㈠ 不同底數的冪相乘有什麼法則
若底數不同指數相同,則有(a^m)*(b^m)=(ab)^m
這是積的乘方運算的逆運算。
若底數和指數都不同,則應先轉化為底數或指數相同,然後運用法則計算。
㈡ 同指數冪相乘的法則
1. 同底數冪相乘,底數不變,指數相加。
即 a^m×a^n=a^(m+n) (m,n都是有理數)。
2. 冪的乘方,底數不變,指數相乘。
即 (a^m)^n=a^mn (m,n都是有理數)。
3. 積的乘方,等於把積的每一個因式分別乘方,再把所得的冪相乘。
即 (ab)^n= a^n × b^n (m,n都是有理數)。
4.分式乘方, 分子分母各自乘方。
即 (a/b)^n = a^n/b^n (b≠0)。
㈢ 同底數冪相乘除法運算有什麼技巧
同底數的冪相乘丶相除的計算,其實根本就沒有必要去獵奇什麼鬼技能技巧,那都是一些只會花拳綉腿的半吊子老師忽悠學生與家長的假把式!
你只要准確的使用同底數冪的乘法法則丶除法法則,就能夠正確的解答這類問題!
㈣ 冪的運演算法則有哪些
同底數冪的乘法:底數不變,指數相加同底數冪的除法:底數不變,指數相減冪的乘方:底數不變,指數相乘積的乘方:等於各因數分別乘方的積商的乘方(分式乘方):分子分母分別乘方,指數不變
就像
(2/3)^5=2^5/3^5
㈤ 冪函數的基本運算有哪些
1、同底數冪的乘法:
2、冪的乘方(a^m)^n=a^(mn),與積的乘方(ab)^n=a^nb^n。
3、同底數冪的除法:
(1)同底數冪的除法:am÷an=a(m-n)(a≠0, m, n均為正整數,並且m>n)。
(2)零指數:a0=1 (a≠0)。
(3)負整數指數冪:a-p= (a≠0, p是正整數)①當a=0時沒有意義,0-2, 0-3都無意義。
法則口訣:
同底數冪的乘法:底數不變,指數相加冪的乘方;
同底數冪的除法:底數不變,指數相減冪的乘方;
冪的指數乘方:等於各因數分別乘方的積商的乘方
分式乘方:分子分母分別乘方,指數不變。
(5)冪相乘有哪些方法擴展閱讀
計算:x5·xn-3·x4-3x2·xn·x4
解:x^5·x^n-3·x^4-3x^2·x^n·x^4
分析:
①先做乘法再做減法
=x(5+n-3+4)-3x(2+n+4 )
②運算結果指數能合並的要合並
=x(6+n)-3x(6+n)
③3x2即為3·(x2)
=(1-3)x6+n④x6+n,與-3x6+n是同類項,
=-2x6+n合並時將系數進行運算(1-3)=-2。
㈥ 冪的運演算法則
摘要 (一)同底數冪的乘法:am×an=a(m+n)(a≠0, m, n均為正整數,並且m>n)
㈦ 冪運算常用的8個公式是什麼
冪運算常用的8個公式如下:
1、同底數冪相乘:a^m·a^n=a^(m+n)。
2、冪的乘方:(a^m)n=a^mn。
3、積的乘方:(ab)^m=a^m·b^m。
4、同底數冪相除:a^m÷a^n=a^(m-n)(a≠0)。
5、a^(m+n)=a^m·a^n。
6、a^mn=(a^m)·n。
7、a^m·b^m=(ab)^m。
8、a^(m-n)=a^m÷a^n(a≠0)。
數學中的「冪」,是「冪」這個字面意思的引申,「冪」原指蓋東西的布巾,數學中「冪」是乘方的結果,而乘方的表示是通過在一個數字上加上標的形式來實現的,故這就像在一個數上「蓋上了一頭巾」,在現實中蓋頭巾又有升級的意思,所以把乘方叫做冪正好契合了數學中指數級數快速增長含義,形式上也很契合,所以叫做冪。
冪不符合結合律和交換律。因為十的次方很易計算,只需在後加零即可,所以科學記數法藉助此簡化記錄數的方式;二的次方在計算機科學中很有用。
㈧ 冪運算所有的運演算法則。
1、同底數冪的乘法:
aᵐ·aⁿ·aᵖ=aᵐ⁺ⁿ⁺ᵖ(m, n, p都是正整數)。
2、冪的乘方(aᵐ)ⁿ=a(ᵐⁿ),與積的乘方(ab)ⁿ=aⁿbⁿ
3、同底數冪的除法:
(1)同底數冪的除法:aᵐ÷aⁿ=a(ᵐ⁻ⁿ)(a≠0, m, n均為正整數,並且m>n)
(2)零指數:a⁰=1 (a≠0);
(3)負整數指數冪:a⁻ᵖ= (a≠0, p是正整數),當a=0時沒有意義,0⁻²,0⁻²都無意義。
3、負指數冪
當底數n≠0時,由於n⁰÷nᵃ=1÷nᵃ=1/nᵃ,根據冪的運算規則可知,n⁰÷nᵃ=n⁰⁻ᵃ=n⁻ᵃ=1/nᵃ
因此定義負指數冪如下:a⁻ᵖ=1/aᵖ,a≠0。
㈨ 冪的運演算法則有哪些
同底數冪的乘法:底數不變,指數相加同底數冪的除法:底數不變,指數相減冪的乘方:底數不變,指數相乘積的乘方:等於各因數分別乘方的積商的乘方(分式
㈩ 同指數冪的乘法法則
1. 同底數冪相乘,底數不變,指數相加。
2.冪的乘方,底數不變,指數相乘。
3.積的乘方,等於把積的每一個因式分別乘方,再把所得的冪相乘。
4.分式乘方,分子分母各自乘方。
5、對於乘除和乘方的混合運算,應先算乘方,後算乘除;如果遇到括弧,就先進行括弧里的運算。
6、am·an=am+n(m,n是正整數);(am)n=amn(m,n是正整數);(ab)n=anbn(n是正整數);am÷an=am-n(a≠0,m,n是正整數,m>n);a0=1(a≠0)。
(10)冪相乘有哪些方法擴展閱讀:
同底數冪的乘法的注意事項:
1、先弄清楚底數、指數、冪這三個基本概念的涵義。
2、前提是「同底」,而且底可以是一個具體的數或字母,也可以是一個單項式或多項式,如:(2x+y)2·(2x+y)3=(2x+y)5,底數就是一個二項式(2x+y)。
3、指數都是正整數
4、這個法則可以推廣到三個或三個以上的同底數冪相乘,即am·an·ap....=am+n+p+...(m, n, p都是正整數)。
5、不要與整式加法相混淆。乘法是只要求底數相同則可用法則計算,即底數不變指數相加。