❶ 有理数的计算是什么
有理数的加法法则:
同号两数相加,取相同的符号,并把绝对值相加。
绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值。
根据有理数减法法则,有理数的加减混合运算可以统一为加法运算。在交换加数的位置时要连同它前面的符号一起交换位置。在将减法转化为加法后,有理数加减混合运算就转化为加法运算了,然后按加法运算律,一般把互为相反数的两数相加,或同号相加,或同分母的分数相加,这样可使运算简便。
有理数的加法法则:
一位数的加法:两个一位数相加,可以直接用数数的方法求出和,通常把两个一位数相加的结果编成加法表。
多位数的加法:相同数位上的数相加,哪一位上的数相加满十,再向前一位进一。
❷ 有理数的计算和整齐的计算
有理数其实很简单,你毕竟刚学,到后来你会慢慢适应的…… 有理数 有理数分为整数和分数 整数又分为正整数、负整数和0 分数又分为正分数、负分数 正整数和0又被称为自然数 如3,-98.11,5.72727272……,7/22都是有理数。 全体有理数构成一个集合,即有理数集,用粗体字母Q表示,较现代的一些数学书则用空心字母Q表示。 有理数集是实数集的子集。相关的内容见数系的扩张。 有理数集是一个域,即在其中可进行四则运算(0作除数除外),而且对于这些运算,以下的运算律成立(a、b、c等都表示任意的有理数): ①加法的交换律a+b=b+a; ②加法的结合律a+(b+c)=(a+b)+c; ③存在数0,使0+a=a+0=a; ④对任意有理数a,存在一个加法逆元,记作-a,使a+(-a)=(-a)+a=0; ⑤乘法的交换律ab=ba; ⑥乘法的结合律a(bc)=(ab)c; ⑦分配律a(b+c)=ab+ac; ⑧存在乘法的单位元1≠0,使得对任意有理数a,1a=a; ⑨对于不为0的有理数a,存在乘法逆元1/a,使a(1/a)=(1/a)a=1。 ⑩0a=0文字解释:一个数乘0还等于0。 此外,有理数是一个序域,即在其上存在一个次序关系≤。 有理数加减混合运算 1.理数加减统一成加法的意义: 对于加减混合运算中的减法,我们可以根据有理数减法法则将减法转化为加法,这样就可将混合运算统一为加法运算,统一后的式子是几个正数或负数的和的形式,我们把这样的式子叫做代数和。 2.有理数加减混合运算的方法和步骤: (1)运用减法法则将有理数混合运算中的减法转化为加法。 (2)运用加法法则,加法交换律,加法结合律简便运算。
❸ 有理数运算的方法
1.先乘方,再乘除,最后加减;
2.同级运算从左到右按顺序运算;
3.若有括号,先小再中最后大,依次计算
❹ 如何计算有理数
有理数的加法法则:
同号两数相加,取相同的符号,并把绝对值相加
绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值
有理数减法法则:
减去一个数等于加上这个数的相反数
减法可以化成加法,揭示事物之间相互转化的规律
有理数的乘法法则;
两数相乘,同号的正异号得负,并把绝对值相乘
有理数除法法则:
除以任何数等于乘以这个数的倒数
1、一般情况下,四则运算的计算顺序是:有括号时,先算括号里面的;只有同一级运算时,从左往右;含有两级运算,先算乘除后算加减。
2、由于有的计算题具有它自身的特征,这时运用运算定律,可以使计算过程简单,同时又不容易出错。
加法交换律:a+b=b+a
乘法交换律:a×b=b×a
加法结合律:(a+b)+c=a+(b+c)
乘法结合律:(a×b)×c=a×(b×c)
❺ 有理数的计算方法,急啊,谢了
有理数加法:Ⅰ.同号相加,取相同符号,并把绝对值相加. Ⅱ.绝对值不相等的异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0. Ⅲ.一个数同0相加,仍得这个数. 有理数乘法:(1)两数相乘,同号为正,异号为负,并把绝对值相乘。例;(-5)×(-3)=15 (-6)×4=-24 (2)任何数字同0相乘,都得0. 例;0×1=0 (3)几个不等于0的数字相乘,积的符号由负因数的个数决定。当负因数有奇数个数时,积为负;当负因数有偶数个数时,积为正。并把其绝对值相乘。例;(-10)×〔-5〕×(-0.1)×(-6)=积为正数,而(-4)×(-7)×(-25)=积为负数 (4)几个数相乘,有一个因数为0时,积为0. 例;3×(-2)×0=0 有理数减法: 有理数减法法则:减去一个数,等于加上这个数的相反数。其中:两变:减法运算变加法运算,减数变成它的相反数。一不变:被减数不变。可以表示成: a-b=a+(-b)。 (1)除以一个数等于乘以这个数的倒数。(注意:0没有倒数) (2)两数相除,同号为正,异号为负,并把绝对值相除。 (3)0除以任何一个不等于0的数,都等于0。 (4)0在任何条件下都不能做除数。 有理数除法:
❻ 多个有理数的乘法计算步骤和方法
先确定积的符号(由负因数的个数决定,当负因数有偶数个时,积的符号
为+,当负因数的个数为奇数个时,积的符号为-),再把每个因数的绝对值相乘。
❼ 有理数运算的几种技巧
先弄清楚运算法则
(1)有理数的加法:
1. 同号两数相加,和取相同的符号,并把绝对值相加;
2. 异号两数相加,和取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
3. 一个数与零相加仍得这个数;
4. 两个互为相反数相加和为零。
⑵有理数的减法: 减去一个数等于加上这个数的相反数。
补充:去括号与添括号:
去括号法则:括号前是“+”号时,将括号连同它前边的“+”号去掉,括号内各项都不变;括号前是“-”号时,将括号连同它前边的“-”去掉,括号内各项都要变号。
添括号法则:在“+”号后边添括号,括到括号内的各项都不变;在“-”号后边添括号,括到括号内的各项都要变号。
⑶有理数的乘法: ① 两数相乘,同号得正,异号得负,并把绝对值相乘; ② 任何数与零相乘都得零; ③ 几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正; ④ 几个有理数相乘,若其中有一个为零,积就为零。
⑷有理数的除法: 法则一:两个有理数相除,同号得正,异号得负,并把绝对值相除; 法则二:除以一个数等于乘以这个数的倒数。
⑸有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的给果叫做幂。 正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。
⑹有理数的运算顺序: 有理数的混合运算法则即先算乘方或开方, 再算乘法或除法,后算加法或减法。有括号时、先算小括号里面的运算,再算中括号,然后算大括号。
⑺运算律:
①加法的交换律:a+b=b+a;
②加法的结合律:(a+b)+c=a+(b+c);
③乘法的交换律:ab=ba;
④乘法的结合律:(ab)c=a(bc);
⑤乘法对加法的分配律:a(b+c)=ab+ac;
注:除法没有分配律。
技巧是在熟悉基础的前提下总结出的,有以下方法:
1、互为相反数结合,如21+3-21=21-21+3=3
2、同号数结合,如:-5+6+(-4)+5=[-5+(-4)]+(6+5)
3、同分母分数结合
4、互补数结合
❽ 有理数运算的常见简便方法是
有理数的运算法则
一、加法。
有理数的加法与小学的加法大有不同,小学的加法不涉及到符号的问题,而有理数的加法运算总是涉及到两个问题:一是确定结果的符号;二是求结果的绝对值。在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用那一条法则。
在应用过程中,一定要牢记“先符号,后绝对值"。多个有理数的加法,可以从左向右计算,也可以用加法的运算定律计算,但是在下笔前一定要思考好,哪一个要用定律哪一个要从左往右计算。
1、同号相加,取相同符号,并把绝对值相加。
2、绝对值不等的异号相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3、一个数同0相加,仍得这个数。
4、相反数相加结果一定得0。
交换律和结合律
有理数的加法同样拥有交换律和结合律。(和整数得交换律和结合律一样)。
用字母表示为:
交换律:a+b=b+a 两个数相加,交换加数的位置和不变。
结合律:a+b+c=(a+b)+c=a+(b+c)
三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
二、减法
有理数减法法则:减去一个数,等于加上这个数的相反数。其中:两变:减法运算变加法运算,减数变成它的相反数做加数。一不变:被减数不变。可以表示成: a-b=a+(-b)。
三、乘法
1、两数相乘,同号为正,异号为负,并把绝对值相乘。
例:(-5)×(-3)=15 (-6)×4=-24 。
2、任何数同0相乘,都得0。
例:0×1=0
3、几个不等于0的数字相乘,积的符号由负因数的个数决定。当负因数有奇数个数时,积为负;当负因数有偶数个数时,积为正。并把其绝对值相乘。
例:(-10)×〔-5〕×(-0.1)×(-6)=积为正数,而(-4)×(-7)×(-25)=积为负数。
4、几个数相乘,有一个因数为0时,积为0。
例:3×(-2)×0=0 。
5、乘积为1的两个有理数互为倒数。例如,-3与-1/3,-3/8与-8/3。
四、除法
1、除以一个数等于乘以这个数的倒数。(注意:0没有倒数)。
2、两数相除,同号为正,异号为负,并把绝对值相除。
3、0除以任何一个不等于0的数,都等于0。
基本释义
有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。
整数也可看做是分母为一的分数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。
有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
以上资料参考:网络-有理数
❾ 谁可以给我讲讲有理数的计算方法【尽量讲的好懂一些】/步骤。
加减
负数加负数
无视符号把他们加起来再在前面写个负号。
正数加正数不解释。
正数加负数
无视符号用大的减小的,然后看大的是正数结果就是正,负数结果就是负。
正数减正数如果不够减就倒过来减结果加负号。
正数减负数等于加这个数的相反数。比如-(-7)等于7.
负数减负数同上。然后可以转变成加法。
乘除
正正得正,负负得正,正负得负。很简单。
够好理解了吧-
-。初二党飘过。