薄弱的环节在粘结胶浆与保温层之间,如果采用抗裂砂浆复合加强型网格布,整个面砖饰面层的荷载全面由抗裂层与聚苯板之间的粘结强度来承担,抗裂砂浆复合加强型网格布后的刚度远远小于抗裂砂浆复合热镀锌电焊网,所以很难把饰面荷载通过铆固件传给墙体。
3、结束语
A、在未来墙体节能的进一步提高,XPS必将是不可或缺的高效保温节能材料。但整个行业急需相关标准来规范。
B、以刚性的面砖作为柔性的外墙外保温体系饰面,在受力情况上不如涂料饰面合理。
C、面砖饰面的外墙外保温体系组成材料的性能应高于涂料饰面外保温体系。
D、面砖直接粘贴于刚性的墙面作为饰面,耐久性和安全性也有着众所周之的隐患,目前我国一些省市已明确规定对高层建筑使用面砖作饰面作出了相关的规定限制,对于外保温来说,这种限制无疑更为必要。
在国内,挤塑板(XPS)应用于外墙外保温还没有相关的国家和行业标准,然而XPS已经越来越多的被应用于外墙外保温中。结合挤塑板外保温工程应用的一些经验,本文就挤塑板的材料性能要求及外保温应用技术和同行作一些探讨。
虽然中华人民共和国建筑工业行业标准JG149-2003(薄抹灰膨胀聚苯乙烯保温板外墙保温系统)是针对膨胀聚苯板(EPS)提出的,中华人民共和国建筑工业标准JGJ144-2004(外墙外保温工程技术规程)更是把挤塑聚苯板(XPS)拒之标准以外,但目前国内XPS还是大量被应用于外墙外保温系统中。近几年国内EPS的价格降了许多,且XPS与EPS相比有导热系数小、抗压强度高、系统刚度高等优点,由于国内没有XPS外墙外保温体系的相关标准,很多厂家都推出了自己企业的内部标准,由于每个厂家的内部标准要求不一致,导致工程应用中出现了一些失败的案例,但也不乏成功的例子。结合我公司在该体系做法的一些经验,对XPS外墙外保温体系与同行做一些探索和分析。
一、XPS板质量标准探索
XPS之所以不为国家及地方标准认可和推荐,主要是业内普遍认为XPS存在透气性差,表面光滑,易于翘曲变性等因素。既然XPS已在工程中大量的被使用,我们就不能忽略这些因素的影响,应该对外墙外保温用挤塑板的相关性能指标提出更合理的标准。关于XPS的国家标准GB/T10801.2-2002在2003年就制定了,在近几年的实际工程应用中,可以看出国标GB/T10801.2-2002中相关指标已不再符合XPS外墙外保温体系的实际情况,下面对照国家标准GB/T10801.2-2002的相关指标作一些探讨:
1、规格尺寸(毫米)
现国家标准:长度1200,1250,2450,2500。宽度600,900,12009p
国内厂家实际标准:常用的有1200、1800两种
在实际工程应用中,过大尺寸的挤塑板,会导致工人较难平整粘贴。满粘聚合物砂浆后质量比较重,不利施工。
标准建议:建议参照行业标准JGJ 144—2004(外墙外保温工程技术规程)推荐的尺寸1200*600毫米。
2、允许偏差(mm)ww
现国家标准:长度和宽允许偏差 ±7.5毫米,对角允许偏差±7毫米。厚度允许偏差±毫米2(厚度﹤50=(以规格1200*600的板为基准)。
国内厂家实际标准:参照国标。
在实际工程应用中,此误差会导致施工困难,成为外保温开裂脱落的一个诱因。
标准建议:建议参照行业标准JG 149-2003中EPS板允许偏差,长度允许偏差±2.0,宽度允许偏差±1.0,对角允许偏差±3.0。厚度允许偏差±1.5(厚度﹤50。(单位:毫米)
3、表面处理
现国家标准:未作强制性规定。
国内厂家实际标准:光面,压花,人工打毛,涂刷界面砂浆。
在实际工程应用中,有的厂家提出,改善了粘结聚合物砂浆的粘结性能,但在光面挤塑板上粘贴,效果还是不太理想,光面挤塑板粘结力约仅为打毛板60%,所以挤塑板板表面进行处理是很有必要的。
标准建议:外墙用挤塑板禁止光面直接使用,强制进行表面处理,并要做挤塑板与粘结砂浆的粘结强度拉拔试验。
4、抗折抗弯抗拉
现国家标准:无
国内厂家实际标准:无。
在实际工厂应用中,挤塑板的抗折抗弯抗拉强度是整个外保温体系稳定性和耐久性不可忽略的重要因素。
标准建议:实际积累数据较少。
5、颜色,外观
现国家标准:产品表面平整,无夹杂物,颜色均匀 。不应有影响使用的可见缺陷,如起泡,裂口,变形等。
国内厂家实际标准:参照国标
实际工程应用中,某些品牌的挤塑板平整度欠佳,影响施工质量。
标准建议:对外墙用挤塑板平整度指标可以参照行业标准JG 149-2003中EPS板的平整度允许偏差。
6、燃烧性能
现国家标准:按GB8624分级达到B2级。
国内厂家实际标准:受成本和技术能力制约,比较忽视阻燃性问题。实际工程应用中,有大量非阴燃型挤塑板。
标准建议:制定标准等级,严禁使用非阴燃挤塑板。
7、透湿性能
现国家国准标:X250带表皮,小于3.0。不带表皮W200,小于3.5。
国内厂家:参照国标。
实际工程应用,有设计人员提出挤塑板透气性太差而选用聚苯板。外墙用EPS水蒸汽透过系数值在4.5左右,通过打磨处理或不带皮的XPS板的水蒸汽透过系数值能达到3.5左右。
建议使用标准:建议使用打磨板或经过表面处理的挤塑板,可略提高透气性。
通过以上分析探讨,XPS板使用在外保温的一些不足之处是可以通过其生产工艺和施工方法的改进而得到弥补的,只是我们对于XPS的认识和应用时间比较短,也缺少相关的标准,但XPS板在墙体保温节能方面具有广泛用途。
二 XPS板外体温应用探讨
国家今年刚发布了和EPS薄抹灰外墙保温体系有关的三个建材工业行业标准:JC561.1-2005(增强用玻璃纤维网布);JC/T992-2005(墙休保温用膨胀聚苯乙烯板胶粘剂);
JC/T 993-2005(外墙外保温用膨胀聚苯乙烯板抹面胶浆)。
这对XPS薄抹灰外墙保温体系也是值得错鉴的,所以在XPS板外保温应用中对材料有分析这里就不再探讨了,下面主要从XPS板保温层的固定和XPS外墙外保温系统的饰面做法作一些探讨。
1、XPS保温层的固定
保温层的固定质量直接影响到整个系统的稳定性,目前聚苯板保温层的固定方法通常是采用粘贴与铆固相结合的方法。按JG 149-2003(薄抹灰膨胀聚苯乙烯保温板外墙外保温系统)对铆栓拉拔力(0.3KN/个)的规定,以3倍风压安全系数计算,铆栓的数量为:3×风压计算值÷0.3,由此计算建筑物不同高度所用铆栓数的结果。
在20m高的墙面,铆栓的用量为17(个/m2),而在100m高度,则高达29(个/ m2)。另外,按铆栓拉拔力(0.3KN/个)计,相当于达到0.1Mpa的粘结抗拉强度所需的铆栓数量为333个/ m2。
布置如此高密度的铆栓显然是不可能的,这也从另一方面说明,提高系统稳定性(抗风压等)真正的途经只能是提高整休的粘结强度。而聚苯板类外保温体系抗拉强度最薄弱的环节是粘结胶浆与保温层之间,即是由聚苯板本身的强度决定的。板整体的粘结力与粘贴面积成正比,因此增大粘结胶浆和聚苯板的粘结面积,就能提高聚苯板粘结胶浆的粘接力。
按照JGJ 144-2004(外墙外保温工程技术规程),粘结面积不小于40%,我们将传统的点粘法工艺改为条粘法,聚苯板背面的空腔均匀分布,粘结面积提高10%-20%,而且聚苯板整体的抗风压能力也提高了很多。参照JGJ 144-2004中6.1.2条规定,建筑物高度在20m以下时,如果饰面为涂料,可以不使用铆栓固定,在20m以上的建筑物铆栓也不宜多用,铆栓也只是起到辅助的作用。
2、XPS外墙外保温系统的饰面做法
XPS外墙外保温系统的饰面涂料做法可以参照JG 149-2003(薄抹灰膨胀聚苯乙烯保温板外墙外保温系统)的相关规定。
XPS外墙外保温系统的饰面面砖做法比较特殊,现行的国家行业标准“膨胀聚苯板薄抹灰外墙外保温系统” JG149-2003中没有说明在保温层上直接粘贴面砖的具体做法。北京市地方标准“外墙外保温技术规程DBJ/T01-38-2002中规定,当设计要求局部外饰面为面砖时,有条件的允许贴砖高度不宜超过6米,且在每个楼层间安装金属托架。由此看出在外墙保温板上直接粘贴面砖的安全重要性。而且有些省市有建筑物超过50M(或大于18层)严禁粘贴面砖的规定。
在外保温系统上粘贴面砖,主要存在以下几个方面的问题,一是粘贴面砖后,系统装饰层的自重增加了,容易将聚苯板撕裂;二是由于面砖与聚苯板的线膨胀系数有一定的差异,在温度的作用下容易引起系统的开裂;三是粘贴面砖后,在系统的表面易形成隔水层,阻碍了系统中水蒸气的渗透路径;四是系统的防火构造考虑不周等。
参照JG 158-2004(胶粉聚苯颗粒外墙外保温系统),饰面粘贴面砖,抗裂层采用抗裂砂浆复合热镀锌电焊网,并用塑料铆栓固定的工艺。有很多厂家粘贴面砖工艺,抗裂层采用抗裂砂浆复合加强型网格布,并用塑料铆栓固定的工艺。抗裂层使用电焊网和网格布最大的不同在于:用电焊网时铆固件能起到很好的双重作用:固定保温层和传递饰面荷载到墙体。前面分析过,聚苯板类外保温体系抗拉强度最薄弱的环节在粘结胶浆与保温层之间,如果采用抗裂砂浆复合加强型网格布,整个面砖饰面层的荷载全面由抗裂层与聚苯板之间的粘结强度来承担,抗裂砂浆复合加强型网格布后的刚度远远小于抗裂砂浆复合热镀锌电焊网,所以很难把饰面荷载通过铆固件传给墙体。
3、结束语
A、在未来墙体节能的进一步提高,XPS必将是不可或缺的高效保温节能材料。但整个行业急需相关标准来规范。
B、以刚性的面砖作为柔性的外墙外保温体系饰面,在受力情况上不如涂料饰面合理。
C、面砖饰面的外墙外保温体系组成材料的性能应高于涂料饰面外保温体系。
D、面砖直接粘贴于刚性的墙面作为饰面,耐久性和安全性也有着众所周之的隐患,目前我国一些省市已明确规定对高层建筑使用面砖作饰面作出了相关的规定限制,对于外保温来说,这种限制无疑更为必要。
I. 请问聚苯乙烯发泡塑料的价格计算方法 白色泡沫的计算公式 及8、9月的聚苯乙烯吨位价格
聚苯乙烯泡沫板由于生产工艺不同可以分为两种:一种是EPS板(也叫模塑板),容重较一般在18-22公斤/立,价格在250-350元/立不等;另一种是XPS板(也叫挤塑板),容重在28-38公斤/立,原新料生产的价格在600-1200元/立不等,旧料生产的价格在300-700元/立不等. 聚苯乙烯颗粒价格混乱,质量参差不齐,2010年基本上会从建筑节能市场消失,现在各地都禁止使用胶粉聚苯乙烯颗粒加水泥做外墙保温,因为这种材料热工性能差,质量难以控制,好多开发商宁可用不防火的聚苯板和挤塑板,都不用这种聚苯乙烯颗粒,从08年开始国内就有部分聚苯乙烯颗粒厂家转行做其它产品,2010年聚苯乙烯颗粒大面积退出市场也是必然。