Ⅰ 化工生產廢水治理按照原理可分為什麼
廢水處理方法一般可分為物理法、化學法和生物法三大類方法,簡單介紹如下:
一、 物理法
物理法的的去除對象是水中不溶性的懸浮物質.使用的處理設備和方法主要有格柵、篩網、沉澱(沉砂)、過濾、微濾、氣浮、離心(旋流)分離等.
1. 格柵(篩網)
它是由一組平行排列的金屬柵條製成的框架,斜置成60。~70。於廢水流經的渠道內,當廢水流過時,呈塊狀的污染物質即被柵條截留而從廢水中去除,它是一種對後續處理構築物或廢水提升泵站有保護作用的設備,篩網截留亦屬於這一性質的設備。
2.沉澱(沉砂)
藉助廢水懸浮固體本身的重力作用使其與廢水相分離的方法。這種工藝分離效里好、簡單易行、應用廣泛,往往在處理廢水過程中多次使用,是一種十分重要的處理構築物。沉澱池主要用於去除廢水中大量的呈顆粒狀的懸浮固體,沉砂池則主要去除廢水密度較大的固體顆粒。
3.氣浮
氣浮是設法在廢水澡通入大量密集的微細氣泡,使其與細的懸浮物相互粘附,形成整體密度小於水的浮體,從而依靠浮力上升至水面,以完成固、液分離的處理方法。氣浮按氣泡的來源可分為壓力溶氣氣浮、電解凝聚氣浮、微孔布氣氣浮三大類。
4.過濾
過濾是使廢水通過具有孔隙的粒狀濾層,從而截留廢水的懸浮物,使廢水得到澄清的處理工藝。
5.離心(旋流)分離
使含有懸浮固體或浮化油的廢水在設備中高速旋轉,由於懸浮固體和廢水的質量不同,受到的離心力也不同,質量大原懸浮固體被拋 到廢水外側,這樣就可使懸浮固體和廢水分別通過各自出口排出設備之外,從而使廢水得以凈化。
二、 化學法
化學法的去除對象是廢水中的膠體物質和溶解性物質.
1. 中和處理
用化學方法消除廢水中過量的酸或鹼,使其pH值達到中性左右的過程稱為中和。處理含酸廢水以無機鹼為中和劑,處理鹼性廢水以無機酸作中和劑。中和處理應考慮以"以廢治廢"原則,亦可採用葯劑中和處理、中和處理可以連續進行,也可以間歇進行。
2. 混凝處理法
混凝法是向廢水中投加一定量的葯劑,經過脫穩、架橋等反應過程,使廢水呈膠體狀態的污染物質形成絮凝體,再經過沉澱或氣浮,使法染物從廢水中分離出來.通過混凝能夠降低廢水的濁度、色度,去除高分子物質、呈膠體的機污染物、某些重金屬毒物(汞、鎘)和放射性物質等,也可去除磷等可溶性有機物,應用十分廣泛。它可以作為獨立處理法,也可以和其他處理法配合,作為預處理、中間處理、甚至可以作為深度處理工藝。
3.化學沉澱法
向廢水中投加某種化學物質,使它和廢水中的某些溶解物質產生反應,生成難溶物沉澱下來。它一般用以處理含重金屬離子的工業廢水。根據所投加的沉澱劑,化學沉澱法又可分為氫氧化物沉澱法、硫化物沉澱法、鋇鹽沉澱法等。
4.氧化還原法
利用溶解於廢水中的有毒、有害物質在氧化還原反應中能被氧化或還原的性質,把它轉化為無毒無害的新物質或轉化成氣體或固體化而從廢水中分離出來。在廢水處理中使用的氧化劑有空氣中的氧、純氧、臭氧、氯氣、次氯酸鈉、三氯化鐵等,使用的還原劑有鐵、鋅、錫、錳、亞硫酸氫鈉、焦亞硫酸鹽等。
5.吸附法
用多孔性固體吸附劑處理廢水,使其中的污染物質被吸著於固體表面而分離的方法。吸附可分為物理吸附、化學吸附和生物吸附等。物理吸附劑和吸附質之間在分子間力作用下產生的。不產生化學變化。而化學吸附則是吸附劑和吸附質之間發生化學反應,生成化學鍵引起的吸附,因此化學吸附選擇性較強。另外,在生物作用下也可以產生物吸附。在廢水處理中常用的吸附劑有活性炭、磺化煤、沸石、硅藻土、焦炭、木屑等。
6.離子交換法
離子交換法在廢水處理口中應用較廣,主要用於去除廢水中的金屬離子,其它質是不是溶性離子化合物(離子交換劑)上的可交換離子與廢水中的其他同性離子的交換反應,是一種特殊的吸附過程。使用的離子交換劑可分為無機離子交換劑(天然沸石和合成沸石)、有機離子交換樹脂(強酸陽離子樹脂、弱酸陽離子樹脂、強鹼陰離子樹脂、螯合樹脂等)。採用離子交換法處理廢水時,必須考慮樹脂的選擇性,樹脂對各種離子的交換能力是不同的,這主要取決於各種離子該種樹脂親合力的大小,又稱選擇性的大小,另外還要考慮到樹脂的再生方法等。
7.膜分離法
滲析、電滲析、超濾、反滲透等技術都是通過一種特殊的半滲透膜來分離廢水中離子和分子的技術,統稱為膜分離法。電滲析法、反滲透法主要用於廢水的脫鹽、回收某些金屬離子等,反滲透與超濾均屬於膜分離法,但其本質又有所不同,反滲透作用主要是膜表面化學本性所起的作用,它分離的物質粒徑小,除鹽率高,所需工作壓力大,超濾所用材質和反滲透可以相同,但超濾是篩濾作用,分離物質粒徑大,透水率高,除鹽率低,工作壓力小。
8.萃取法
利用廢水澡的污染物在水呼萃取劑中溶解度的不同來分離污染物理學方法稱為萃取法。萃取法一般有三步:一是把萃取劑加入廢水澡,使廢水中的污染物轉移到萃取劑中,二是把萃取劑和廢水分開,使廢水得到凈化,三是把污染物與萃取劑分開,使萃取劑循環回用。
三.生物法
在自然界,存活著巨額數量的以有機物為營養物質的微生物,它們具有氧化分解有機物並將其轉化為無機物的楞功能。廢水的生物處理法就是採取一定的人工措施,創造有利於微生物生長、繁殖的環境,使微生物大量增殖,以提高微生物氧化、分解有機物能力有一種技術。生物處理法主要用於去除廢水中呈溶解狀態度和膠體狀態的有機污染物。
根據作用微生物的類型,生物處理法可分為好氧處理法厭氧處理法兩大類.前者處理效率高.效果,使用廣泛,是生物處理法的主要方法.另外也可根據微生物在廢水中是處於懸浮狀態還是附著在某種填料上來分.,可分為活性污染泥法和生物膜法.
1. 活性污泥法
是當前應用最為廣泛的一種生物處理技術。活性污泥是一種由無數細菌和其他微生物組成的絮凝體,其表面有一多糖類粘質層。活性污泥法就是利用這種活性污泥的吸附、氧化作用,去除廢水澡的有機污染物。
2.生物膜法
廢水連續流經固體填料(碎石、塑料填料等),在填料上就會生成污泥狀的生物膜,生物膜中繁殖著大量的微生物,起到與活性污泥同樣的凈化廢水的作用.
生物膜法有多種處理構築物,如生物濾池、生物轉盤、生物接觸氧化床和生物流化床等。
3.自然生物處理法
利用在自然條件下生長、繁殖的微生物(不加以人工強化或略加強化)處理廢水的技術。其主要特徵是工藝簡單,建設與運行費用都較低,但受自然條件的制約。主要的處理技術是穩定塘和土地處理法。
穩定塘是利用塘水中自然繁育的微生物(好氧、兼氧及厭氧),在其自身的代謝作用下氧化分解廢水中的有機物,穩定塘中的氧由塘中生長的藻類光合作用和塘面與大氣相接觸的復氧作用提供,在穩定塘內廢水停留時間長,它對廢水的凈化過程和自然水體凈化過程相近.穩定可分為好氧塘、兼性塘、厭氧塘和曝氣塘等。包括廢水灌溉在內的土地處理也是一種生物處理法。廢水向農作物提供水分和肥分,廢水中非溶解性雜質為表層土壤過濾截留,並逐漸為微生物分解利用.近十幾年來在利用土地處理廢水方面有了較大的發展。
4. 氧生物處理法
厭氧生物處理是利用兼性厭氧菌和專性厭氧菌在無氧條件下降解有機污染物的處理技術。有機污泥、某些高濃度有機污染物理的工業廢水,如屠宰場、酒精廠廢水等適宜於用厭氧生物處理法處理。用於厭氧處理的構築物最普通的是消化池,最近一、二十年來這個領域有很大發展,開創了一系列新型、高效的厭氧處理構築物,如厭氧濾池、上流式厭氧污泥床、厭氧轉盤、擋板式厭氧反應器以及復合厭氧反應器等。
Ⅱ 物理化學在生活和生產中有哪些應用
物理在生活中應用很廣,比如說f=ma,質量越大物體,要停下來就越困難,這樣在開大車的時候就會意識到要控制車速;在生產中舉個摩擦力的例子,比如說要運輸一些大型的鋼條到高空作業,用滾輪運輸要比舉重要省力。
化學也同樣運用很廣,在生活中有被魚刺嗆到了要吃醋,這是化學上的碳酸鈣與醋酸分解的例子;當在室內聞到很重的煤氣味要嚴謹明火也是一個生活中運用的化學知識的例子;在生產中比如說酒的發酵,豆腐的製作,火箭燃料的燃燒等等,都是生產中的例子。
Ⅲ 化工工業上氣體凈化有哪幾種方法,簡單描述凈化過程
有機廢氣的主要來源於石油和化工行業生產過程中排放的廢氣,特點是數量較大,有機物含量波動性大、可燃、有一定的毒性,有的還有惡臭,而氯氟烴的排放還會引起臭氧層的破壞。石油和化工工程以及實話產品的存儲設施,印刷及其他與石油和化工有關的行業,使用石油、石油化工產品的場合和燃燒設備,以石油產品為燃料的各種交通工具都是有機廢氣的源頭。
在對有機廢氣的治理方法上,可分為兩大類:一是回收法,主要是通過物理方法,在一定溫度和壓力下,用選擇吸附劑和選擇性滲透膜等方法來分離揮發性有機化合物,主要有活性炭吸附、變壓吸附、冷凝發和生物膜法等;二是消除法,主要是通過化學或者生物反應,用光、熱、催化劑和微生物等將有機物轉化為水和二氧化碳,主要包括熱氧化、翠花燃燒、生物氧化、電暈法等離子體分解法、光分解法等。
(1)活性炭吸附法
在我國對濃度較低的氣體污染物的凈化手段主要是採取吸附法為主,常用的吸附劑有多孔炭材料、蜂窩狀活性炭、球狀活性炭、活性炭纖維、新型活性炭以及分子篩、沸石、多孔粘土礦石、活性氧化鋁和硅膠等。活性炭多呈粉末狀或顆粒狀,大部分情況下不能直接用於各種凈化設備鍾,必須使活性炭具有一定形狀和支撐強度才能使用。活性炭經過特殊的工藝處理後,能產生於豐富的微孔結構,這些人眼看不到的微孔能夠依靠分子力,吸附各種有害的氣體和液體分子,從而達到凈化的目的。
但是活性炭吸附劑是一種不耐高溫的吸附劑,在濕潤的條件下不能保持很好的吸附能力;易燃,較快達到飽和吸附而失去效用,吸附劑需定期更換的確定;其次,吸附法會產生二次固體和液體污染物。
(2)催化燃燒法
催化燃燒法是以催化燃燒代替傳統的火焰燃燒,降低了燃燒溫度,提高了能量利用率。另外,催化燃燒產生的熱流溫度適中,無需冷卻空氣的稀釋,提高了熱效。不過,催化燃燒法也存在著不足之處,有的氣體燃燒條件比較苛刻,需高溫,高空和高水蒸氣分壓,因此催化劑必須具備較高的活性、高熱穩定性和較高的水熱穩定性,以及一定的抗中毒能力。而通常催化劑活性與穩定性是相矛盾的,另外該方法對機械強度要求也較高,要求能抗沖刷和熱沖擊。
(3)生物膜法
按照傳統生物膜理論,生物法處理有機廢氣一般要經歷以下步驟:a、廢氣中的有機污染首先與水接觸,並溶解於水中;b、溶解於液膜中的有機污染物成分在濃度差的推動下進一步擴散到生物膜,進而被微生物捕獲並吸收;c、微生物以有機物為能源或碳源進行生長代謝,從而將其分解為簡單無毒的無機物和低毒的有機物;d、生物代謝產物一部分重新回到液相,一部分氣態物質脫離生物膜,通過擴散進入大氣。根據此理論,生物膜凈化有機氣態的速率抓喲取決於氣相和液相中有機物的擴散速率以及生化反應速率。
生物膜法具有設備簡單、投資少、運行費用低、無二次污染等優點,單也存在著反應裝置占的面積大、反應時間較長的缺點。
(4)先進氧化法
先進的氧化法是指產生OH•過程,以及產生的OH•誘發一系列的OH•鏈反應,攻擊各種污染物及微生物,直至降解為CO2 、H2O及無機鹽,實現零環境污染、零污染排放。先進氧化方法是在不斷提高OH•產生效率和應用效率的基礎上發展起來。
在工業上的有機氣體凈化處理,無論是廣泛採用的傳統處理方法還是新開發的處理技術,都要考慮到應用的實 效 性。目前,除了推廣傳統工藝外,應鼓勵重點開發新的技術,以達到提高去除效率、降低投資運行費用,減少二次污染的目的。
Ⅳ 常見的化工廢水處理技術中的物理法是什麼
物理法就是利用物理原理和手段實現廢水處理。處理技術為
(1)過濾法利用濾層截留污染物,可應用於減少水中大分子懸浮物的含量。
(2)沉澱法是在重力的作用下,讓污染物沉降、分離。
(3)氣浮法是利用生成的氣泡將懸浮的污染物帶出水面的方法。然而這些方法無法處理可溶於水的成分。
Ⅳ 現代物理學在化工中的應用
應用物理學指的是針對實際用途而進行的物理研究。應用物理學的課程規畫通常會選修一些應用學科的課程,像地質學或電機工程學。應用物理學與工程學不同,應用物理學不會特別地設計某種元件或機器,而是用物理學或從事物理研究來發展某種新科技或解析某問題。工程學用到很多物理的理論。例如,力學的一門分支,靜力學的理論是建造橋梁與其它建築物必須的基礎理論。設計一個世界一流的音樂廳,必須先學會聲學。設計與製造更優良的光學元件必須先熟讀光學。經過考慮種種物理因素而設計出來的飛行模擬器、電子游戲、電影等等,會顯得更加維妙維肖、栩栩如生。物理學使用的一些探本溯源,格物致知的方法也可以使用於跨學科領域;物理學或多或少地影響了很多重要學術領域。例如,經濟物理學(Econophysics)應用很多物理學里的理論與方法來解析經濟學問題;這些問題時常會涉及不確定性或混沌。
Ⅵ 石油化工中煉制方法中什麼是物理方法什麼是化學方法,急,求答案,謝謝您
從石油中分出汽油,柴油,等這個是根據各種油類沸點不同,來分離的,是物理變化
還有就是石油裂解,這個是化學變化,可以網路搜一下,石油裂解
Ⅶ 常見的化工廢水處理方法都有哪些
1.化學方法處理
化學方法是利用化學反應的作用以去除水中的有機物、無機物雜質。主要有化學混凝法、化學氧化法、電化學氧化法等。
2.物理處理法
化工污水常用的物理法包括過濾法、重力沉澱法和氣浮法等。
3.光催化氧化技術
光催化氧化技術利用光激發氧化將O2、H2O2等氧化劑與光輻射相結合。
4.超聲波技術
超聲波技術,是通過控制超聲波的頻率和飽和氣體,降解分離有機物質。
5.磁分離法
磁分離法,是通過向化工污水中投加磁種和混凝劑,利用磁種的剩磁,在混凝劑同時作用下,使顆粒相互吸引而聚結長大,加速懸浮物的分離,然後用磁分離器除去有機污染物,國外高梯度磁分離技術已從實驗室走向應用。
Ⅷ 物理化學在化工中的應用
物理化學也是化工行業的基礎學科之一,物理化學的應用很多,例如飽和蒸汽壓的概念,絕熱指數的概念等等在化工計算中都會用到。
Ⅸ 化工生產中在常溫下各種材料合成的工藝是物理合成法嗎
化工生產中在常溫下各種材料合成的工藝是化學合成。
是物理合成還是化學合成,主要看是否生成了新物質,而不是看溫度。由於化學反應的多樣性,有的化學合成溫度要幾千度的高溫,有的化學合成需要零下一百多度的低溫。例如合成二氧化三碳,就是在零下115℃的條件下進行的。常溫下進行的化學反應非常多,例如大多數的酸鹼中和反應,復分解反應等。這些都是化學反應,而不是物理混合。
Ⅹ 化工生產中,主要在哪些方面經常應用流體流動的基本原理及其流動規律
在化工生產中,有以下幾個主要方面經常要應用流體流動的基本原理及其流動規律:
(1)
管內適宜流速、管徑及輸送設備的選定;
(2)
壓強、流速和流量的測量;
(3)
傳熱、傳質等過程中適宜的流動條件的確定及設備的強化。
流體流動是化工廠中最基本的現象。在化工廠內,不論是待加工的原料或是已製成的產品,常以液態或氣態存在。各種工藝生產過程中,往往需要將液體或氣體輸送至設備內進行物理處理或化學反應,這就涉及到選用什麼型式、多大功率的輸送機械,如何確定管道直徑及如何控制物料的流量、壓強、溫度等參數以保證操作或反應能正常進行,這些問題都與流體流動密切相關。