导航:首页 > 计算方法 > 多倍角的函数计算方法

多倍角的函数计算方法

发布时间:2022-04-04 20:13:09

‘壹’ 三角函数计算 求简便计算方法


可用三角函数的诱导公式,
二角和的正(余)弦函数公式,
二倍角的正(余)弦公式
进行变换转化,达到解决问题
的目的。
详细变换如图所示!

‘贰’ 关于三角函数的计算方法

三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
由于三角函数的周期性,它并不具有单值函数意义上的反函数。
三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。
它有六种基本函数:
函数名 正弦 余弦 正切 余切 正割 余割
符号 sin cos tan cot sec csc
正弦函数 sin(A)=a/h
余弦函数 cos(A)=b/h
正切函数 tan(A)=a/b
余切函数 cot(A)=b/a
在某一变化过程中,两个变量x、y,对于某一范围内的x的每一个值,y都有确定的值和它对应,y就是x的函数。这种关系一般用y=f(x)来表示。
两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA ?
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA) ?
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2
sin2A=2sinA*cosA
三倍角公式
sin3a=3sina-4(sina)^3
cos3a=4(cosa)^3-3cosa
tan3a=tana*tan(π/3+a)*tan(π/3-a)
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) ?
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)
和差化积
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B) )
2cosAcosB=cos(A+B)+cos(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
积化和差公式
sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]
cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]
sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]
诱导公式
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(pi/2-a)=cos(a)
cos(pi/2-a)=sin(a)
sin(pi/2+a)=cos(a)
cos(pi/2+a)=-sin(a)
sin(pi-a)=sin(a)
cos(pi-a)=-cos(a)
sin(pi+a)=-sin(a)
cos(pi+a)=-cos(a)
tgA=tanA=sinA/cosA
万能公式
sin(a)= (2tan(a/2))/(1+tan^2(a/2))
cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))
tan(a)= (2tan(a/2))/(1-tan^2(a/2))
其它公式
a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a]
a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b]
1+sin(a)=(sin(a/2)+cos(a/2))^2
1-sin(a)=(sin(a/2)-cos(a/2))^2
其他非重点三角函数
csc(a)=1/sin(a)
sec(a)=1/cos(a)
双曲函数
sinh(a)=(e^a-e^(-a))/2
cosh(a)=(e^a+e^(-a))/2
tgh(a)=sinh(a)/cosh(a)

‘叁’ 十倍角的三角函数怎么计算如sin9度

你好!
就去用计算器或查表?
纯粹是为了计算的话2倍角公式要推导。
如果想练功夫,就用公式去推;
3倍角公式教材提都不提;
怎么又出来个十倍角
如果对你有帮助,望采纳。

‘肆’ 三角函数的计算方法

它有六种基本函数:
函数名 正弦 余弦 正切 余切 正割 余割
符号 sin cos tan cot sec csc
正弦函数 sin(A)=a/h
余弦函数 cos(A)=b/h
正切函数 tan(A)=a/b
余切函数 cot(A)=b/a
在某一变化过程中,两个变量x、y,对于某一范围内的x的每一个值,y都有确定的值和它对应,y就是x的函数。这种关系一般用y=f(x)来表示。
两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA 
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA)
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2
sin2A=2sinA*cosA
三倍角公式
sin3a=3sina-4(sina)^3
cos3a=4(cosa)^3-3cosa
tan3a=tana*tan(π/3+a)*tan(π/3-a)
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) 
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)
和差化积
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B) )
2cosAcosB=cos(A+B)+cos(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
积化和差公式
sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]
cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]
sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]
诱导公式
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(pi/2-a)=cos(a)
cos(pi/2-a)=sin(a)
sin(pi/2+a)=cos(a)
cos(pi/2+a)=-sin(a)
sin(pi-a)=sin(a)
cos(pi-a)=-cos(a)
sin(pi+a)=-sin(a)
cos(pi+a)=-cos(a)
tgA=tanA=sinA/cosA
万能公式
sin(a)= (2tan(a/2))/(1+tan^2(a/2))
cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))
tan(a)= (2tan(a/2))/(1-tan^2(a/2))
其它公式
a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a]
a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b]
1+sin(a)=(sin(a/2)+cos(a/2))^2
1-sin(a)=(sin(a/2)-cos(a/2))^2

‘伍’ 如何快速算出多倍角的函数值比如sec5 π

如果想快速算出多倍角函数值,首先将多倍角写成终边相同角集合,B=2K丌+a,k∈Z。然后,利用终边相同角集合的同名三角函数值相等。例如:5丌=2×2丌+丌,所以sec(5丌)=sec(2×2丌+丌)=sec丌=-1。望采纳!

‘陆’ 三角函数的正确计算方法

倒数关系: 商的关系: 平方关系:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1 sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα sin2α+cos2α=1
1+tan2α=sec2α
1+cot2α=csc2α

诱导公式
sin(-α)=-sinα
cos(-α)=cosα tan(-α)=-tanα
cot(-α)=-cotα

sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα

sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα

sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα

sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα

sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα

sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα

sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα

sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
(其中k∈Z)

两角和与差的三角函数公式 万能公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ

tanα+tanβ
tan(α+β)=——————
1-tanα ·tanβ

tanα-tanβ
tan(α-β)=——————
1+tanα ·tanβ
2tan(α/2)
sinα=——————
1+tan2(α/2)

1-tan2(α/2)
cosα=——————
1+tan2(α/2)

2tan(α/2)
tanα=——————
1-tan2(α/2)

半角的正弦、余弦和正切公式 三角函数的降幂公式

二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式
sin2α=2sinαcosα

cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α

2tanα
tan2α=—————
1-tan2α

sin3α=3sinα-4sin3α

cos3α=4cos3α-3cosα

3tanα-tan3α
tan3α=——————
1-3tan2α

三角函数的和差化积公式 三角函数的积化和差公式
α+β α-β
sinα+sinβ=2sin—--·cos—-—
2 2
α+β α-β
sinα-sinβ=2cos—--·sin—-—
2 2
α+β α-β
cosα+cosβ=2cos—--·cos—-—
2 2
α+β α-β
cosα-cosβ=-2sin—--·sin—-—
2 2 1
sinα ·cosβ=-[sin(α+β)+sin(α-β)]
2
1
cosα ·sinβ=-[sin(α+β)-sin(α-β)]
2
1
cosα ·cosβ=-[cos(α+β)+cos(α-β)]
2
1
sinα ·sinβ=- -[cos(α+β)-cos(α-β)]
2

化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)

例题:
1、已知角α的终边在射线y=(-√3)x(x<0)上,求sinα+cosα的值。
1、射线y=(-√3)x(x<0)的斜率k=-√3=tanα ,
由公式得α=2π/3+2kπ,k∈N.
sinα=sin(2π/3+2kπ)=sin(2π/3)=√3/2.
cosα=cos(2π/3+2kπ)=cos(2π/3)=-1/2.
所以sinα+cosα=(√3-1)/2
2. 已知cosα=负三分之二,求:1+tan²α
cosα=负三分之二,(cosα)^2=4/9,得(sinα)^2=1-4/9=5/9

1+tan²α =1+(sinα/cosα)^2=1+sin²α/cos²α =1+(5/9)/(4/9)=9/4 已知cosα=负三分之二,求:1+tan²α

‘柒’ 关于三角函数和倍角公式的计算问题

已知题目就能把余弦值求出来,然后把下面的展开带入就解决了,很简单的题目

‘捌’ 三角函数的倍角公式

三角函数的倍角公式:tan2A=2tanA/(1-tan2A),cot2A=(cot2A-1)/2cota。倍角公式是三角函数中非常实用的一类公式。就是把二倍角的三角函数用本角的三角函数表示出来。
倍角公式把二倍角的三角函数用本角的三角函数表示出来。在计算中可以用来化简计算式、减少求三角函数的次数,在工程中也有广泛的运用。倍角公式是三角函数中非常实用的一类公式。倍角公式、半角公式与差角公式(和差公式)是三角函数的基本公式。

‘玖’ 高手进!!!三角函数多倍角公式有何记忆方法

我觉得cos的二倍角公式比较不容易记住吧?你可以只记一个,其他的可以自推出来的,比如说,cos2x=(cosx)^2-(sinx)^2 ,然后根据(sinx)^2+(cosx)^2=1可以推出cos2x=2(cosx)^2-1=1-2(sinx)^2,我是这样记的,做的题多了,就能随手写出来的 。我是文科的,只考到二倍角,没有学过多倍角,不知道这样可不可以帮助你,其实我觉得记忆这张东西,还是想象记忆比较好,将一些枯燥的数字想象成你喜欢的东西来记会很有帮助的

阅读全文

与多倍角的函数计算方法相关的资料

热点内容
地下水高锰酸钾指数测量方法 浏览:338
纤维桩使用方法 浏览:692
贵州点光源安装方法 浏览:814
化学镀方法和技巧 浏览:497
宝宝怎么治疗最好的方法 浏览:464
csgo连入专属服务器失败解决方法 浏览:944
溶液酸碱性计算方法 浏览:210
战马贴膜的正确方法 浏览:179
复印机安装与操作方法 浏览:25
概率中的个数计算方法 浏览:832
金帅洗衣机使用方法 浏览:660
怎么选择桩的施工方法 浏览:598
联想笔记本限速在哪里设置方法 浏览:493
怎样快速止牙痛土方法 浏览:61
子宫肌层2mm治疗方法 浏览:800
波纹排水管安装方法 浏览:258
华为网络密码在哪里设置方法 浏览:1012
含羞草如何种植方法 浏览:360
小米note微信视频在哪里设置方法 浏览:853
在家制作红枣糕的简单方法 浏览:425