『壹』 什麼是遞歸演算法
遞歸演算法就是一個函數通過不斷對自己的調用而求得最終結果的一種思維巧妙但是開銷很大的演算法。
比如:
漢諾塔的遞歸演算法:
void move(char x,char y){
printf("%c-->%c\n",x,y);
}
void hanoi(int n,char one,char two,char three){
/*將n個盤從one座藉助two座,移到three座*/
if(n==1) move(one,three);
else{
hanoi(n-1,one,three,two);
move(one,three);
hanoi(n-1,two,one,three);
}
}
main(){
int n;
printf("input the number of diskes:");
scanf("%d",&n);
printf("The step to moving %3d diskes:\n",n);
hanoi(n,'A','B','C');
}
我說下遞歸的理解方法
首先:對於遞歸這一類函數,你不要糾結於他是干什麼的,只要知道他的一個模糊功能是什麼就行,等於把他想像成一個能實現某項功能的黑盒子,而不去管它的內部操作先,好,我們來看下漢諾塔是怎麼樣解決的
首先按我上面說的把遞歸函數想像成某個功能的黑盒子,void hanoi(int n,char one,char two,char three); 這個遞歸函數的功能是:能將n個由小到大放置的小長方形從one 位置,經過two位置 移動到three位置。那麼你的主程序要解決的問題是要將m個的"漢諾塊"由A藉助B移動到C,根據我們上面說的漢諾塔的功能,我相信傻子也知道在主函數中寫道:hanoi(m,A,B,C)就能實現將m個塊由A藉助B碼放到C,對吧?所以,mian函數裡面有hanoi(m,'A','C','B');這個調用。
接下來我們看看要實現hannoi的這個功能,hannoi函數應該幹些什麼?
在hannoi函數里有這么三行
hanoi(n-1,one,three,two);
move(one,three);
hanoi(n-1,two,one,three);
同樣以黑盒子的思想看待他,要想把n個塊由A經過B搬到C去,是不是可以分為上面三步呢?
這三部是:第一步將除了最後最長的那一塊以外的n-1塊由one位置經由three搬到two 也就是從A由C搬到B 然後把最下面最長那一塊用move函數把他從A直接搬到C 完事後 第三步再次將剛剛的n-1塊藉助hannoi函數的功能從B由A搬回到C 這樣的三步實習了n塊由A經過B到C這樣一個功能,同樣你不用糾結於hanoi函數到底如何實現這個功能的,只要知道他有這么一個神奇的功能就行
最後:遞歸都有收尾的時候對吧,收尾就是當只有一塊的時候漢諾塔怎麼個玩法呢?很簡單吧,直接把那一塊有Amove到C我們就完成了,所以hanoni這個函數最後還要加上 if(n==1)move(one,three);(當只有一塊時,直接有Amove到C位置就行)這么一個條件就能實現hanoin函數n>=1時將n個塊由A經由B搬到C的完整功能了。
遞歸這個復雜的思想就是這樣簡單解決的,呵呵 不知道你看懂沒?純手打,希望能幫你理解遞歸
總結起來就是不要管遞歸的具體實現細節步驟,只要知道他的功能是什麼,然後利用他自己的功能通過調用他自己去解決自己的功能(好繞口啊,日)最後加上一個極限情況的條件即可,比如上面說的1個的情況。
『貳』 C語言遞歸演算法
本人學c++,c的語法已經淡忘了,但是遞歸不管什麼語言都是一個原理
其實簡單一點來說就像數學裡面的數列的通項公式:
例如一個數列是2,4,6,8,10......
很容易就可以得到通項公式是a[n]=2*n n是大於0的整數
你肯定學過這個數列的另外一種表示方式就是: a[1]=2, a[n]=a[n-1]+2 n是大於1的整數
其實這就是一個遞歸的形式,只要你知道初始項的值,未知項和前幾項之間的關系就可以知道整個數列。
程序例子:比如你要得到第x項的值
普通循環:
for(int i=1; i<=n; i++)
if (i == x)
cout << 2*i; /*cout 相當於 c裡面的printf,就是輸出.*/
遞歸:
int a(int x) {
if (x = 1)
return 2; /* 第一項那肯定是2了,這個也是遞歸的終止條件! */
else return a(x-1)+2; /* 函數自身調用自身是遞歸的一個特色 */
比如x=4,那麼用數學表示就是a(4)=a(3)+2=(a(2)+2)+2=((a(1)+2)+2)+2
其實遞歸方法最接近自然,也是最好思考的一個方法,難點就是把對象建模成遞歸形式,但是好多問題本身就是以遞歸形式出現的。
普通遞歸就是數據結構上的堆棧,先進後出。
例如上面x=4,把a(4)放入棧底,然後放入a(3),然後a(2),a(1),a(1)的值已知,出棧,a(1)=2,a(2)出棧a(2)=a(1)+2=2+2=4,a(3)出棧a(3)=a(2)+2=(a(1)+2)+2=6,a(4)出棧a(4)=a(3)+2=(a(2)+2)+2=((a(1)+2)+2)+2=8
再比如樓上的階乘例子,當n=0 或 1時,0!=1,1!=1,這個是階乘的初始值,也是遞歸的終止條件。然後我們知道n!=n*(n-1)!,當n>1時,這樣我們又有了遞歸形式,又可以以遞歸演算法設計程序了。(樓上已給出譚老的程序,我就不寫了)。
我給出一種優化的遞歸演算法---尾遞歸。
從我給出的第一演算法可以看出,先進棧再出棧,遞歸的效率是很低的。速度上完全比不上迭代(循環)。但是尾遞歸引入了一個新的函數參數,用這個新的函數參數來記錄中間值.
普通遞歸階乘fac(x),就1個x而已,尾遞歸用2個參數fac(x,y),y存放階乘值。
所以譚老的程序就變成
// zysable's tail recursive algorithm of factorial.
int fac(int x, int y) {
if (x == 1)
return y;
else return fac(x-1, y*x);}
int ff(int x) {
if (x == 0)
return 1;
else return fac(x,1);}
對於這個程序我們先看函數ff,函數ff其實是對fac的一個封裝函數,純粹是為了輸入方便設計的,通過調用ff(x)來調用fac(x,1),這里常數1就是當x=1的時候階乘值了,我通過走一遍當x=3時的值即為3!來說明一下。
首先ff(3),x!=0,執行fac(3,1).第一次調用fac,x=3,y=1,x!=1,調用fac(x-1,y*x),新的x=2,y=3*1=3,這里可以看到,y已經累計了一次階乘值了,然後x還是!=1,繼續第三次調用fac(x-1,y*x),新的x=1,y=2*3=6,然後x=1了,返回y的值是6,也就是3!.你會發現這個遞歸更類似於迭代了。事實上我們用了y記錄了普通遞歸時候,出棧的乘積,所以減少了出棧後的步驟,而且現在世界上很多程序員都在倡議用尾遞歸取消循環,因為有些在很多解釋器上尾遞歸比迭代稍微效率一點.
基本所有普通遞歸的問題都可以用尾遞歸來解決。
一個問題以遞歸來解決重要的是你能抽象出問題的遞歸公式,只要遞歸公式有了,你就可以放心大膽的在程序中使用,另外一個重點就是遞歸的終止條件;
其實這個終止條件也是包含在遞歸公式裡面的,就是初始值的定義。英文叫define initial value. 用普通遞歸的時候不要刻意讓自己去人工追蹤程序,查看運行過程,有些時候你會發現你越看越不明白,只要遞歸公式轉化成程序語言正確了,結果必然是正確的。學遞歸的初學者總是想用追蹤程序運行來讓自己來了解遞歸,結果越弄越糊塗。
如果想很清楚的了解遞歸,有種計算機語言叫scheme,完全遞歸的語言,因為沒有循環語句和賦值語句。但是國內人知道的很少,大部分知道是的lisp。
好了,就給你說到這里了,希望你能學好遞歸。
PS:遞歸不要濫用,否則程序極其無效率,要用也用尾遞歸。by 一名在美國的中國程序員zysable。
『叄』 請問運用遞歸關系的三個條件是什麼
1、可以把要解決的問題轉化為一個新問題,而這個新的題的解決方法仍與原來的解決方法相同,只是所處理的對象有規律地遞增或遞減。
2、可以應用這個轉化過程使問題得到解決。
3、必定要有一個明確的結束遞歸的條件。
例如:
public class X {
public static void main(String[] args){
int x =new X(). x(100);
System.out.println(x);
}
//1~n 的累加遞歸
public int x(int n){
return n>1?n+x(--n):n;
}
}
(3)遞歸法的解決方法擴展閱讀
設(a0,a1,...,ar,...)是一個序列,把該序列中的ar和它前面的幾個ai(0≤i<r)關聯起來的方程一個遞歸關系。如關系式:ar=3ar-1(r≥1)和錯排數,Dn=(n-1)(Dn-1+Dn-2) (n=3,4,...),都是遞歸關系。
有時也稱遞歸關系式為差分方程。為了能從遞歸關系式計算出序列的每一項,必須知道序列開始的一個或幾個數,稱這樣的數為初始條件或初始值。
在許多情況下,得到遞歸關系式本身就是朝解決一個計數問題邁了一大步。即使不能從這個遞歸關系式很快地解出它的一般表達式,這也是相當不錯的了。這是因為採取逐步計算的方法可以得到序列各項的值。有些例子說明,沒有遞歸關系,計算的可能性根本就不存在。
『肆』 java中遞歸演算法是什麼怎麼算的
一、遞歸演算法基本思路:
Java遞歸演算法是基於Java語言實現的遞歸演算法。遞歸演算法是一種直接或者間接調用自身函數或者方法的演算法。遞歸演算法實質是把問題分解成規模縮小的同類問題的子問題,然後遞歸調用方法表示問題的解。遞歸往往能給我們帶來非常簡潔非常直觀的代碼形式,從而使我們的編碼大大簡化,然而遞歸的思維確實跟我們的常規思維相逆的,通常都是從上而下的思維問題,而遞歸趨勢從下往上的進行思維。
二、遞歸演算法解決問題的特點:
【1】遞歸就是方法里調用自身。
【2】在使用遞歸策略時,必須有一個明確的遞歸結束條件,稱為遞歸出口。
【3】遞歸演算法代碼顯得很簡潔,但遞歸演算法解題的運行效率較低。所以不提倡用遞歸設計程序。
【4】在遞歸調用的過程中系統為每一層的返回點、局部量等開辟了棧來存儲。遞歸次數過多容易造成棧溢出等,所以一般不提倡用遞歸演算法設計程序。
【5】在做遞歸演算法的時候,一定把握出口,也就是做遞歸演算法必須要有一個明確的遞歸結束條件。這一點是非常重要的。其實這個出口就是一個條件,當滿足了這個條件的時候我們就不再遞歸了。
三、代碼示例:
publicclassFactorial{
//thisisarecursivefunction
intfact(intn){
if(n==1)return1;
returnfact(n-1)*n;
}}
publicclassTestFactorial{publicstaticvoidmain(String[]args){
//TODOAuto-generatedmethodstub
Factorialfactorial=newFactorial();
System.out.println("factorial(5)="+factorial.fact(5));
}
}
代碼執行流程圖如下:
此程序中n=5就是程序的出口。
『伍』 請教高人 遞歸演算法編寫思路技巧
一個子程序(過程或函數)的定義中又直接或間接地調用該子程序本身,稱為遞歸。遞歸是一種非常有用的程序設計方法。用遞歸演算法編寫的程序結構清晰,具有很好的可讀性。遞歸演算法的基本思想是:把規模大的、較難解決的問題變成規模較小的、易解決的同一問題。規模較小的問題又變成規模更小的問題,並且小到一定程度可以直接得出它的解,從而得到原來問題的解。
利用遞歸演算法解題,首先要對問題的以下三個方面進行分析:
一、決定問題規模的參數。需要用遞歸演算法解決的問題,其規模通常都是比較大的,在問題中決定規模大小(或問題復雜程度)的量有哪些?把它們找出來。
二、問題的邊界條件及邊界值。在什麼情況下可以直接得出問題的解?這就是問題的邊界條件及邊界值。
三、解決問題的通式。把規模大的、較難解決的問題變成規模較小、易解決的同一問題,需要通過哪些步驟或等式來實現?這是解決遞歸問題的難點。把這些步驟或等式確定下來。
把以上三個方面分析好之後,就可以在子程序中定義遞歸調用。其一般格式為:
if 邊界條件 1 成立 then
賦予邊界值 1
【 elseif 邊界條件 2 成立 then
賦予邊界值 2
┇ 】
else
調用解決問題的通式
endif
例 1 : 計算勒讓德多項式的值
x 、 n 由鍵盤輸入。
分析: 當 n = 0 或 n = 1 時,多項式的值都可以直接求出來,只是當 n > 1 時,才使問題變得復雜,決定問題復雜程度的參數是 n 。根據題目提供的已知條件,我們也很容易發現,問題的邊界條件及邊界值有兩個,分別是:當 n = 0 時 P n (x) = 1 和當 n = 1 時 P n (x) = x 。解決問題的通式是:
P n (x) = ((2n - 1)P n - 1 (x) - (n - 1)P n - 2 (x)) / n 。
接下來按照上面介紹的一般格式定義遞歸子程序。
function Pnx(n as integer)
if n = 0 then
Pnx = 1
elseif n = 1 then
Pnx = x
else
Pnx = ((2*n - 1)*Pnx(n - 1) - (n - 1)*Pnx(n - 2)) / n
endif
end function
例 2 : Hanoi 塔問題:傳說印度教的主神梵天創造世界時,在印度北部佛教聖地貝拿勒斯聖廟里,安放了一塊黃銅板,板上插著三根寶石針,在其中一根寶石針上,自下而上地放著由大到小的 64 個金盤。這就是所謂的梵塔( Hanoi ),如圖。梵天要求僧侶們堅持不渝地按下面的規則把 64 個盤子移到另一根針上:
(1) 一次只能移一個盤子;
(2) 盤子只許在三根針上存放;
(3) 永遠不許大盤壓小盤。
梵天宣稱,當把他創造世界之時所安放的 64 個盤子全部移到另一根針上時,世界將在一聲霹靂聲中毀滅。那時,他的虔誠的信徒都可以升天。
要求設計一個程序輸出盤子的移動過程。
分析: 為了使問題更具有普遍性,設共有 n 個金盤,並且將金盤由小到大依次編號為 1 , 2 ,…, n 。要把放在 s(source) 針上的 n 個金盤移到目的針 o(objective) 上,當只有一個金盤,即 n = 1 時,問題是比較簡單的,只要將編號為 1 的金盤從 s 針上直接移至 o 針上即可。可定義過程 move(s,1,o) 來實現。只是當 n>1 時,才使問題變得復雜。決定問題規模的參數是金盤的個數 n ;問題的邊界條件及邊界值是:當 n = 1 時, move(s,1,o) 。
當金盤不止一個時,可以把最上面的 n - 1 個金盤看作一個整體。這樣 n 個金盤就分成了兩個部分:上面 n - 1 個金盤和最下面的編號為 n 的金盤。移動金盤的問題就可以分成下面三個子問題(三個步驟):
(1) 藉助 o 針,將 n - 1 個金盤(依照上述法則)從 s 針移至 i(indirect) 針上;
(2) 將編號為 n 的金盤直接從 s 針移至 o 針上;
(3) 藉助 s 針,將 i 針上的 n - 1 個金盤(依照上述法則)移至 o 針上。如圖
其中第二步只移動一個金盤,很容易解決。第一、第三步雖然不能直接解決,但我們已經把移動 n 個金盤的問題變成了移動 n - 1 個金盤的問題,問題的規模變小了。如果再把第一、第三步分別分成類似的三個子問題,移動 n - 1 個金盤的問題還可以變成移動 n - 2 個金盤的問題,同樣可變成移動 n - 3 ,…, 1 個金盤的問題,從而將整個問題加以解決。
這三個步驟就是解決問題的通式,可以以過程的形式把它們定義下來:
hanoi(n - 1,s,o,i)
move(s,n,o)
hanoi(n - 1,i,s,o)
參考程序如下:
declare sub hanoi(n,s,i,o)
declare sub move(s,n,o)
input "How many disks?",n
s = 1
i = 2
o = 3
call hanoi(n,s,i,o)
end
sub hanoi(n,s,i,o)
rem 遞歸子程序
if n = 1 then
call move(s,1,o)
else
call hanoi(n - 1,s,o,i)
call move(s,n,o)
call hanoi(n - 1,i,s,o)
endif
end sub
sub move(s,n,o)
print "move disk";n;
print "from";s;"to";o
end sub
『陸』 遞歸主方法
遞歸的主要方法是什麼?
一、遞歸演算法
遞歸演算法(英語:recursion algorithm)在計算機科學中是指一種通過重復將問題分解為同類的子問題而解決問題的方法。遞歸式方法可以被用於解決很多的計算機科學問題,因此它是計算機科學中十分重要的一個概念。絕大多數編程語言支持函數的自調用,在這些語言中函數可以通過調用自身來進行遞歸。計算理論可以證明遞歸的作用可以完全取代循環,因此在很多函數編程語言(如Scheme)中習慣用遞歸來實現循環。
二、遞歸程序
在支持自調的編程語言中,遞歸可以通過簡單的函數調用來完成,如計算階乘的程序在數學上可以定義為:
這一程序在Scheme語言中可以寫作:
1
(define (factorial n) (if (= n 0) 1 (* n (factorial (- n 1)))))
不動點組合子
即使一個編程語言不支持自調用,如果在這語言中函數是第一類對象(即可以在運行期創建並作為變數處理),遞歸可以通過不動點組合子(英語:Fixed-point combinator)來產生。以下Scheme程序沒有用到自調用,但是利用了一個叫做Z 運算元(英語:Z combinator)的不動點組合子,因此同樣能達到遞歸的目的。
1
(define Z (lambda (f) ((lambda (recur) (f (lambda arg (apply (recur recur) arg)))) (lambda (recur) (f (lambda arg (apply (recur recur) arg)))))))(define fact (Z (lambda (f) (lambda (n) (if (<= n 0) 1 (* n (f (- n 1))))))))
這一程序思路是,既然在這里函數不能調用其自身,我們可以用 Z 組合子應用(application)這個函數後得到的函數再應用需計算的參數。
尾部遞歸
尾部遞歸是指遞歸函數在調用自身後直接傳回其值,而不對其再加運算。尾部遞歸與循環是等價的,而且在一些語言(如Scheme中)可以被優化為循環指令。 因此,在這些語言中尾部遞歸不會佔用調用堆棧空間。以下Scheme程序同樣計算一個數字的階乘,但是使用尾部遞歸:
1
(define (factorial n) (define (iter proct counter) (if (> counter n) proct (iter (* counter proct) (+ counter 1)))) (iter 1 1))
三、能夠解決的問題
數據的定義是按遞歸定義的。如Fibonacci函數。
問題解法按遞歸演算法實現。如Hanoi問題。
數據的結構形式是按遞歸定義的。如二叉樹、廣義表等。
四、遞歸數據
數據類型可以通過遞歸來進行定義,比如一個簡單的遞歸定義為自然數的定義:「一個自然數或等於0,或等於另一個自然數加上1」。Haskell中可以定義鏈表為:
1
data ListOfStrings = EmptyList | Cons String ListOfStrings
這一定義相當於宣告「一個鏈表或是空串列,或是一個鏈表之前加上一個字元串」。可以看出所有鏈表都可以通過這一遞歸定義來達到。
『柒』 遞歸演算法
遞歸演算法
遞歸演算法流程
遞歸過程一般通過函數或子過程來實現。遞歸演算法:在函數或子過程的內部,直接或者間接地調用自己的演算法。
遞歸演算法的特點
遞歸演算法是一種直接或者間接地調用自身的演算法。在計算機編寫程序中,遞歸演算法對解決一大類問題是十分有效的,它往往使演算法的描述簡潔而且易於理解。 遞歸演算法解決問題的特點: (1) 遞歸就是在過程或函數里調用自身。 (2) 在使用遞歸策略時,必須有一個明確的遞歸結束條件,稱為遞歸出口。 (3) 遞歸演算法解題通常顯得很簡潔,但遞歸演算法解題的運行效率較低。所以一般不提倡用遞歸演算法設計程序。 (4) 在遞歸調用的過程當中系統為每一層的返回點、局部量等開辟了棧來存儲。遞歸次數過多容易造成棧溢出等。所以一般不提倡用遞歸演算法設計程序。
遞歸演算法要求
遞歸演算法所體現的「重復」一般有三個要求: 一是每次調用在規模上都有所縮小(通常是減半); 二是相鄰兩次重復之間有緊密的聯系,前一次要為後一次做准備(通常前一次的輸出就作為後一次的輸入); 三是在問題的規模極小時必須用直接給出解答而不再進行遞歸調用,因而每次遞歸調用都是有條件的(以規模未達到直接解答的大小為條件),無條件遞歸調用將會成為死循環而不能正常結束。
舉例
描述:把一個整數按n(2<=n<=20)進製表示出來,並保存在給定字元串中。比如121用二進製表示得到結果為:「1111001」。 參數說明:s: 保存轉換後得到的結果。 n: 待轉換的整數。 b: n進制(2<=n<=20) void numbconv(char *s, int n, int b) { int len; if(n == 0) { strcpy(s, ""); return; } /* figure out first n-1 digits */ numbconv(s, n/b, b); /* add last digit */ len = strlen(s); s[len] = ""[n%b]; s[len+1] = '\0'; } void main(void) { char s[20]; int i, base; FILE *fin, *fout; fin = fopen("palsquare.in", "r"); fout = fopen("palsquare.out", "w"); assert(fin != NULL && fout != NULL); fscanf(fin, "%d", &base); /*PLS set START and END*/ for(i=START; i <= END; i++) { numbconv(s, i*i, base); fprintf(fout, "%s\n", s); } exit(0); }
編輯本段遞歸演算法簡析(PASCAL語言)
遞歸是計算機科學的一個重要概念,遞歸的方法是程序設計中有效的方法,採用遞歸編寫 程序能是程序變得簡潔和清晰.
一 遞歸的概念
1.概念 一個過程(或函數)直接或間接調用自己本身,這種過程(或函數)叫遞歸過程(或函數). 如: procere a; begin . . . a; . . . end; 這種方式是直接調用. 又如: procere c(形參);forward; procere b; 局部說明 begin . . c(實參); . . end; procere c; 局部說明; begin . . b; . . end; 這種方式是間接調用. 例1計算n!可用遞歸公式如下: fac:=n*fac(n-1) {當n>0時} fac(n)={ fac:=1; { 當n=0時} 可編寫程序如下: program facn; var n:integer; function fac(n:integer):real; begin if n=0 then fac:=1 else fac:=n*fac(n-1); end; begin write('n=');readln(n); writeln(n,'!=',fac(n):0:0); end. 例2 樓梯有n階台階,上樓可以一步上1階,也可以一步上2階,編一程序計算共有多少種不同的走法. 設n階台階的走法數為f(n) 顯然有 n=1 f(n)={ f(n-1)+f(n-2) n>2 可編程序如下: program louti; var n:integer; function f(x:integer):integer; begin if x=1 then f:=1 else if x=2 then f:=2 else f:=f(x-1)+f(x-2); end; begin write('n=');read(n); writeln('f(',n,')=',f(n)) end.
二 如何設計遞歸演算法
1.確定遞歸公式 2.確定邊界(終了)條件
三 典型例題
例3 漢諾塔問題 如圖:已知有三根針分別用1,2,3表示,在一號針中從小放n個盤子,現要求把所有的盤子 從1針全部移到3針,移動規則是:使用2針作為過度針,每次只移動一塊盤子,且每根針上 不能出現大盤壓小盤.找出移動次數最小的方案. 程序如下: program hanoi; var n:integer; procere move(n,a,b,c:integer); begin if n=1 then writeln(a,'->',c) else begin move(n-1,a,c,b); writeln(a,'--->',c); move(n-1,b,a,c); end; end; begin write('Enter n='); read(n); move(n,1,2,3); end. 例4 快速排序 快速排序的思想是:先從數據序列中選一個元素,並將序列中所有比該元素小的元素都放到它的右邊或左邊,再對左右兩邊分別用同樣的方法處之直到每一個待處理的序列的長度為1, 處理結束. 程序如下: program kspv; const n=7; type arr=array[1..n] of integer; var a:arr; i:integer; procere quicksort(var b:arr; s,t:integer); var i,j,x,t1:integer; begin i:=s;j:=t;x:=b ; repeat while (b[j]>=x) and (j>i) do j:=j-1; if j>i then begin t1:=b; b:=b[j];b[j]:=t1;end; while (b<=x) and (i<j) do i:=i+1; if i<j then begin t1:=b[j];b[j]:=b;b:=t1; end until i=j; b:=x; i:=i+1;j:=j-1; if s<j then quicksort(b,s,j); if i<t then quicksort(b,i,t); end; begin write('input data:'); for i:=1 to n do read(a); writeln; quicksort(a,1,n); write('output data:'); for i:=1 to n do write(a:6); writeln; end.
編輯本段{遞歸的一般模式}
procere aaa(k:integer); begin if k=1 then (邊界條件及必要操作) else begin aaa(k-1); (重復的操作); end; end;
開放分類:
編程,計算機,演算法
引自:http://ke..com/view/1733593.htm
『捌』 一個遞歸演算法必須包括什麼
一個遞歸演算法必須包括終止條件和遞歸部分。
遞歸演算法在計算機科學中是指一種通過重復將問題分解為同類的子問題而解決問題的方法。
遞歸式方法可以被用於解決很多的計算機科學問題,因此它是計算機科學中十分重要的一個概念。絕大多數編程語言支持函數的自調用,在這些語言中函數可以通過調用自身來進行遞歸。
能夠解決的問題:
數據的定義是按遞歸定義的。如Fibonacci函數。
問題解法按遞歸演算法實現。如Hanoi問題。
數據的結構形式是按遞歸定義的。如二叉樹、廣義表等。