A. 一年級數學排隊問題技巧口訣是什麼
運算口訣:
1、已知部分求整體(用加法):兩個有幾,兩數相加再加一,兩個第幾,兩數相加再減一,有幾第幾,兩數相加不算一。
2、已知整體求部分(用減法):兩個第幾,大小相減再減一,從幾到幾,大小相減再加一,一共第幾,大小相減再加一。
必須要弄清排隊的順序、方向及作為標準的人(或物)的位置。在計算總人數的時候,作為標準的人(或者物)如果計算了兩次,就要減去1;如果沒有計算,反之要加上1.既不能重復,也不能遺漏。
解決這類問題的關鍵:巧用畫圖法,找出重復的部分再解答。先來給大家詳細總結排隊問題所涉及到的知識點:
要素:
(1)方向:前後、左右、頭尾。
(2)關鍵詞:有幾個、第幾個、A和B之間、從A到B。
方法:(1)定方向 (2)定位置 (3)標條件和標問題(4)看圖列式。
例題:
1、前面有4個人,後面有3個人,一共有多少人?
在小學一年級的數學課程中,通常會對孩子們考察一類與生活結合緊密的數學問題,那就是我們常說的排隊問題。這類問題的學習可以培養孩子們的數形結合能力,運用畫圖法解決實際問題的能力。
B. 做數學排列組合問題有哪些方法,幫助啊!(詳)
要正確解答排列組合問題,第一要認真審題,弄清楚是排列問題還是組合問題、還是排列與組合混合問題;第二要抓住問題的本質特徵,採用合理恰當的方法來處理,做到不重不漏;第三要計算正確。下面探討解答排列組合問題的一些常見策略,供大家參考。
一、解含有特殊元素、特殊位置的題——採用特殊優先安排的策略
對於帶有特殊元素的排列問題,一般應先考慮特殊元素、特殊位置,再考慮其他元素與其他位置,也就是解題過程中的一種主元思想。
二、解含有約束條件的排列組合問題一――採用合理分類與准確分步的策略
解含有約束條件的排列組合問題,應按元素的性質進行分類,按事件發生的連貫過程分步,做到分類標准明確、分步層次清楚,不重不漏。
三、解排列組台混合問題——採用先選後排策略
對於排列與組合的混合問題,可採取先選出元素,後進行排列的策略。四、正難則反、等價轉化策略
對某些排列組合問題,當從正面入手情況復雜,不易解決時,可考慮從反面入手,將其等價轉化為一個較簡單的問題來處理。即採用先求總的排列數(或組合數),再減去不符合要求的排列數(或組合數),從而使問題獲得解決的方法。其實它就是補集思想。
C. 解數學排列組合的基本思路,方法。及插空法、隔板法、還有其它的方法的應用
排列與組合、概率與統計是高中數學的重要內容。一方面,這部分內容佔用教學時數多達44課時,另一方面,這部分內容是進一步學習高等數學的基礎知識,因此,它是高考數學命題的重要內容,題目類型主要以選擇題與填空題為主,試題難度多以低中檔為主。 一、學法指導 排列與組合、概率與統計是高中數學相對獨立的內容,不論是內容還是思維方法,與其他章節都有很大不同,因此理解體會這部分內容,掌握常用的思維方法和解題技巧,是學好這部分的關鍵。 1、分類計數原理與分步計數原理是計數問題的基本原理,體現了解決問題時將其分解為兩種常用的方法。 2、解決排列組合問題常用的幾種方法:(1)列舉法。把符合條件的排列與組合用樹圖或框圖的方法全部 列舉出來,注意列舉的過程及對等位置的元素的處 理,以便降低運算量及縮短解題過程。(2)捆綁法。解決元素相鄰的排列與組合問題。(3)插空法。解決元素不相鄰問題的排列與組合問題。(4)分組法。解決與分組相關的排列與組合問題。(5)細分類法與細分步法。解決排列與組合的混合型問題,且排列與組合問題的類型不明確;或含有至少、至多等詞語時。(6)排除法。若不符合題目要求的排列與組合問題比較容易解決,則可以從整體中把不符合條件的排列與組合數去掉,剩餘的為所求。二、解決排列與組合問題的基本思路 1、認真審題,弄清需要做什麼事。 2、怎樣做才能完成所要做的事,即採取分步還是分類,或者是分步與分類同時進行,同時確定分多少步及分多少類。 3、確定每一步或每一類是排列問題還是組合問題,是從多少個元素中取幾個元素的排列組合問題。 4、列式進行計算,同時寫出最後結果。三、典型例題分析例1:已知集合A={a,b,c,d},B={1,2,3},f是從集合A到集合B 的映射 (1)能構成從集合A到集合B的映射f共有多少個? (2)如果集合B中的每個元素在集合A中都有原像,則能構成從集合A到集合B的映射f共有多少個? 析:(1)我們要做的事是構造映射;只要給每一個原像找到唯一的像,則為一個映射;有四個原像,因此分四步完成,每步都有三種方法;用分步計數原理可得3×3×3×3=34=81 (2)根據題目要求可知將原像分成三組,其中兩組各一個原像,另一組兩個原像,然後進行三個元素的全排列,即C P =36 例2、在50件產品中有4件是次品,從中任意抽出5件,至少有三件是次品的抽法共 ( ) 種(用數字作答)析:此題是組合問題,分兩類解決,即取三件次品和四件次品,每類又分兩步完成,即取次品三件、正品兩件和取次品四件、正品一件,於是有C =4186 例3、3名醫生和6名護士被分配到3所學校為學生體檢,每校分配1名醫生和2名護士,不同的分配方法共有( )種 A. 90 B. 180 C. 270 D. 540 析:此題是排列與組合問題相結合,根據題目要求將六名護士平均分成三組,每組兩名護士,再將醫生和護士進行三個元素的全排列,於是有(C6^2*C4^2*C2^2/P3^) *P3^3*P3^3=540 排列與組合問題靈活多變,在熟悉計數原理及排列數、組合數公式的前提下,解決問題的關鍵是弄清楚題目所要求做的事怎樣去做。
D. 高中數學排列組合解題技巧
排列組合解題技巧12法 首先,談談排列組合綜合問題的一般解題規律: 1)使用「分類計數原理」還是「分步計數原理」要根據我們完成某件事時採取的方式而定,可以分類來完成這件事時用「分類計數原理」,需要分步來完成這件事時就用「分步計數原理」;那麼,怎樣確定是分類,還是分步驟?「分類」表現為其中任何一類均可獨立完成所給的事件,而「分步」必須把各步驟均完成才能完成所給事件,所以准確理解兩個原理強調完成一件事情的幾類辦法互不幹擾,相互獨立,彼此間交集為空集,並集為全集,不論哪類辦法都能將事情單獨完成,分步計數原理強調各步驟缺一不可,需要依次完成所有步驟才能完成這件事,步與步之間互不影響,即前步用什麼方法不影響後面的步驟採用的方法。 2)排列與組合定義相近,它們的區別在於是否與順序有關。 3)復雜的排列問題常常通過試驗、畫 「樹圖 」、「框圖」等手段使問題直觀化,從而尋求解題途徑,由於結果的正確性難於檢驗,因此常常需要用不同的方法求解來獲得檢驗。 4)按元素的性質進行分類,按事件發生的連續性進行分步是處理排列組合問題的基本思想方法,要注意「至少、至多」等限制詞的意義。 5)處理排列、組合綜合問題,一般思想是先選元素(組合),後排列,按元素的性質進行「分類」和按事件的過程「分步」,始終是處理排列、組合問題的基本原理和方法,通過解題訓練要注意積累和掌握分類和分步的基本技能,保證每步獨立,達到分類標准明確,分步層次清楚,不重不漏。 6)在解決排列組合綜合問題時,必須深刻理解排列組合的概念,能熟練地對問題進行分類,牢記排列數與組合數公式與組合數性質,容易產生的錯誤是重復和遺漏計數。 總之,解決排列組合問題的基本規律,即:分類相加,分步相乘,排組分清,加乘明確;有序排列,無序組合;正難則反,間接排除等。 其次,我們在抓住問題的本質特徵和規律,靈活運用基本原理和公式進行分析解答的同時,還要注意講究一些解題策略和方法技巧,使一些看似復雜的問題迎刃而解。下面介紹幾種常用的解題方法和策略。 一.特殊元素(位置)的「優先安排法」:對於特殊元素(位置)的排列組合問題,一般先考慮特殊,再考慮其他。 例1、 用0,2,3,4,5,五個數字,組成沒有重復數字的三位數,其中偶數共有( )。 A. 24個 B.30個 C.40個 D.60個 [分析]由於該三位數為偶數,故末尾數字必為偶數,又因為0不能排首位,故0就是其中的「特殊」元素,應該優先安排,按0排在末尾和0不排在末尾分兩類:1)0排末尾時,有A42個,2)0不排在末尾時,則有C21 A31A31個,由分數計數原理,共有偶數A42 + C21 A31A31=30個,選B。 二.總體淘汰法:對於含否定的問題,還可以從總體中把不合要求的除去。如例1中,也可用此法解答:五個數字組成三位數的全排列有A53個,排好後發現0不能排首位,而且數字3,5也不能排末位,這兩種排法要排除,故有A53--3A42+ C21A31=30個偶數。 三.合理分類與准確分步含有約束條件的排列組合問題,按元素的性質進行分類,按事情發生的連續過程分步,做到分類標准明確,分步層次清楚,不重不漏。 四.相鄰問題用捆綁法:在解決對於某幾個元素要求相鄰的問題時,先整體考慮,將相鄰的元素「捆綁」起來,看作一「大」元素與其餘元素排列,然後再考慮大元素內部各元素間順序的解題策略就是捆綁法. 例2、有8本不同的書;其中數學書3本,外語書2本,其它學科書3本.若將這些書排成一列放在書架上,讓數學書排在一起,外語書也恰好排在一起的排法共有( )種.(結果用數值表示) 解:把3本數學書「捆綁」在一起看成一本大書,2本外語書也「捆綁」在一起看成一本大書,與其它3本書一起看作5個元素,共有A55種排法;又3本數學書有A33種排法,2本外語書有A22種排法;根據分步計數原理共有排法A55 A33 A22=1440(種). 註:運用捆綁法解決排列組合問題時,一定要注意「捆綁」起來的大元素內部的順序問題. 五.不相鄰問題用「插空法」:不相鄰問題是指要求某些元素不能相鄰,由其它元素將它們隔開.解決此類問題可以先將其它元素排好,再將所指定的不相鄰的元素插入到它們的間隙及兩端位置,故稱插空法. 例3、用1、2、3、4、5、6、7、8組成沒有重復數字的八位數,要求1與2相鄰,2與4相鄰,5與6相鄰,而7與8不相鄰。這樣的八位數共有( )個.(用數字作答) 解:由於要求1與2相鄰,2與4相鄰,可將1、2、4這三個數字捆綁在一起形成一個大元素,這個大元素的內部中間只能排2,兩邊排1和4,因此大元素內部共有A22種排法,再把5與6也捆綁成一個大元素,其內部也有A22種排法,與數字3共計三個元素,先將這三個元素排好,共有A33種排法,再從前面排好的三個元素形成的間隙及兩端共四個位置中任選兩個,把要求不相鄰的數字7和8插入即可,共有A42種插法,所以符合條件的八位數共有A22 A22 A33 A42=288(種). 註:運用「插空法」解決不相鄰問題時,要注意欲插入的位置是否包含兩端位置. 六.順序固定用「除法」:對於某幾個元素按一定的順序排列問題,可先把這幾個元素與其他元素一同進行全排列,然後用總的排列數除於這幾個元素的全排列數。 例4、6個人排隊,甲、乙、丙三人按「甲---乙---丙」順序排的排隊方法有多少種? 分析:不考慮附加條件,排隊方法有A66種,而其中甲、乙、丙的A33種排法中只有一種符合條件。故符合條件的排法有A66 ÷A33 =120種。(或A63種) 例5、4個男生和3個女生,高矮不相等,現在將他們排成一行,要求從左到右女生從矮到高排列,有多少種排法。 解:先在7個位置中任取4個給男生,有A74 種排法,餘下的3個位置給女生,只有一種排法,故有A74 種排法。(也可以是A77 ÷A33種) 七.分排問題用「直排法」:把幾個元素排成若干排的問題,可採用統一排成一排的排法來處理。 例6、7個人坐兩排座位,第一排3個人,第二排坐4個人,則不同的坐法有多少種? 分析:7個人可以在前兩排隨意就坐,再無其它條件,故兩排可看作一排來處理,不同的坐法共有A77種。 八.逐個試驗法:題中附加條件增多,直接解決困難時,用試驗逐步尋找規律。 例7.將數字1,2,3,4填入標號為1,2,3,4的方格中,每方格填1個,方格標號與所填數字均不相同的填法種數有() A.6 B.9 C.11 D.23 解:第一方格內可填2或3或4,如第一填2,則第二方格可填1或3或4,若第二方格內填1,則後兩方格只有一種方法;若第二方格填3或4,後兩方格也只有一種填法。一共有9種填法,故選B 九、構造模型 「隔板法」: 對於較復雜的排列問題,可通過設計另一情景,構造一個隔板模型來解決問題。 例8、方程a+b+c+d=12有多少組正整數解? 分析:建立隔板模型:將12個完全相同的球排成一列,在它們之間形成的11個間隙中任意插入3塊隔板,把球分成4堆,每一種分法所得4堆球的各堆球的數目,對應為a、b、c、d的一組正整解,故原方程的正整數解的組數共有C113 . 又如方程a+b+c+d=12非負整數解的個數,可用此法解。 十.排除法:對於含「至多」或「至少」的排列組合問題,若直接解答多需進行復雜討論,可以考慮「總體去雜」,即將總體中不符合條件的排列或組合刪除掉,從而計算出符合條件的排列組合數的方法. 例9、從4台甲型和5台乙型電視機中任意取出3台,其中至少要甲型與乙型電視機各一台,則不同的取法共有( )種. A.140種 B.80種 C.70種 D.35種 解:在被取出的3台中,不含甲型或不合乙型的抽取方法均不合題意,因此符合題意的抽取方法有C93-C43-C53=70(種),故選C. 註:這種方法適用於反面的情況明確且易於計算的習題. 十一.逐步探索法:對於情況復雜,不易發現其規律的問題需要認真分析,探索出其規律 例10、從1到100的自然數中,每次取出不同的兩個數,使它們的和大於100,則不同的取法種數有多少種。 解:兩個數相加中以較小的數為被加數,1+100>100,1為被加數時有1種,2為被加數有2種,…,49為被加數的有49種,50為被加數的有50種,但51為被加數有49種,52為被加數有48種,…,99為被捕加數的只有1種,故不同的取法有(1+2+3+…+50)+(49+48+…+1)=2500種 十二.一一對應法: 例11.在100名選手之間進行單循環淘汰賽(即一場失敗要退出比賽)最後產生一名冠軍,要比賽幾場? 解:要產生一名冠軍,要淘汰冠軍以外的所有選手,即要淘汰99名選手,要淘汰一名就要進行一場,故比賽99場。
E. 誰能幫我詳細總結一下高中數學:解排列與組合問題的常用方法 急用!!!
1.如果涉及什麼ab在一起的就用捆綁法,把他們作為一個整體; 2.如果不相鄰,則用插空法先排別的,再在他們的空隙中插入. 3.遇到排列組合的綜合問題,復雜的先分類,先選後排... 一、排列組合部分是中學數學中的難點之一,原因在於 (1)從千差萬別的實際問題中抽象出幾種特定的數學模型,需要較強的抽象思維能力; (2)限制條件有時比較隱晦,需要我們對問題中的關鍵性詞(特別是邏輯關聯詞和量詞)准確理解; (3)計算手段簡單,與舊知識聯系少,但選擇正確合理的計算方案時需要的思維量較大; (4)計算方案是否正確,往往不可用直觀方法來檢驗,要求我們搞清概念、原理,並具有較強的分析能力。 二、兩個基本計數原理及應用 (1)加法原理和分類計數法 1.加法原理 2.加法原理的集合形式 3.分類的要求 每一類中的每一種方法都可以獨立地完成此任務;兩類不同辦法中的具體方法,互不相同(即分類不重);完成此任務的任何一種方法,都屬於某一類(即分類不漏) (2)乘法原理和分步計數法 1.乘法原理 2.合理分步的要求 任何一步的一種方法都不能完成此任務,必須且只須連續完成這n步才能完成此任務;各步計數相互獨立;只要有一步中所採取的方法不同,則對應的完成此事的方法也不同 [例題分析]排列組合思維方法選講 1.首先明確任務的意義 例1. 從1、2、3、……、20這二十個數中任取三個不同的數組成等差數列,這樣的不同等差數列有________個。 分析:首先要把復雜的生活背景或其它數學背景轉化為一個明確的排列組合問題。 設a,b,c成等差,∴ 2b=a+c, 可知b由a,c決定, 又∵ 2b是偶數,∴ a,c同奇或同偶,即:從1,3,5,……,19或2,4,6,8,……,20這十個數中選出兩個數進行排列,由此就可確定等差數列,因而本題為2=180。 例2. 某城市有4條東西街道和6條南北的街道,街道之間的間距相同,如圖。若規定只能向東或向北兩個方向沿圖中路線前進,則從M到N有多少種不同的走法? 分析:對實際背景的分析可以逐層深入 (一)從M到N必須向上走三步,向右走五步,共走八步。 (二)每一步是向上還是向右,決定了不同的走法。 (三)事實上,當把向上的步驟決定後,剩下的步驟只能向右。 從而,任務可敘述為:從八個步驟中選出哪三步是向上走,就可以確定走法數, ∴ 本題答案為:=56。 2.注意加法原理與乘法原理的特點,分析是分類還是分步,是排列還是組合 例3.在一塊並排的10壟田地中,選擇二壟分別種植A,B兩種作物,每種種植一壟,為有利於作物生長,要求A,B兩種作物的間隔不少於6壟,不同的選法共有______種。 分析:條件中「要求A、B兩種作物的間隔不少於6壟」這個條件不容易用一個包含排列數,組合數的式子表示,因而採取分類的方法。 第一類:A在第一壟,B有3種選擇; 第二類:A在第二壟,B有2種選擇; 第三類:A在第三壟,B有一種選擇, 同理A、B位置互換 ,共12種。 例4.從6雙不同顏色的手套中任取4隻,其中恰好有一雙同色的取法有________。 (A)240 (B)180 (C)120 (D)60 分析:顯然本題應分步解決。 (一)從6雙中選出一雙同色的手套,有種方法; (二)從剩下的十隻手套中任選一隻,有種方法。 (三)從除前所涉及的兩雙手套之外的八隻手套中任選一隻,有種方法; (四)由於選取與順序無關,因而(二)(三)中的選法重復一次,因而共240種。 例5.身高互不相同的6個人排成2橫行3縱列,在第一行的每一個人都比他同列的身後的人個子矮,則所有不同的排法種數為_______。 分析:每一縱列中的兩人只要選定,則他們只有一種站位方法,因而每一縱列的排隊方法只與人的選法有關系,共有三縱列,從而有=90種。 例6.在11名工人中,有5人只能當鉗工,4人只能當車工,另外2人能當鉗工也能當車工。現從11人中選出4人當鉗工,4人當車工,問共有多少種不同的選法? 分析:採用加法原理首先要做到分類不重不漏,如何做到這一點?分類的標准必須前後統一。 以兩個全能的工人為分類的對象,考慮以他們當中有幾個去當鉗工為分類標准。 第一類:這兩個人都去當鉗工,有種; 第二類:這兩人有一個去當鉗工,有種; 第三類:這兩人都不去當鉗工,有種。 因而共有185種。 例7.現有印著0,l,3,5,7,9的六張卡片,如果允許9可以作6用,那麼從中任意抽出三張可以組成多少個不同的三位數? 分析:有同學認為只要把0,l,3,5,7,9的排法數乘以2即為所求,但實際上抽出的三個數中有9的話才可能用6替換,因而必須分類。 抽出的三數含0,含9,有種方法; 抽出的三數含0不含9,有種方法; 抽出的三數含9不含0,有種方法; 抽出的三數不含9也不含0,有種方法。 又因為數字9可以當6用,因此共有2×(+)++=144種方法。 例8.停車場劃一排12個停車位置,今有8輛車需要停放,要求空車位連在一起,不同的停車方法是________種。 分析:把空車位看成一個元素,和8輛車共九個元素排列,因而共有種停車方法。 3.特殊元素,優先處理;特殊位置,優先考慮 例9.六人站成一排,求 (1)甲不在排頭,乙不在排尾的排列數 (2)甲不在排頭,乙不在排尾,且甲乙不相鄰的排法數 分析:(1)先考慮排頭,排尾,但這兩個要求相互有影響,因而考慮分類。 第一類:乙在排頭,有種站法。 第二類:乙不在排頭,當然他也不能在排尾,有種站法, 共+種站法。 (2)第一類:甲在排尾,乙在排頭,有種方法。 第二類:甲在排尾,乙不在排頭,有種方法。 第三類:乙在排頭,甲不在排頭,有種方法。 第四類:甲不在排尾,乙不在排頭,有種方法。 共+2+=312種。 例10.對某件產品的6件不同正品和4件不同次品進行一一測試,至區分出所有次品為止。若所有次品恰好在第五次測試時被全部發現,則這樣的測試方法有多少種可能? 分析:本題意指第五次測試的產品一定是次品,並且是最後一個次品,因而第五次測試應算是特殊位置了,分步完成。 第一步:第五次測試的有種可能; 第二步:前四次有一件正品有中可能。 第三步:前四次有種可能。 ∴ 共有種可能。 4.捆綁與插空 例11. 8人排成一隊 (1)甲乙必須相鄰 (2)甲乙不相鄰 (3)甲乙必須相鄰且與丙不相鄰 (4)甲乙必須相鄰,丙丁必須相鄰 (5)甲乙不相鄰,丙丁不相鄰 分析:(1)有種方法。 (2)有種方法。 (3)有種方法。 (4)有種方法。 (5)本題不能用插空法,不能連續進行插空。 用間接解法:全排列-甲乙相鄰-丙丁相鄰+甲乙相鄰且丙丁相鄰,共--+=23040種方法。 例12. 某人射擊8槍,命中4槍,恰好有三槍連續命中,有多少種不同的情況? 分析:∵ 連續命中的三槍與單獨命中的一槍不能相鄰,因而這是一個插空問題。另外沒有命中的之間沒有區別,不必計數。即在四發空槍之間形成的5個空中選出2個的排列,即。 例13. 馬路上有編號為l,2,3,……,10 十個路燈,為節約用電又看清路面,可以把其中的三隻燈關掉,但不能同時關掉相鄰的兩只或三隻,在兩端的燈也不能關掉的情況下,求滿足條件的關燈方法共有多少種? 分析:即關掉的燈不能相鄰,也不能在兩端。又因為燈與燈之間沒有區別,因而問題為在7盞亮著的燈形成的不包含兩端的6個空中選出3個空放置熄滅的燈。 ∴共=20種方法。 4.間接計數法.(1)排除法 例14. 三行三列共九個點,以這些點為頂點可組成多少個三角形? 分析:有些問題正面求解有一定困難,可以採用間接法。 所求問題的方法數=任意三個點的組合數-共線三點的方法數, ∴ 共種。 例15.正方體8個頂點中取出4個,可組成多少個四面體? 分析:所求問題的方法數=任意選四點的組合數-共面四點的方法數, ∴共-12=70-12=58個。 例16. l,2,3,……,9中取出兩個分別作為對數的底數和真數,可組成多少個不同數值的對數? 分析:由於底數不能為1。 (1)當1選上時,1必為真數,∴ 有一種情況。 (2)當不選1時,從2--9中任取兩個分別作為底數,真數,共,其中log24=log39,log42=log93, log23=log49, log32=log94. 因而一共有53個。 (3)補上一個階段,轉化為熟悉的問題 例17. 六人排成一排,要求甲在乙的前面,(不一定相鄰),共有多少種不同的方法? 如果要求甲乙丙按從左到右依次排列呢? 分析:(一)實際上,甲在乙的前面和甲在乙的後面兩種情況對稱,具有相同的排法數。因而有=360種。 (二)先考慮六人全排列;其次甲乙丙三人實際上只能按照一種順序站位,因而前面的排法數重復了種, ∴共=120種。 例18.5男4女排成一排,要求男生必須按從高到矮的順序,共有多少種不同的方法? 分析:首先不考慮男生的站位要求,共種;男生從左至右按從高到矮的順序,只有一種站法,因而上述站法重復了次。因而有=9×8×7×6=3024種。 若男生從右至左按從高到矮的順序,只有一種站法, 同理也有3024種,綜上,有6048種。 例19. 三個相同的紅球和兩個不同的白球排成一行,共有多少種不同的方法? 分析:先認為三個紅球互不相同,共種方法。而由於三個紅球所佔位置相同的情況下,共有變化,因而共=20種。 5.擋板的使用 例20.10個名額分配到八個班,每班至少一個名額,問有多少種不同的分配方法? 分析:把10個名額看成十個元素,在這十個元素之間形成的九個空中,選出七個位置放置檔板,則每一種放置方式就相當於一種分配方式。因而共36種。 6.注意排列組合的區別與聯系:所有的排列都可以看作是先取組合,再做全排列;同樣,組合如補充一個階段(排序)可轉化為排列問題。 例21. 從0,l,2,……,9中取出2個偶數數字,3個奇數數字,可組成多少個無重復數字的五位數? 分析:先選後排。另外還要考慮特殊元素0的選取。 (一)兩個選出的偶數含0,則有種。 (二)兩個選出的偶數字不含0,則有種。 例22. 電梯有7位乘客,在10層樓房的每一層停留,如果三位乘客從同一層出去,另外兩位在同一層出去,最後兩人各從不同的樓層出去,有多少種不同的下樓方法? 分析:(一)先把7位乘客分成3人,2人,一人,一人四組,有種。 (二)選擇10層中的四層下樓有種。 ∴ 共有種。 例23. 用數字0,1,2,3,4,5組成沒有重復數字的四位數, (1)可組成多少個不同的四位數? (2)可組成多少個不同的四位偶數? (3)可組成多少個能被3整除的四位數? (4)將(1)中的四位數按從小到大的順序排成一數列,問第85項是什麼? 分析:(1)有個。 (2)分為兩類:0在末位,則有種:0不在末位,則有種。 ∴共+種。 (3)先把四個相加能被3整除的四個數從小到大列舉出來,即先選 0,1,2,3 0,1,3,5 0,2,3,4 0,3,4,5 1,2,4,5 它們排列出來的數一定可以被3整除,再排列,有:4×()+=96種。 (4)首位為1的有=60個。 前兩位為20的有=12個。 前兩位為21的有=12個。 因而第85項是前兩位為23的最小數,即為2301。 7.分組問題 例24. 6本不同的書 (1) 分給甲乙丙三人,每人兩本,有多少種不同的分法? (2) 分成三堆,每堆兩本,有多少種不同的分法? (3) 分成三堆,一堆一本,一堆兩本,一堆三本,有多少種不同的分法? (4) 甲一本,乙兩本,丙三本,有多少種不同的分法? (5) 分給甲乙丙三人,其中一人一本,一人兩本,第三人三本,有多少種不同的分法? 分析:(1)有中。 (2)即在(1)的基礎上除去順序,有種。 (3)有種。由於這是不平均分組,因而不包含順序。 (4)有種。同(3),原因是甲,乙,丙持有量確定。 (5)有種。 例25. 6人分乘兩輛不同的車,每車最多乘4人,則不同的乘車方法為_______。 分析:(一)考慮先把6人分成2人和4人,3人和3人各兩組。 第一類:平均分成3人一組,有種方法。 第二類:分成2人,4人各一組,有種方法。 (二)再考慮分別上兩輛不同的車。 綜合(一)(二),有種。 例26. 5名學生分配到4個不同的科技小組參加活動,每個科技小組至少有一名學生參加,則分配方法共有________種. 分析:(一)先把5個學生分成二人,一人,一人,一人各一組。 其中涉及到平均分成四組,有=種分組方法。 (二)再考慮分配到四個不同的科技小組,有種, 由(一)(二)可知,共=240種。
F. 解決排列組合問題用哪些數學思想和方法
一、排列組合部分是中學數學中的難點之一,原因在於
(1)從千差萬別的實際問題中抽象出幾種特定的數學模型,需要較強的抽象思維能力;
(2)限制條件有時比較隱晦,需要我們對問題中的關鍵性詞(特別是邏輯關聯詞和量詞)准確理解;
(3)計算手段簡單,與舊知識聯系少,但選擇正確合理的計算方案時需要的思維量較大;
(4)計算方案是否正確,往往不可用直觀方法來檢驗,要求我們搞清概念、原理,並具有較強的分析能力.
二、兩個基本計數原理及應用
(1)加法原理和分類計數法
1.加法原理
2.加法原理的集合形式
3.分類的要求
每一類中的每一種方法都可以獨立地完成此任務;兩類不同辦法中的具體方法,互不相同(即分類不重);完成此任務的任何一種方法,都屬於某一類(即分類不漏)
(2)乘法原理和分步計數法
1.乘法原理
2.合理分步的要求
任何一步的一種方法都不能完成此任務,必須且只須連續完成這n步才能完成此任務;各步計數相互獨立;只要有一步中所採取的方法不同,則對應的完成此事的方法也不同
G. 排列組合問題如何解決!!!~具體講解!!!
公式P是指排列,從N個元素取R個進行排列(即排序)。
(P是舊用法,現在教材上多用A,Arrangement)
公式C是指組合,從N個元素取R個,不進行排列(即不排序)。C-組合數
P-排列數
N-元素的總個數
R-參與選擇的元素個數
!-階乘
,如5!=5*4*3*2*1=120
C-Combination
組合
P-Permutation排列
對組合數C(n,k)
(n>=k):將n,k分別化為二進制,若某二進制位對應的n為0,而k為1
,則C(n,k)為偶數;否則為奇數。
組合數的奇偶性判定方法為:
結論:
對於C(n,k),若n&k
==
k
則c(n,k)為奇數,否則為偶數。
證明:
利用數學歸納法:
由C(n,k)
=
C(n,k-1)
+
C(n-1,k-1);
對應於楊輝三角:
1
1
2
1
1
3
3
1
1
4
6
4
1
...
可以驗證前面幾層及k
=
0時滿足結論,下面證明在C(n-1,k)和C(n-1,k-1)
(k
>
0)
滿足結論的情況下,
C(n,k)滿足結論。
1).假設C(n-1,k)和C(n-1,k-1)為奇數:
則有:(n-1)&k
==
k;
(n-1)&(k-1)
==
k-1;
由於k和k-1的最後一位(在這里的位指的是二進制的位,下同)必然是不同的,所以n-1的最後一位必然是1
。
現假設n&k
==
k。
則同樣因為n-1和n的最後一位不同推出k的最後一位是1。
因為n-1的最後一位是1,則n的最後一位是0,所以n&k
!=
k,與假設矛盾。
所以得n&k
!=
k。
2).假設C(n-1,k)和C(n-1,k-1)為偶數:
則有:(n-1)&k
!=
k;
(n-1)&(k-1)
!=
k-1;
現假設n&k
==
k.
則對於k最後一位為1的情況:
此時n最後一位也為1,所以有(n-1)&(k-1)
==
k-1,與假設矛盾。
而對於k最後一位為0的情況:
則k的末尾必有一部分形如:10;
代表任意個0。
相應的,n對應的部分為:
1{*}*;
*代表0或1。
而若n對應的{*}*中只要有一個為1,則(n-1)&k
==
k成立,所以n對應部分也應該是10。
則相應的,k-1和n-1的末尾部分均為01,所以(n-1)&(k-1)
==
k-1
成立,與假設矛盾。
所以得n&k
!=
k。
由1)和2)得出當C(n,k)是偶數時,n&k
!=
k。
3).假設C(n-1,k)為奇數而C(n-1,k-1)為偶數:
則有:(n-1)&k
==
k;
(n-1)&(k-1)
!=
k-1;
顯然,k的最後一位只能是0,否則由(n-1)&k
==
k即可推出(n-1)&(k-1)
==
k-1。
所以k的末尾必有一部分形如:10;
相應的,n-1的對應部分為:
1{*}*;
相應的,k-1的對應部分為:
01;
則若要使得(n-1)&(k-1)
!=
k-1
則要求n-1對應的{*}*中至少有一個是0.
所以n的對應部分也就為
:
1{*}*;
(不會因為進位變1為0)
所以
n&k
=
k。
4).假設C(n-1,k)為偶數而C(n-1,k-1)為奇數:
則有:(n-1)&k
!=
k;
(n-1)&(k-1)
==
k-1;
分兩種情況:
當k-1的最後一位為0時:
則k-1的末尾必有一部分形如:
10;
相應的,k的對應部分為
:
11;
相應的,n-1的對應部分為
:
1{*}0;
(若為1{*}1,則(n-1)&k
==
k)
相應的,n的對應部分為
:
1{*}1;
所以n&k
=
k。
當k-1的最後一位為1時:
則k-1的末尾必有一部分形如:
01;
(前面的0可以是附加上去的)
相應的,k的對應部分為
:
10;
相應的,n-1的對應部分為
:
01;
(若為11,則(n-1)&k
==
k)
相應的,n的對應部分為
:
10;
所以n&k
=
k。
由3),4)得出當C(n,k)為奇數時,n&k
=
k。
綜上,結論得證!
H. 排列組合的所有方法有那些它們的做法又是如何做列如插空法等
排列組合問題的解題策略
關鍵詞: 排列組合,解題策略
一、相臨問題——捆綁法
例1.7名學生站成一排,甲、乙必須站在一起有多少不同排法?
解:兩個元素排在一起的問題可用「捆綁」法解決,先將甲乙二人看作一個元素與其他五人進行排列,並考慮甲乙二人的順序,所以共有 種。
評註:一般地: 個人站成一排,其中某 個人相鄰,可用「捆綁」法解決,共有 種排法。
二、不相臨問題——選空插入法
例2. 7名學生站成一排,甲乙互不相鄰有多少不同排法?
解:甲、乙二人不相鄰的排法一般應用「插空」法,所以甲、乙二人不相鄰的排法總數應為: 種 .
評註:若 個人站成一排,其中 個人不相鄰,可用「插空」法解決,共有 種排法。
三、復雜問題——總體排除法
在直接法考慮比較難,或分類不清或多種時,可考慮用「排除法」,解決幾何問題必須注意幾何圖形本身對其構成元素的限制。
例3.(1996年全國高考題)正六邊形的中心和頂點共7個點,以其中3個點為頂點的三角形共有多少個.
解:從7個點中取3個點的取法有 種,但其中正六邊形的對角線所含的中心和頂點三點共線不能組成三角形,有3條,所以滿足條件的三角形共有 -3=32個.
四、特殊元素——優先考慮法
對於含有限定條件的排列組合應用題,可以考慮優先安排特殊位置,然後再考慮其他位置的安排。
例4. (1995年上海高考題) 1名老師和4名獲獎學生排成一排照像留念,若老師不排在兩端,則共有不同的排法 種.
解:先考慮特殊元素(老師)的排法,因老師不排在兩端,故可在中間三個位置上任選一個位置,有 種,而其餘學生的排法有 種,所以共有 =72種不同的排法.
例5.(2000年全國高考題)乒乓球隊的10名隊員中有3名主力隊員,派5名隊員參加比賽,3名主力隊員要安排在第一、三、五位置,其餘7名隊員選2名安排在第二、四位置,那麼不同的出場安排共有 種.
解:由於第一、三、五位置特殊,只能安排主力隊員,有 種排法,而其餘7名隊員選出2名安排在第二、四位置,有 種排法,所以不同的出場安排共有 =252種.
五、多元問題——分類討論法
對於元素多,選取情況多,可按要求進行分類討論,最後總計。
例6.(2003年北京春招)某班新年聯歡會原定的5個節目已排成節目單,開演前又增加了兩個新節目.如果將這兩個節目插入原節目單中,那麼不同插法的種數為(A )
A.42 B.30 C.20 D.12
解:增加的兩個新節目,可分為相臨與不相臨兩種情況:1.不相臨:共有A62種;2.相臨:共有A22A61種。故不同插法的種數為:A62 +A22A61=42 ,故選A。
例7.(2003年全國高考試題)如圖, 一個地區分為5個行政區域,現給地圖著色,要求相鄰地區不得使用同一顏色,現有4種顏色可供選擇,則不同的著色方法共有多少種?(以數字作答)
解:區域1與其他四個區域相鄰,而其他每個區域都與三個區域相鄰,因此,可以塗三種或四種顏色. 用三種顏色著色有 =24種方法, 用四種顏色著色有 =48種方法,從而共有24+48=72種方法,應填72.
六、混合問題——先選後排法
對於排列組合的混合應用題,可採取先選取元素,後進行排列的策略.
例8.(2002年北京高考)12名同學分別到三個不同的路口進行車流量的調查,若每個路口4人,則不同的分配方案共有( )
A. 種 B. 種
C. 種 D. 種
解:本試題屬於均分組問題。 則12名同學均分成3組共有 種方法,分配到三個不同的路口的不同的分配方案共有: 種,故選A。
例9.(2003年北京高考試題)從黃瓜、白菜、油菜、扁豆4種蔬菜品種中選出3種,分別種在不同土質的三塊土地上,其中黃瓜必須種植,不同的種植方法共有( )
A.24種 B.18種 C.12種 D.6種
解:先選後排,分步實施. 由題意,不同的選法有: C32種,不同的排法有: A31·A22,故不同的種植方法共有A31·C32·A22=12,故應選C.
七.相同元素分配——檔板分隔法
例10.把10本相同的書發給編號為1、2、3的三個學生閱覽室,每個閱覽室分得的書的本數不小於其編號數,試求不同分法的種數。請用盡可能多的方法求解,並思考這些方法是否適合更一般的情況?
本題考查組合問題。
解:先讓2、3號閱覽室依次分得1本書、2本書;再對餘下的7本書進行分配,保證每個閱覽室至少得一本書,這相當於在7本相同書之間的6個「空檔」內插入兩個相同「I」(一般可視為「隔板」)共有 種插法,即有15種分法。
總之,排列、組合應用題的解題思路可總結為:排組分清,加乘明確;有序排列,無序組合;分類為加,分步為乘。
具體說,解排列組合的應用題,通常有以下途徑:
(1)以元素為主體,即先滿足特殊元素的要求,再考慮其他元素。
(2)以位置為主體,即先滿足特殊位置的要求,再考慮其他位置。
(3)先不考慮附加條件,計算出排列或組合數,再減去不合要求的排列組合數。
排列組合問題的解題方略
湖北省安陸市第二高級中學 張征洪
排列組合知識,廣泛應用於實際,掌握好排列組合知識,能幫助我們在生產生活中,解決許多實際應用問題。同時排列組合問題歷來就是一個老大難的問題。因此有必要對排列組合問題的解題規律和解題方法作一點歸納和總結,以期充分掌握排列組合知識。
首先,談談排列組合綜合問題的一般解題規律:
1)使用「分類計數原理」還是「分步計數原理」要根據我們完成某件事時採取的方式而定,可以分類來完成這件事時用「分類計數原理」,需要分步來完成這件事時就用「分步計數原理」;那麼,怎樣確定是分類,還是分步驟?「分類」表現為其中任何一類均可獨立完成所給的事件,而「分步」必須把各步驟均完成才能完成所給事件,所以准確理解兩個原理強調完成一件事情的幾類辦法互不幹擾,相互獨立,彼此間交集為空集,並集為全集,不論哪類辦法都能將事情單獨完成,分步計數原理強調各步驟缺一不可,需要依次完成所有步驟才能完成這件事,步與步之間互不影響,即前步用什麼方法不影響後面的步驟採用的方法。
2)排列與組合定義相近,它們的區別在於是否與順序有關。
3)復雜的排列問題常常通過試驗、畫 「樹圖 」、「框圖」等手段使問題直觀化,從而尋求解題途徑,由於結果的正確性難於檢驗,因此常常需要用不同的方法求解來獲得檢驗。
4)按元素的性質進行分類,按事件發生的連續性進行分步是處理排列組合問題的基本思想方法,要注意「至少、至多」等限制詞的意義。
5)處理排列、組合綜合問題,一般思想是先選元素(組合),後排列,按元素的性質進行「分類」和按事件的過程「分步」,始終是處理排列、組合問題的基本原理和方法,通過解題訓練要注意積累和掌握分類和分步的基本技能,保證每步獨立,達到分類標准明確,分步層次清楚,不重不漏。
6)在解決排列組合綜合問題時,必須深刻理解排列組合的概念,能熟練地對問題進行分類,牢記排列數與組合數公式與組合數性質,容易產生的錯誤是重復和遺漏計數。
總之,解決排列組合問題的基本規律,即:分類相加,分步相乘,排組分清,加乘明確;有序排列,無序組合;正難則反,間接排除等。
其次,我們在抓住問題的本質特徵和規律,靈活運用基本原理和公式進行分析解答的同時,還要注意講究一些解題策略和方法技巧,使一些看似復雜的問題迎刃而解。下面介紹幾種常用的解題方法和策略。
一.特殊元素(位置)的「優先安排法」:對於特殊元素(位置)的排列組合問題,一般先考慮特殊,再考慮其他。
例1、 用0,2,3,4,5,五個數字,組成沒有重復數字的三位數,其中偶數共有( )。
A. 24個 B.30個 C.40個 D.60個
[分析]由於該三位數為偶數,故末尾數字必為偶數,又因為0不能排首位,故0就是其中的「特殊」元素,應該優先安排,按0排在末尾和0不排在末尾分兩類:1)0排末尾時,有A42個,2)0不排在末尾時,則有C21 A31A31個,由分數計數原理,共有偶數A42 + C21 A31A31=30個,選B。
二.總體淘汰法:對於含否定的問題,還可以從總體中把不合要求的除去。如例1中,也可用此法解答:五個數字組成三位數的全排列有A53個,排好後發現0不能排首位,而且數字3,5也不能排末位,這兩種排法要排除,故有A53--3A42+ C21A31=30個偶數。
三.合理分類與准確分步含有約束條件的排列組合問題,按元素的性質進行分類,按事情發生的連續過程分步,做到分類標准明確,分步層次清楚,不重不漏。
四.相鄰問題用捆綁法:在解決對於某幾個元素要求相鄰的問題時,先整體考慮,將相鄰的元素「捆綁」起來,看作一「大」元素與其餘元素排列,然後再考慮大元素內部各元素間順序的解題策略就是捆綁法.
例2、有8本不同的書;其中數學書3本,外語書2本,其它學科書3本.若將這些書排成一列放在書架上,讓數學書排在一起,外語書也恰好排在一起的排法共有( )種.(結果用數值表示)
解:把3本數學書「捆綁」在一起看成一本大書,2本外語書也「捆綁」在一起看成一本大書,與其它3本書一起看作5個元素,共有A55種排法;又3本數學書有A33種排法,2本外語書有A22種排法;根據分步計數原理共有排法A55 A33 A22=1440(種).
註:運用捆綁法解決排列組合問題時,一定要注意「捆綁」起來的大元素內部的順序問題.
五.不相鄰問題用「插空法」:不相鄰問題是指要求某些元素不能相鄰,由其它元素將它們隔開.解決此類問題可以先將其它元素排好,再將所指定的不相鄰的元素插入到它們的間隙及兩端位置,故稱插空法.
例3、用1、2、3、4、5、6、7、8組成沒有重復數字的八位數,要求1與2相鄰,2與4相鄰,5與6相鄰,而7與8不相鄰。這樣的八位數共有( )個.(用數字作答)
解:由於要求1與2相鄰,2與4相鄰,可將1、2、4這三個數字捆綁在一起形成一個大元素,這個大元素的內部中間只能排2,兩邊排1和4,因此大元素內部共有A22種排法,再把5與6也捆綁成一個大元素,其內部也有A22種排法,與數字3共計三個元素,先將這三個元素排好,共有A33種排法,再從前面排好的三個元素形成的間隙及兩端共四個位置中任選兩個,把要求不相鄰的數字7和8插入即可,共有A42種插法,所以符合條件的八位數共有A22 A22 A33 A42=288(種).
註:運用「插空法」解決不相鄰問題時,要注意欲插入的位置是否包含兩端位置.
六.順序固定用「除法」:對於某幾個元素按一定的順序排列問題,可先把這幾個元素與其他元素一同進行全排列,然後用總的排列數除於這幾個元素的全排列數。
例4、6個人排隊,甲、乙、丙三人按「甲---乙---丙」順序排的排隊方法有多少種?
分析:不考慮附加條件,排隊方法有A66種,而其中甲、乙、丙的A33種排法中只有一種符合條件。故符合條件的排法有A66 ÷A33 =120種。(或A63種)
例5、4個男生和3個女生,高矮不相等,現在將他們排成一行,要求從左到右女生從矮到高排列,有多少種排法。
解:先在7個位置中任取4個給男生,有A74 種排法,餘下的3個位置給女生,只有一種排法,故有A74 種排法。(也可以是A77 ÷A33種)
七.分排問題用「直排法」:把幾個元素排成若干排的問題,可採用統一排成一排的排法來處理。
例6、7個人坐兩排座位,第一排3個人,第二排坐4個人,則不同的坐法有多少種?
分析:7個人可以在前兩排隨意就坐,再無其它條件,故兩排可看作一排來處理,不同的坐法共有A77種。
八.逐個試驗法:題中附加條件增多,直接解決困難時,用試驗逐步尋找規律。
例7.將數字1,2,3,4填入標號為1,2,3,4的方格中,每方格填1個,方格標號與所填數字均不相同的填法種數有( )
A.6 B.9 C.11 D.23
解:第一方格內可填2或3或4,如第一填2,則第二方格可填1或3或4,若第二方格內填1,則後兩方格只有一種方法;若第二方格填3或4,後兩方格也只有一種填法。一共有9種填法,故選B
九、構造模型 「隔板法」
對於較復雜的排列問題,可通過設計另一情景,構造一個隔板模型來解決問題。
例8、方程a+b+c+d=12有多少組正整數解?
分析:建立隔板模型:將12個完全相同的球排成一列,在它們之間形成的11個間隙中任意插入3塊隔板,把球分成4堆,每一種分法所得4堆球的各堆球的數目,對應為a、b、c、d的一組正整解,故原方程的正整數解的組數共有C113 .
又如方程a+b+c+d=12非負整數解的個數,可用此法解。
十.正難則反——排除法
對於含「至多」或「至少」的排列組合問題,若直接解答多需進行復雜討論,可以考慮「總體去雜」,即將總體中不符合條件的排列或組合刪除掉,從而計算出符合條件的排列組合數的方法.
例9、從4台甲型和5台乙型電視機中任意取出3台,其中至少要甲型與乙型電視機各一台,則不同的取法共有( )種.
A.140種 B.80種 C.70種 D.35種
解:在被取出的3台中,不含甲型或不合乙型的抽取方法均不合題意,因此符合題意的抽取方法有C93-C43-C53=70(種),故選C.
註:這種方法適用於反面的情況明確且易於計算的習題.
十一.逐步探索法:對於情況復雜,不易發現其規律的問題需要認真分析,探索出其規律
例10、從1到100的自然數中,每次取出不同的兩個數,使它們的和大於100,則不同的取法種數有多少種。
解:兩個數相加中以較小的數為被加數,1+100>100,1為被加數時有1種,2為被加數有2種,…,49為被加數的有49種,50為被加數的有50種,但51為被加數有49種,52為被加數有48種,…,99為被捕加數的只有1種,故不同的取法有(1+2+3+…+50)+(49+48+…+1)=2500種
十二.一一對應法:
例11.在100名選手之間進行單循環淘汰賽(即一場失敗要退出比賽)最後產生一名冠軍,要比賽幾場?
解:要產生一名冠軍,要淘汰冠軍以外的所有選手,即要淘汰99名選手,要淘汰一名就要進行一場,故比賽99場。
應該指出的是,以上介紹的各種方法是解決一般排列組合問題常用方法,並非絕對的。數學是一門非常靈活的課程,同一問題有時會有多種解法,這時,要認真思考和分析,靈活選擇最佳方法.還有像多元問題「分類法」、環排問題「線排法」、「等概率法」等在此不贅述了。
I. 高考數學中解排列組合問題的幾種常用方法
:1,搞清事件是什麼,是分步還是分類,是排列還是組合。現分類,後分步,先組合,後排列。 2,對基本事件的處理,進行分類,劃歸類型。 3,把其它事件化為基本事件,體現數學解決問題的基本思路和方法。