簡便計算就是利用加法結合律,加法交換律以及乘法交換律,結合律,分配率以及減法的運演算法則,除法的運演算法則把復雜的運算進行簡化。盡量湊整十整百,或者能整除。
比如:128+35+72+65
=(128+78)+(35+65)
=200+100
=300
或者42800÷4÷25
=42800÷(4×25)
=42800÷100
=428
② 數學簡便計算,有哪幾種方法
數學簡便計算方法:
一、運用乘法分配律簡便計算
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是:
ax(b+c)=axb+axc
cx(a-b)=axc-bxc
例1:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
例2:47X98,這樣該怎麼拆呢?要拆98,使它更接近100。
47X98
=47X(100-2)
=47X100-47X2
=4700-94
=4606
二、基準數法
在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法結合律法
對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
五、提取公因式法
這個方法實際上是運用了乘法分配律,將相同因數提取出來。
例:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=9.2
③ 數學簡便計算,有哪幾種方法
簡便計算主要有三大方法,分別是加減湊整、分組湊整、提公因數法。
它採用數學計算中的拆分湊整思想,通過四則運算規律,從而簡化計算。
就像68+77=?
大多數人不一定立刻能算出結果,
如果換成70+75=?
相信每一個人都可以一口算出和是145。
這里其實就是把77拆分成2+75,
68+77
=68+2+75
=70+75
=145
遇見復雜的計算式時,
先觀察有沒有可能湊整,
湊成整十整百之後再進行計算,
不僅簡便,而且避免計算出錯。
①加減湊整
【例題1】999+99+29+9+4=?
題中999,99,29,9這四個數字與整數1000,100,30,10都是相差1,4就可以拆分成1+1+1+1,把這4個1補到999,99,29,9上,原式就可以簡化成:
999+99+29+9+4
=999+99+29+9+1+1+1+1
=999+1+99+1+29+1+9+1
=1000+100+30+10
=1140
【例題2】5999+499+299+19=?
看完例1,再來看看例2,還是末位都是9,自然要用我們的湊整法了,不過稍有不同,因為例2中沒有4來拆分成1+1+1+1。
沒有槍沒有炮,自己去創造!
先把它加上1+1+1+1,然後再減去4,不就相當於式子加了一個0嗎?
5999+499+299+19
=5999+1+499+1+299+1+19+1-4
=6000+500+300+20-4
=6816
②分組湊整
在只有加減法的計算題中,將算式中的各項重新分下組湊整,也可以使計算非常方便。
【例題3】100-95+92-89+86-83+80-77=?
題目中的兩位數加減混合運算,硬算是非常費勁的,但是似乎又不能拆分湊整,再觀察題目可以發現從第2個數95起,後面的數都比前一個小3。
根據加法減法運算性質,我們給相鄰的項加上括弧。
100-95+92-89+86-83+80-77
=(100-95)+(92-89)+(86-83)+(80-77)
=5+3+3+3
=14
湊整法不僅可以用在加減計算中,乘除加減混合運算也常常會考到。
③提取公因數法
這就需要用到乘法分配律提取公因數,
又稱為提取公因數法。
如果沒有公因數,我們可以採取乘法結合律變化出公因數。
a×b=(a×10)×(b÷10),
a×b÷c=a÷c×b,
a×b×c=a×(b×c)。
【例題4】47.9x6.6+529x0.34=?
很明顯題目中的6.6+3.4=10,我們想辦法湊出一個3.4,這就用到了a×b=(a×10)×(b÷10)。但是即使10湊出來,仍然不能提取公因數來簡便計算,這就得用到乘法分配律,52.9x3.4=(47.9+5)x3.4,創造出一個47.9,方便我們提取公因數。
47.9x6.6+529x0.34
=47.9x6.6+529÷10x10x0.34
=47.9x6.6+(47.9+5)x3.4
=47.9x(6.6+3.4)+17
=496
簡便計算的考察重點在於四則運算規律的靈活運用,方法掌握的基礎上,對於四則運算規律必須牢記在心,才能更好地理解運用。
④ 簡便計算方法有哪些
加法交換律:a+b=b+a
加法結合律:a+b+c=a+(b+c)
乘法交換律:a*b=b*a
乘法結合律:a*b*c=a*(b*c)
乘法分配律:a(b+c)=ab+ac
綜合算式(四則運算)應當注意的地方:
1、如果只有加和減或者只有乘和除,從左往右計算,例如:2+1-1=2,先算2+1的得數,2+1的得數再減1。
2、如果一級運算和二級運算,同時有,先算二級運算
3、如果一級,二級,三級運算(即乘方、開方和對數運算)同時有,先算三級運算再算其他兩級。
4、如果有括弧,要先算括弧里的數(不管它是什麼級的,都要先算)。
5、在括弧裡面,也要先算三級,然後到二級、一級。
(4)簡便計算4個方法擴展閱讀:
從加法交換律和結合律可以得到:幾個加數相加,可以任意交換加數的位置;或者先把幾個加數相加再和其他的加數相加,它們的和不變。
幾個數的和減去一個數,可以選其中任一個加數減去這個數,再同其餘的加數相加。幾個數的積除以一個數,可以讓積里的任何一個因數除以這個數,再與其他的因數相乘。
⑤ 簡便運算的方法有哪些
簡便計算是一種特殊的計算,它運用了運算定律與數字的基本性質,從而使計算簡便,使一個很復雜的式子變得很容易計算出得數。
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×56、
除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
⑥ 用簡便方法計算4個
9÷0.125=9÷1/8=9x8=72;
25.25x0.65x4÷0.65=25.25x4x(0.65÷0.65)=(25x4+0.25x4)x1=101x1=101;
0.485x102-48.5=0.485x(100+2)-48.5=48.5+0.97-48.5=0.97;
4.4+4.4x12+13x5.6=4.4x(1+12)+13x5.6=4.4x13+13x5.6=(4.4+5.6)x13=10x13=130.
⑦ 加法的用簡便方法計算4個以上
從前往後加,最快了……
⑧ 四年級簡便運算的技巧和方法是什麼
方法一:帶符號搬家法
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,可以「帶符號搬家」。例如:a+b+c=a+c+b、a×b×c=a×c×b等等。
方法二:去括弧法
在加減運算中去括弧時,括弧前是加號,去掉括弧不變號,括弧前是減號,去掉括弧要變號(原來括弧里的加,現在要變為減;原來是減,現在就要變為加)。
方法三:乘法分配律法
分配法:括弧里是加或減運算,與另一個數相乘,注意分配;提取公因式:注意相同因數的提取;注意構造,讓算式滿足乘法分配律的條件。
方法四:拆分法
拆分法屬於為了方便計算把一個數拆成幾個數,這需要掌握一些「好朋友」,如:2和5,4和5,4和25,8和125等。分拆還要注意不要改變數的大小。
方法五:裂項法
分數裂項是指將分數算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法.常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。
⑨ 四年級簡便計算的方法有哪些
乘法交換率\乘法結合律,加法交換率\加法結合律,,還有部分減法和除法的,用字母表示公式為
A×b×c=a×(b×c)
A×b×c=a×c×b
A+b+c=a+c+b
A+b+c=a+(b+c)
a-b-c=a-(b+c)
a÷b÷c=a÷(b×c)
⑩ 四年級簡便運算的方法四
加法的簡便運算。
加法進行簡便運算運用到的運算定律主要用兩個:加法交換律和加法結合律,當然還有其它靈活處理的方法,其基本原則就是湊十、湊百等,總之進行簡便運算處理後要有利於我們進行口算得出結果。
減法的簡便運算。
減法的簡便運算主要是運用減法的運算性質,即連減兩個數等於減去這兩個數的和。
乘法的簡便運算之一——巧用乘法交換律和乘法結合律進行簡便運算。其基本方法也是通過交換和結合達到湊成整十、整百、整千的數,便於我們口算出結果。
乘法的簡便運算之二——巧用乘法分配律。
對乘法分配律的運用有正用乘法分配律和倒用乘法分配律兩種形式。
乘法的簡便運算之二——乘法分配律的復雜用法。
有些看似不能直接運用乘法分配律的簡便運算題目,需要通過變形處理,才能運用乘法分配律解決問題。
除法的簡便運算。
除法的簡便運算主要是運用除法的運算性質,即一個數連續除以兩個數,等於 除以這兩個數的乘積。