導航:首頁 > 知識科普 > 二次簡便運算方法

二次簡便運算方法

發布時間:2022-04-18 01:54:56

Ⅰ 數學簡便計算,有哪幾種方法

數學簡便計算方法

一、運用乘法分配律簡便計算

簡便計算中最常用的方法是乘法分配律。乘法分配律指的是:

ax(b+c)=axb+axc

cx(a-b)=axc-bxc

例1:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。

38X101

=38X(100+1)

=38X100+38X1

=3800+38

=3838

例2:47X98,這樣該怎麼拆呢?要拆98,使它更接近100。

47X98

=47X(100-2)

=47X100-47X2

=4700-94

=4606

二、基準數法

在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。

例:

2072+2052+2062+2042+2083

=(2062x5)+10-10-20+21

=10310+1

=10311

三、加法結合律法

對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。

例:

5.76+13.67+4.24+6.33

=(5.76+4.24)+(13.67+6.33)

=30

四、拆分法

顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!

例:

3.2×12.5×25

=8×0.4×12.5×25

=8×12.5×0.4×25

=1000

五、提取公因式法

這個方法實際上是運用了乘法分配律,將相同因數提取出來。

例:

0.92×1.41+0.92×8.59

=0.92×(1.41+8.59)

=9.2

Ⅱ 二次根式化簡方法

把一個二次根式化簡成最簡二次根式,有以下兩種情況:

1、如果被開方數是整式或整數,先將它分解因式或分解因數,然後將完全平方式或平方數開除根號,使根式化簡。

2、如果被開方數是分式或分數(包括小數),先分母有理化,再按被開方數是整式或整數的情形化簡。

由此可見,化簡二次根式要領有兩條:一是分母有理化;二是分解因式(因數),將完全平方式(數)開出根號。

最簡根式是根式的一個重要概念,在根式運算過程中,自始至終貫穿著根式的化簡,同學們要學會化簡根式的方法,化簡二次根式的步驟可簡要地概括為「開」、「補」兩個字。

第一步,「開」,即在被開方式的各因式中,可以用它們的算術平方根來代替,能移到根號外面的,都移到根號外面去,使新的被開方式的每一個因式的指數都小於根指數2;

第二步,「補」,即把新的被開方式的分母與分子同時補乘以分母本身,使分母自乘後,新分母可以全部開出根號外面去,達到被開方式不含分母的目的。

(2)二次簡便運算方法擴展閱讀:

二次根式的應用主要體現在兩個方面:

(1)利用從特殊到一般,再由一般到特殊的重要思想方法,解決一些規律探索性問題;

(2)利用二次根式解決長度、高度計算問題,根據已知量,求出一些長度或高度,或設計省料的方案,以及圖形的拼接、分割問題。這個過程需要用到二次根式的計算,其實就是化簡求值。

Ⅲ 簡算到底有多少方法

一、整體簡便計算。整個一道算式可以用簡便方法計算,這種形式最為常見。例如:
=1.14×10
=11.4
二、局部簡便計算。一道算式中局部可以進行簡便計算,這種形式也不少見。
三、中途簡便計算。開始計算並不能簡便計算,而經過一兩步後卻能進行簡便計算,這種情況最容易忽視。例如:
=1.2×(1+5+4)
=1.2×10
=12
四、重復簡便計算。在一道題里不止一次地進行簡便計算,這種情況往往不注意後一次簡便計算。例如:
=8×55×0.125
=8×0.125×55 第二次
=1×55
=55
一簡算的根據 a、乘法運算定律 b、加法運算定律 c、減法、除法的運算性質
二簡算的類型 a、直接簡算 b、部分簡算 c、轉化簡算 d、過程簡算
三簡算的幾種公式:
加法:a+b+c=a+(b+c)(加法結合律)
乘法:a×b×c=a×c×b(乘法交換律) a×b×c=a×(b×c)(乘法結合律) (a+b)×c=ac+bc或(a-b)×c=ac-bc(乘法分配律)
減法:a-b-c=a-c-b(減法交換律) a-b-c=a-(b+c)(減法結合律)
除法:a÷b÷c=a÷c÷b(除法交換律) a÷b÷c=a÷(b×c)(除法結合律) (a+b)÷c=a÷c+b÷c或(a-b)÷c=a÷c-b÷c(除法分配律)
注意除法分配率只有在被除數是兩個數的差或和的情況下才能進行分配

Ⅳ 一元二次方程有沒有簡便的計算方法

公式法是比較快的
方法 一、公式法
1
先判斷△=b²-4ac,
若△<0原方程無實根;
2
若△=0,
原方程有兩個相同的解為:
X=-b/(2a);
3
若△>0,
原方程的解為:
X=((-b)±√(△))/(2a)。
END
方法二、配方法
先把常數c移到方程右邊得:
aX²+bX=-c
將二次項系數化為1得:
X²+(b/a)X=- c/a
3
方程兩邊分別加上(b/a)的一半的平方得:
X²+(b/a)X +(b/(2a))²=- c/a +(b/(2a))²
4
方程化為:
(b+(2a))²=- c/a +(b/(2a))²
5
①、若- c/a +(b/(2a))²<0,原方程無實根;
②、若- c/a +(b/(2a))² =0,原方程有兩個相同的解為X=-b/(2a);
③、若- c/a +(b/(2a))²>0,原方程的解為X=(-b)±√((b²-4ac))/(2a)。
END
方法三、直接開平方法
1
形如(X-m)²=n (n≥0)一元二次方程可以直接開平方法求得解為X=m±√n
END
方法四、因式分解法
1
將一元二次方程aX²+bX+c=0化為如(mX-n)(dX-e)=0的形式可以直接求得解為X=n/m,或X=e/d。

Ⅳ 二次根式計算的方法

加減法

1、同類二次根式

一般地,把幾個二次根式化為最簡二次根式後,如果它們的被開方數相同,就把這幾個二次根式叫做同類二次根式。 化簡:根號12等於4的根號3

2.合並同類二次根式

把幾個同類二次根式合並為一個二次根式就叫做合並同類二次根式。

3.二次根式加減時,可以先將二次根式化為最簡二次根式,再將被開方數相同的進行合並。

例如:(1)

用語言敘述為:兩個數的算術平方根的商,等於這兩個數商的算術平方根。

(5)二次簡便運算方法擴展閱讀:

運算方法

1、確定運算順序。

2、靈活運用運算定律。

3、正確使用乘法公式。

4、多數分母有理化要及時。

5、在有些簡便運算中也許可以約分,不要盲目有理化(但最後結果必須是分母有理化的)。

6、字母運算時注意隱含條件和末尾括弧的註明。

7、提公因式時可以考慮提帶根號的公因式。

Ⅵ 二次根式的除法運算時,如何選方法可以使運算更簡便

1.二次根式的加減運算: 先把式子中各項二次根式化成最簡二次根式,再參照多項式的加減運算,去括弧與合並同類二次根式。 2.二次根式的乘法: (1)法則:根a ·根b =根ab (a≥0且b≥0) (2)類型: (i)單項二次根式乘以單項二次根式; (ii)單項二次根式乘以多項二次根式; (iii)多項二次根式乘以多項二次根式 在進行乘法運算時,有時可以應用乘法公式,使計算簡便。 3.二次根式的除法: (1)法則:根a/根b =根a/b (a≥0且b>0) (2)類型: (i)單項二次根式除以單項二次根式(應用運演算法則計算) (ii)多項二次根式除以單項二次根式(轉化為單項二次根式除以單項二次根式) (iii)除數是二個二次根式的和或是一個二次根式與一個有理數的和(把分母有理化進行運算,或與分式的運算類比思考,約去分子,分母中的公因式)。

Ⅶ 二次函數簡便運算

你是問的求二次函數的解析式呢,求最值呢,不管是那一類的,只要記住公式,靈活運用。有時還需用到拋物線的對稱性

Ⅷ 簡便運算的技巧是什麼

簡便運算方法大全
一、什麼是簡便運算
「簡便運算」是一種特殊的計算,它運用了運算定律與數字的基本性質,從而使計算簡便,使一個很復雜的式子變得很容易計算。

二、簡便運算大全
(一)、交換律(帶符號搬家法)
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,我們可以「帶符號搬家」。
例:256+78-56=256-56+78=200+78=278
450×9÷50=450÷50×9=9×9=81
說明:適用於加法交換律和乘法交換律。

1/4

(二)、結合律
(1)加括弧法
①當一個計算題只有加減運算又沒有括弧時,我們可以在加號後面直接添括弧,括到括弧里的運算原來是加還是加,是減還是減。但是在減號後面添括弧時,括到括弧里的運算,原來是加,現在就要變為減;原來是減,現在就要變為加。(即在加減運算中添括弧時,括弧前是加號,括弧里不變號,括弧前是減號,括弧里要變號。)
例:345-67-33=345-(67+33)=345-100=245
789-133+33=789-(133-33)=789-100=689
②當一個計算題只有乘除運算又沒有括弧時,我們可以在乘號後面直接添括弧,括到括弧里的運算,原來是乘還是乘,是除還是除。但是在除號後面添括弧時,括到括弧里的運算,原來是乘,現在就要
2/4
變為除;原來是除,現在就要變為乘。(即在乘除運算中添括弧時,括弧前是乘號,括弧里不變號,括弧前是除號,括弧里要變號。)
例:510÷17 ÷3=51÷(17×3)=510÷51=10
1200÷48×4=1200÷(48÷4)=1200÷12=100
(2)去括弧法
①當一個計算題只有加減運算又有括弧時,我們可以將加號後面的括弧直接去掉,原來是加現在還是加,是減還是減。但是將減號後面的括弧去掉時,原來括弧里的加,現在要變為減;原來是減,現在就要變為加。(現在沒有括弧了,可以帶符號搬家了哈) (註:去括弧是添加括弧的逆運算)
②當一個計算題只有乘除運算又有括弧時,我們可以將乘號後面的括弧直接去掉,原來是乘還是乘,是除還是除。但是將除號後面的括弧去掉時,原來括弧里的乘,現在就要變為除;原來是除,現在就要變為乘。(現在沒有括弧了,可以帶符號搬家了哈) (註:去掉括弧是添加括弧的逆運算)
三、乘法分配律
①分配法 括弧里是加或減運算,與另一個數相乘,注意分配。
例:45×(10+2)=45×10+45×2=450+90=540
②提取公因式 注意相同因數的提取。
例:35×78+22×35=35×(78+22)=35×100=3500這里35是相同因數。
③注意構造,讓算式滿足乘法分配律的條件。
3

Ⅸ 誰能告訴我二次根式計算的方法啊

二次根式的化簡與計算的策略與方法

二次根式是初中數學教學的難點內容,讀者在掌握二次根式有關的概念與性質後,進行二次根式的化簡與運算時,一般遵循以下做法:

①先將式中的二次根式適當化簡

②二次根式的乘法可以參照多項式乘法進行,運算中要運用公式 ( , )

③對於二次根式的除法,通常是先寫成分式的形式,然後通過分母有理化進行運算.

④二次根式的加減法與多項式的加減法類似,即在化簡的基礎上去括弧與合並同類項.

⑤運算結果一般要化成最簡二次根式.

化簡二次根式的常用技巧與方法

二次根式的化簡是二次根式教學的一個重要內容,對於二次根式的化簡,除了掌握基本概念和運演算法則外,還要掌握一些特殊的方法和技巧,會收到事半功倍的效果,下面通過具體的實例進行分類解析.

1.公式法

【例1】計算① ; ②

【解】①原式

②原式

【解後評注】以上解法運用了「完全平方公式」和「平方差公式」,從而使計算較為簡便.

2.觀察特徵法

【例2】計算:

【方法導引】若直接運用根式的性質去計算,須要進行兩次分母有理化,計算相當麻煩,觀察原式中的分子與分母,可以發現,分母中的各項都乘以 ,即得分子,於是可以簡解如下:

【解】原式 .

【例3】 把下列各式的分母有理化.

(1) ;(2) ( )

【方法導引】①式分母中有兩個因式,將它有理化要乘以兩個有理化因式那樣分子將有三個因式相等,計算將很繁,觀察分母中的兩個因式如果相加即得分子,這就啟示我們可以用如下解法:

【解】①原式



【方法導引】②式可以直接有理化分母,再化簡.但是,不難發現②式分子中 的系數若為「1」,那麼原式的值就等於「1」了!因此,②可以解答如下:

【解】②原式





3.運用配方法

【例4】化簡

【解】原式



【解後評注】注意這時是算術根,開方後必須是非負數,顯然不能等於「 」

4.平方法

【例5】化簡

【解】∵





∴ .

【解後評注】對於這類共軛根式 與 的有關問題,一般用平方法都可以進行化簡

5.恆等變形公式法

【例6】化簡

【方法導引】若直接展開,計算較繁,如利用公式 ,則使運算簡化.

【解】原式





6.常值換元法

【例7】化簡

【解】令 ,則:

原式











7.裂項法

【例8】化簡

【解】原式各項分母有理化得

原式



【例9】化簡



【方法導引】這個分數如果直接有理化分母將十分繁鎖,但我們不難發現每一個分數的分子等於分母的兩個因數之和,於是則有如下簡解:

【解】原式







8.構造對偶式法

【例10】化簡

【解】構造對偶式,於是沒



則 , ,

原式



9.由里向外,逐層化簡



【解】∵







∴原式

【解後評注】對多重根式的化簡問題,應採用由里向外,由局部到整體,逐層化簡的方法處理.

10.由右到左,逐項化簡

【例11】化簡



【方法導引】原式從右到左是層層遞進的關系,因此從右向左進行化簡.

【解】原式









【解後評注】平方差公式和整體思想是解答本題的關鍵,由平方差公式將多重根號逐層脫去,逐項化簡,其環節緊湊,一環扣一環,如果不具有熟練的技能是難以達到化簡之目的的.

返回

二次根式大小比較的常用方法

二次根式的化簡具有極強的技巧性,而在不求近似值的情況下比較兩個無理數(即二次根式)的大小同樣具有很強的技巧性,對初中生來說是一個難點,但掌握一些常見的方法對它的學習有很大的幫助和促進作用.

1.根式變形法

【例1】比較 與 的大小

【解】將兩個二次根式作變形得



∵ ,∴ 即

【解後評注】本解法依據是:當 , 時,① ,則 ;②若 ,則

2.平方法

【例2】比較 與 的大小

【解】 ,

∵ ,∴

【解後評注】本法的依據是:當 , 時,如果 ,則 ,如果 ,則 .

3.分母有理化法

通過運用分母有理化,利用分子的大小來判斷其倒數的大小.

【例3】比較 與 的大小

【解】∵



又∵



4.分子有理化法

在比較兩個無理數的差的大小時,我們通常要將其進行分子有理化,利用分母的大小來判斷其倒數的大小.

【例4】比較 與 的大小

【解】∵



又∵

∴ .而

5.等式的基本性質法

【例5】比較 與 的大小

【解法1】∵











【解後評注】本解法利用了下面兩個性質:①都加上同一個數後,兩數的大小關系不變.②非負底數和它們的二次冪的大小關系一致.

【解法2】將它們分別乘以這兩個數的有理化因式的積,得





又∵ ∴

【解後評注】本解法的依據是:都乘以同一個正數後,兩數的大小關系不變.

6.利用媒介值傳遞法

【例6】比較 與 的大小

【解】∵ ∴

又∵ ∴



【解後評注】適當選擇介於兩個無理數之間的媒介法,利用數值的傳遞性進行比較.

7.作差比較法

在對兩數進行大小比較時,經常運用如下性質:

① ;②

【例7】比較 與 的大小

【解】∵





8.求商比較法

與求差比較法相對應的還有一種比較的方法,即作商比較法,它運用的是如下性質,當 , 時,則:

① ;②

【例8】比較 與 的大小.

【解】







【解後評注】得上所述,含有根式的無理數大小的比較往往可採用多種方法,來求解.有時還需各種方法配合使用,其中根式變形法,平方法是最基本的,對於具體的問題要作具體分析,以求用最佳的方法解出正確的結果.

閱讀全文

與二次簡便運算方法相關的資料

熱點內容
貴州點光源安裝方法 瀏覽:802
化學鍍方法和技巧 瀏覽:487
寶寶怎麼治療最好的方法 瀏覽:452
csgo連入專屬伺服器失敗解決方法 瀏覽:933
溶液酸鹼性計算方法 瀏覽:201
戰馬貼膜的正確方法 瀏覽:168
復印機安裝與操作方法 瀏覽:17
概率中的個數計算方法 瀏覽:823
金帥洗衣機使用方法 瀏覽:648
怎麼選擇樁的施工方法 瀏覽:584
聯想筆記本限速在哪裡設置方法 瀏覽:478
怎樣快速止牙痛土方法 瀏覽:51
子宮肌層2mm治療方法 瀏覽:792
波紋排水管安裝方法 瀏覽:253
華為網路密碼在哪裡設置方法 瀏覽:1005
含羞草如何種植方法 瀏覽:354
小米note微信視頻在哪裡設置方法 瀏覽:849
在家製作紅棗糕的簡單方法 瀏覽:420
圓錐推力機軸承怎麼安裝方法 瀏覽:359
現代教學理念教學方法的研究 瀏覽:34