A. 1加到100的簡便演算法,急!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1+2+3+.....+100
=(1+100)x50
=5050
1,2,3...100這是一個等差數列。等差數列是指從第二項起,每一項與它的前一項的差等於同一個常數的一種數列,常用A、P表示。這個常數叫做等差數列的公差,公差常用字母d表示。
等差數列的前n項和公式為:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。注意:以上n均屬於正整數。
(1)1加100的簡便方法的視頻講解擴展閱讀:
等差數列從通項公式可以到的以下推論:
1、 和=(首項+末項)×項數÷2;
2、項數=(末項-首項)÷公差+1;
3、首項=2x和÷項數-末項或末項-公差×(項數-1);
4、末項=2x和÷項數-首項;
5、末項=首項+(項數-1)×公差;
6、2(前2n項和-前n項和)=前n項和+前3n項和-前2n項和。
B. 從1加到100的簡便方法有哪些
解:從1加到100的和可以看作是一個公差為1的等差數列,直接利用等差數列的公式(首項+末項)×項數÷2可以很快得出答案。
解:
sn = 1+2+3+4+...+100
= [n*(a1+an)]/2
= 100*(1 + 100)/2
= 5050
得出結果,從1加到100的和等於5050。
(2)1加100的簡便方法的視頻講解擴展閱讀:
「4.9+0.1-4.9+0.1」這是小學數學第八冊練習二十七第二題中的一道非常簡單的常見簡便運算題。當我給學生布置了這道題後,我以為學生會毫不猶豫地使用加法交換率和結合率,順利完成此題,但是當我批改學生的作業時,卻發現了以下三種情況:
①、4.9+0.1-4.9+0.1=(4.9-4.9)+(0.1+0.1);
②、4.9+0.1-4.9+0.1=4.9-4.9+0.1+0.1;
③、4.9+0.1-4.9+0.1=(4.9+0.1)-(4.9+0.1)。
C. 一加到100等於幾怎麼算出來的
一加到100=5050,可以用等差數列計算的方法求出這個結果,例如,首相加末相,括起來之後,然後再乘以項數,除以二,即可求出結果
D. 1 加到100用簡便方法怎麼算
1+2+3+4+5+6+7+8+9+10+11......+99+100
=(1+100)+(2+99)+(3+98)+......+(49+52)+(50+51)
=101*50
=5050
這是一個等差數列,也可以直接用等差數列求和公式計算:
1+2+3+4+5+6+7+8+9+10+11......+99+100=(1+100)*100/2=5050
E. 1加到100的方法是什麼
方法是1+100=101
2+99=101
3+98=101
.
50+51=101
該式共計50組
故1+2+3+.+99+100
=(1+101)+(2+99)+(3+98)+.+(50+51)
=101×50
=5050
F. 從1加到100等於多少簡便方法
1+100=101
2+99=101
3+98=101
……
49+52=101
50+51=101
這樣的組合一共有100÷2=50組
所以,1+2+3+……+100的簡便演算法就是(1+100)×(100÷2)=5050。
G. 從1 到100用簡便方法怎麼算
巧算:
(1+99)+(2+98)+(3+97)+(48+52)+(49+51)共有49個100,還有一個50,一個100,所以和是5050。
或者1+2+3+4+...+100
=(1+100)+(2+99)+(3+98)+...+(49+52)+(50+51) 共有50個括弧
=(1+100)*50
=5050
公式:首項加末項乘以項數除以2
在這道題裡面首項為1,末項為100,項數是100
所以為 (1+100)*100/2=5050
通常對連續的數進行簡便運算時,採取首尾相加的方法,因為連續的數集是一個等差數列,首尾相加可以得到一個相等的數,再計算項數,即公式:為首項加尾項乘以項數除以2。
H. 1加到100的簡便計算
1+100=2+99=3+98=……=50+51 =101,共100÷2=50組
所以,一共和為50*101=5050
也可以用:(1+100)+(2+99)+……(50+51)=101x50=5050
I. 1加到100是多少詳細演算法
1加到100公式推導過程:1+2+3+4+5+6+7+8+9+10+11+......90+91+92+93+94+95+96+97+98+99+100
=(1+100)+(2+99)+(3+98)+(4+97)+(5+95)+......(47+54)+(48+53)+(49+52)+(50+51)
=101+101+101+101+......+101+101+101+101(共50個101)
=50×101
=5050
因此得到簡便演算法:1+2+3+4+5+6+7+8+9+10+11+......90+91+92+93+94+95+96+97+98+99+100
=(1+100)×100÷2
=50×101
=5050
1加到100其實就是一個等差數列的求和,首項=1,末項=100,一共有100項,直接使用公式是最簡單的,和=(首項+末項)×項數÷2。
(9)1加100的簡便方法的視頻講解擴展閱讀:
等差數列的其他推導公式:
1、和=(首項+末項)×項數÷2。
2、項數=(末項-首項)÷公差+1。
3、首項=2x和÷項數-末項或末項-公差×(項數-1)。
4、末項=2x和÷項數-首項。
5、末項=首項+(項數-1)×公差。
6、2(前2n項和-前n項和)=前n項和+前3n項和-前2n項和。