導航:首頁 > 方法技巧 > 快速證明不等式的方法

快速證明不等式的方法

發布時間:2022-02-24 13:51:59

⑴ 放縮法 證明 不等式 快點啊

Sqrt(n)>[Sqrt(n)+Sqrt(n-1)]/2,所以
An=1/Sqrt(n)
<2/[Sqrt(n)+Sqrt(n-1)]
=2[Sqrt(n)-Sqrt(n-1)],
所以
A2+A3+...+An
<2[Sqrt(2)-Sqrt(1)]+2[Sqrt(3)-Sqrt(2)]+...+2[Sqrt(n)-Sqrt(n-1)]
=2Sqrt(n)-2Sqrt(1)
=2Sqrt(n)-2,
而A1=1,所以
Sn=A1+A2+...+An
<1+2Sqrt(n)-2
=2Sqrt(n)-1

⑵ 不等式的證明方法有哪些

1.比較法比較法是證明不等式的最基本、最重要的方法之一,它是兩個實數大小順序和運算性質的直接應用,比較法可分為差值比較法(簡稱為求差法)和商值比較法(簡稱為求商法)。 (1)差值比較法的理論依據是不等式的基本性質:「a-b≥0a≥b;a-b≤0a≤b」。其一般步驟為:①作差:考察不等式左右兩邊構成的差式,將其看作一個整體;②變形:把不等式兩邊的差進行變形,或變形為一個常數,或變形為若干個因式的積,或變形為一個或幾個平方的和等等,其中變形是求差法的關鍵,配方和因式分解是經常使用的變形手段;③判斷:根據已知條件與上述變形結果,判斷不等式兩邊差的正負號,最後肯定所求證不等式成立的結論。應用范圍:當被證的不等式兩端是多項式、分式或對數式時一般使用差值比較法。 (2)商值比較法的理論依據是:「若a,b∈R+,a/b≥1a≥b;a/b≤1a≤b」。其一般步驟為:①作商:將左右兩端作商;②變形:化簡商式到最簡形式;③判斷商與1的大小關系,就是判定商大於1或小於1。應用范圍:當被證的不等式兩端含有冪、指數式時,一般使用商值比較法。 2.綜合法利用已知事實(已知條件、重要不等式或已證明的不等式)作為基礎,藉助不等式的性質和有關定理,經過逐步的邏輯推理,最後推出所要證明的不等式,其特點和思路是「由因導果」,從「已知」看「需知」,逐步推出「結論」。其邏輯關系為:AB1 B2 B3… BnB,即從已知A逐步推演不等式成立的必要條件從而得出結論B。 3.分析法分析法是指從需證的不等式出發,分析這個不等式成立的充分條件,進而轉化為判定那個條件是否具備,其特點和思路是「執果索因」,即從「未知」看「需知」,逐步靠攏「已知」。用分析法證明AB的邏輯關系為:BB1B1 B3 … BnA,書寫的模式是:為了證明命題B成立,只需證明命題B1為真,從而有…,這只需證明B2為真,從而又有…,……這只需證明A為真,而已知A為真,故B必為真。這種證題模式告訴我們,分析法證題是步步尋求上一步成立的充分條件。 4.反證法有些不等式的證明,從正面證不好說清楚,可以從正難則反的角度考慮,即要證明不等式A>B,先假設A≤B,由題設及其它性質,推出矛盾,從而肯定A>B。凡涉及到的證明不等式為否定命題、惟一性命題或含有「至多」、「至少」、「不存在」、「不可能」等詞語時,可以考慮用反證法。 5.換元法換元法是對一些結構比較復雜,變數較多,變數之間的關系不甚明了的不等式可引入一個或多個變數進行代換,以便簡化原有的結構或實現某種轉化與變通,給證明帶來新的啟迪和方法。主要有兩種換元形式。(1)三角代換法:多用於條件不等式的證明,當所給條件較復雜,一個變數不易用另一個變數表示,這時可考慮三角代換,將兩個變數都有同一個參數表示。此法如果運用恰當,可溝通三角與代數的聯系,將復雜的代數問題轉化為三角問題根據具體問題,實施的三角代換方法有:①若x2+y2=1,可設x=cosθ,y=sinθ;②若x2+y2≤1,可設x=rcosθ,y=rsinθ(0≤r≤1);③對於含有的不等式,由於|x|≤1,可設x=cosθ;④若x+y+z=xyz,由tanA+tanB+tanC=tanAtan-BtanC知,可設x=taaA,y=tanB,z=tanC,其中A+B+C=π。(2)增量換元法:在對稱式(任意交換兩個字母,代數式不變)和給定字母順序(如a>b>c等)的不等式,考慮用增量法進行換元,其目的是通過換元達到減元,使問題化難為易,化繁為簡。如a+b=1,可以用a=1-t,b=t或a=1/2+t,b=1/2-t進行換元。 6.放縮法放縮法是要證明不等式A<B成立不容易,而藉助一個或多個中間變數通過適當的放大或縮小達到證明不等式的方法。放縮法證明不等式的理論依據主要有:(1)不等式的傳遞性;(2)等量加不等量為不等量;(3)同分子(分母)異分母(分子)的兩個分式大小的比較。常用的放縮技巧有:①舍掉(或加進)一些項;②在分式中放大或縮小分子或分母;③應用均值不等式進行放縮。 1、比較法(作差法) 在比較兩個實數 和 的大小時,可藉助 的符號來判斷。步驟一般為:作差——變形——判斷(正號、負號、零)。變形時常用的方法有:配方、通分、因式分解、和差化積、應用已知定理、公式等。 例1、已知: , ,求證: 。 證明: ,故得 。 2、分析法(逆推法) 從要證明的結論出發,一步一步地推導,最後達到命題的已知條件(可明顯成立的不等式、已知不等式等),其每一步的推導過程都必須可逆。 例2、求證: 。 證明:要證 ,即證 ,即,,,, ,由此逆推即得 。 3、綜合法 證題時,從已知條件入手,經過逐步的邏輯推導,運用已知的定義、定理、公式等,最終達到要證結論,這是一種常用的方法。 例3、已知: , 同號,求證: 。 證明:因為 , 同號,所以 , ,則 ,即。 4、作商法(作比法) 在證題時,一般在 , 均為正數時,藉助 或 來判斷其大小,步驟一般為:作商——變形——判斷(大於1或小於1)。 例4、設 ,求證: 。 證明:因為 ,所以 , 。而 ,故。 5、反證法 先假設要證明的結論不對,由此經過合理的邏輯推導得出矛盾,從而否定假設,導出結論的正確性,達到證題的目的。 例5、已知 , 是大於1的整數,求證: 。 證明:假設 ,則 ,即 ,故 ,這與已知矛盾,所以 。 6、迭合法(降元法) 把所要證明的結論先分解為幾個較簡單部分,分別證明其各部分成立,再利用同向不等式相加或相乘的性質,使原不等式獲證。 例6、已知: , ,求證: 。 證明:因為 ,, 所以, 。 由柯西不等式 ,所以原不等式獲證。 7、放縮法(增減法、加強不等式法) 在證題過程中,根據不等式的傳遞性,常採用捨去一些正項(或負項)而使不等式的各項之和變小(或變大),或把和(或積)里的各項換以較大(或較小)的數,或在分式中擴大(或縮小)分式中的分子(或分母),從而達到證明的目的。值得注意的是「放」、「縮」得當,不要過頭。常用方法為:改變分子(分母)放縮法、拆補放縮法、編組放縮法、尋找「中介量」放縮法。 例7、求證: 。 證明:令 ,則 , 所以。 8、數學歸納法 對於含有 的不等式,當 取第一個值時不等式成立,如果使不等式在 時成立的假設下,還能證明不等式在 時也成立,那麼肯定這個不等式對 取第一個值以後的自然數都能成立。 例8、已知: ,, ,求證: 。 證明:(1)當時, ,不等式成立; (2)若時, 成立,則 =, 即 成立。 根據(1)、(2), 對於大於1的自然數 都成立。 9、換元法 在證題過程中,以變數代換的方法,選擇適當的輔助未知數,使問題的證明達到簡化。 例9、已知: ,求證: 。 證明:設, ,則, (因為 ,), 所以。

⑶ 數學分析中證明不等式的最常用方法有哪些

數學分析中證明不等式是核心問題。太少的篇幅講不清諸方法。有專門的不等式專著可以參考。證明方法原則上會有許多創新。但熟悉一些基本不等式並善於應用是捷徑。如cauchy不等式、holder不等式、jason不等式等等。

⑷ 不等式證明有哪些方法

利用函數單調性、 放縮法、綜合法與分析法使用、lagrange公式法、泰勒公式法、詹森不等式法、常見不等式的運用,比如均值不等式、幾何法,比如三角形任意兩之邊和大於第三邊等常見不等式(向量中也出現過一些不等式)、

⑸ 證明不等式都有那些方法

不等式的證明
1.比較法
作差作商後的式子變形,判斷正負或與1比較大小
作差比較法-----要證明a>b,只要證明a-b>0.
作商比較法---已知a,b都是正數,要證明a>b,只要證明a/b>1
例1 求證:x2+3>3x
證明:∵(x2+3)-3x=x2-3x+()2-()2+3
=+≥>0
∴ x2+3>3x
例2 已知a,b R+,並且a≠b,求證
a5+b5>a3b2+a2b3
證明:(a5+b5)-(a3b2+a2b3)=(a5-a3b2)-(a2b3-b5)
=a3(a2-b2)-b3(a2-b2)=(a2-b2)(a3-b3)
=(a+b)(a-b)2(a2+ab+b2)
∵ a,b R+
∴ a+b>0, a2+ab+b2>0
又因為a≠b,所以(a-b)2>0
∴ (a+b)(a-b)2(a2+ab+b2)>0
即 (a5+b5)-(a3b2+a2b3)>0
∴ a5+b5>a3b2+a2b3
例3 已知a,b R+,求證:aabb≥abba
證明: =
∵a,b R+,當a>b時,>1,a-b>0,>1;
當a≤b時,≤1,a-b≤0, ≥1.
∴ ≥1, 即aabb≥abba
綜合法
了解算術平均數和幾何平均數的概念,能用平均不等式證明其它一些不等式
定理1 如果a,b R,那麼a2+b2≥2ab(當且僅當a=b時取"="號)
證明:a2+b2-2ab=(a-b)2≥0
當且僅當a=b時取等號.所以
a2+b2≥2ab(當且僅當a=b時取等號).
定理2 如果a,b,c R+,那麼a3+b3+c3≥3abc(當且僅當a=b=c時取"="號)
證明:∵a3+b3+c3-3abc
=(a+b)3+c3-3a2b-3ab2-3abc
=(a+b+c)(a2+b2+c2-ab-bc-ac)
=(a+b+c)[(a-b)2+(b-c)2+(a-c)2]≥0
∴ a3+b3+c3≥3abc,
很明顯,當且僅當a=b=c時取等號.
例1 已知a,b,c是不全等的正數,求證
a(a2+b2)+b(a2+c2)+c(a2+b2)>6abc.
放縮法
這也是分析法的一種特殊情況,它的根據是不等式的傳遞性—
a≤b,b≤c,則a≤c,只要證明"大於或等於a的"b≤c就行了.
例,證明當k是大於1的整數時,,
我們可以用放縮法的一支——"逐步放大法",證明如下:

分析法
從要證明的不等式出發,尋找使這個不等式成立的某一"充分的"條件,為此逐步往前追溯(執果索因),一直追溯到已知條件或一些真命題為止.例如要證a2+b2≥2ab我們通過分析知道,使a2+b2≥2ab成立的某一"充分的"條件是a2-2ab+b2≥0,即(a-b)2≥0就行了.由於是真命題,所以a2+b2≥2ab成立.分析法的證明過程表現為一連串的"要證……,只要證……",最後推至已知條件或真命題
例 求證:
證明:
構造圖形證明不等式
例:已知a,b,c都是正數,求證:
+>
分析與證明:觀察原不等式中含有a2+ab+b2即a2+b2+ab的形式,聯想到餘弦定理:c2=a2+b2-2ab CosC,為了得到a2+b2+ab的形式,只要C=120°,
這樣:可以看成a,b為鄰邊,夾角為120°的的三角形的第三邊
可以看成b,c為鄰邊,夾角為120°的的三角形的第三邊
可以看成a,c為鄰邊,夾角為120°的的三角形的第三邊
構造圖形如下,
AB=,
BC=,
AC=
顯然AB+BC>AC,故原不等式成立.
數形結合法
數形結合是指通過數與形之間的對應轉化來解決問題.數量關系如果藉助於圖形性質,可以使許多抽象概念和關系直觀而形象,有利於解題途徑的探求,這通常為以形助數;而有些涉及圖形的問題如能轉化為數量關系的研究,又可獲得簡捷而一般化的解法,即所謂的以數解形.數形結合的思想,其實質是將抽象的數學語言與直觀的圖形結合起來,使抽象思維和形象思維結合,通過對圖形的認識,數形的轉化,可以培養思維的靈活性,形象性.通過數形結合,可以使復雜問題簡單化,抽象問題具體化.
例.證明,當x>5時,≤x-2
解:令y1=, y2=x-2, 從而原不等式的解集就是使函數y1>y2的x的取值范圍.在同一坐標系中分別作出兩個函數的圖象.設它們交點的橫坐標是x0, 則=x0-2>0.解之,得x0=5或x0=1(舍).根據圖形,很顯然成立.
反證法
先假定要證不等式的反面成立,然後推出與已知條件(或已知真命題)和矛盾的結論,從而斷定反證假定錯誤,因而要證不等式成立.
窮舉法
對要證不等式按已知條件分成各種情況,加以證明(防止重復或遺漏某一可能情況).
注意:在證明不等式時,應靈活運用上述方法,並可通過運用多種方法來提高自己的思維能力.

⑹ 高數中用來證明不等式的方法都有哪些

高數證明不等式的方法確如樓上所說.
而用初等數學證明不等式,特別是代數不等式,無論是技巧性還是是靈活性,都比高數方法強得多!
按我自己的體會,常用的有:
(1)作差比較法.
(2)作商比較法.
(3)公式法.
(4)放縮法.
(5)分析法.
(6)歸納猜想、數學歸納法.
(7)換元法.
(8)構造.構造函數、復數、向量、數列等.
(9)反證法.
(10)綜合法,即由因導果法.
(11)函數單調性法.
(12)凸函數法.
(13)局部不等式法.
(14)增量代換法.
(15)磨光變換法.
(16)導數法.
(17)重要不等式法.如:
基本不等式;
柯西不等式;
赫爾德不等式;
排序不等式;
權方和不等式;
舒爾不等式;
貝努利不等式;
母不等式;
卡爾松不等式;
… …
等等。

⑺ 高中數學不等式證明的八種方法

不等式證明知識概要

河北/趙春祥

不等式的證明問題,由於題型多變、方法多樣、技巧性強,加上無固定的規律可循,往往不是用一種方法就能解決的,它是多種方法的靈活運用,也是各種思想方法的集中體現,因此難度較大。解決這個問題的途徑在於熟練掌握不等式的性質和一些基本不等式,靈活運用常用的證明方法。

一、要點精析

1.比較法比較法是證明不等式的最基本、最重要的方法之一,它是兩個實數大小順序和運算性質的直接應用,比較法可分為差值比較法(簡稱為求差法)和商值比較法(簡稱為求商法)。

(1)差值比較法的理論依據是不等式的基本性質:「a-b≥0a≥b;a-b≤0a≤b」。其一般步驟為:①作差:考察不等式左右兩邊構成的差式,將其看作一個整體;②變形:把不等式兩邊的差進行變形,或變形為一個常數,或變形為若干個因式的積,或變形為一個或幾個平方的和等等,其中變形是求差法的關鍵,配方和因式分解是經常使用的變形手段;③判斷:根據已知條件與上述變形結果,判斷不等式兩邊差的正負號,最後肯定所求證不等式成立的結論。應用范圍:當被證的不等式兩端是多項式、分式或對數式時一般使用差值比較法。

(2)商值比較法的理論依據是:「若a,b∈R+,a/b≥1a≥b;a/b≤1a≤b」。其一般步驟為:①作商:將左右兩端作商;②變形:化簡商式到最簡形式;③判斷商與1的大小關系,就是判定商大於1或小於1。應用范圍:當被證的不等式兩端含有冪、指數式時,一般使用商值比較法。

2.綜合法利用已知事實(已知條件、重要不等式或已證明的不等式)作為基礎,藉助不等式的性質和有關定理,經過逐步的邏輯推理,最後推出所要證明的不等式,其特點和思路是「由因導果」,從「已知」看「需知」,逐步推出「結論」。其邏輯關系為:AB1 B2 B3… BnB,即從已知A逐步推演不等式成立的必要條件從而得出結論B。

3.分析法分析法是指從需證的不等式出發,分析這個不等式成立的充分條件,進而轉化為判定那個條件是否具備,其特點和思路是「執果索因」,即從「未知」看「需知」,逐步靠攏「已知」。用分析法證明AB的邏輯關系為:BB1B1 B3 … BnA,書寫的模式是:為了證明命題B成立,只需證明命題B1為真,從而有…,這只需證明B2為真,從而又有…,……這只需證明A為真,而已知A為真,故B必為真。這種證題模式告訴我們,分析法證題是步步尋求上一步成立的充分條件。

4.反證法有些不等式的證明,從正面證不好說清楚,可以從正難則反的角度考慮,即要證明不等式A>B,先假設A≤B,由題設及其它性質,推出矛盾,從而肯定A>B。凡涉及到的證明不等式為否定命題、惟一性命題或含有「至多」、「至少」、「不存在」、「不可能」等詞語時,可以考慮用反證法。

5.換元法換元法是對一些結構比較復雜,變數較多,變數之間的關系不甚明了的不等式可引入一個或多個變數進行代換,以便簡化原有的結構或實現某種轉化與變通,給證明帶來新的啟迪和方法。主要有兩種換元形式。(1)三角代換法:多用於條件不等式的證明,當所給條件較復雜,一個變數不易用另一個變數表示,這時可考慮三角代換,將兩個變數都有同一個參數表示。此法如果運用恰當,可溝通三角與代數的聯系,將復雜的代數問題轉化為三角問題根據具體問題,實施的三角代換方法有:①若x2+y2=1,可設x=cosθ,y=sinθ;②若x2+y2≤1,可設x=rcosθ,y=rsinθ(0≤r≤1);③對於含有的不等式,由於|x|≤1,可設x=cosθ;④若x+y+z=xyz,由tanA+tanB+tanC=tanAtan-BtanC知,可設x=taaA,y=tanB,z=tanC,其中A+B+C=π。(2)增量換元法:在對稱式(任意交換兩個字母,代數式不變)和給定字母順序(如a>b>c等)的不等式,考慮用增量法進行換元,其目的是通過換元達到減元,使問題化難為易,化繁為簡。如a+b=1,可以用a=1-t,b=t或a=1/2+t,b=1/2-t進行換元。

6.放縮法放縮法是要證明不等式A<B成立不容易,而藉助一個或多個中間變數通過適當的放大或縮小達到證明不等式的方法。放縮法證明不等式的理論依據主要有:(1)不等式的傳遞性;(2)等量加不等量為不等量;(3)同分子(分母)異分母(分子)的兩個分式大小的比較。常用的放縮技巧有:①舍掉(或加進)一些項;②在分式中放大或縮小分子或分母;③應用均值不等式進行放縮。

二、難點突破

1.在用商值比較法證明不等式時,要注意分母的正、負號,以確定不等號的方向。

2.分析法與綜合法是對立統一的兩個方面,前者執果索因,利於思考,因為它方向明確,思路自然,易於掌握;後者是由因導果,宜於表述,因為它條理清晰,形式簡潔,適合人們的思維習慣。但是,用分析法探求證明不等式,只是一種重要的探求方式,而不是一種好的書寫形式,因為它敘述較繁,如果把「只需證明」等字眼不寫,就成了錯誤。而用綜合法書寫的形式,它掩蓋了分析、探索的過程。因而證明不等式時,分析法、綜合法常常是不能分離的。如果使用綜合法證明不等式,難以入手時常用分析法探索證題的途徑,之後用綜合法形式寫出它的證明過程,以適應人們習慣的思維規律。還有的不等式證明難度較大,需一邊分析,一邊綜合,實現兩頭往中間靠以達到證題的目的。這充分表明分析與綜合之間互為前提、互相滲透、互相轉化的辯證統一關系。分析的終點是綜合的起點,綜合的終點又成為進一步分析的起點。

3.分析法證明過程中的每一步不一定「步步可逆」,也沒有必要要求「步步可逆」,因為這時僅需尋找充分條件,而不是充要條件。如果非要「步步可逆」,則限制了分析法解決問題的范圍,使得分析法只能使用於證明等價命題了。用分析法證明問題時,一定要恰當地用好「要證」、「只需證」、「即證」、「也即證」等詞語。

4.反證法證明不等式時,必須要將命題結論的反面的各種情形一一加以導出矛盾。

5.在三角換元中,由於已知條件的限製作用,可能對引入的角有一定的限制,應引起高度重視,否則可能會出現錯誤的結果。這是換元法的重點,也是難點,且要注意整體思想的應用。

6.運用放縮法證明不等式時要把握好「放縮」的尺度,即要恰當、適度,否則將達不到預期的目的,或得出錯誤的結論。另外,是分組分別放縮還是單個對應放縮,是部分放縮還是整體放縮,都要根據不等式的結構特點掌握清楚。

(摘自:《考試報·高二數學版》2004年/07月/20日)

1、比較法(作差法)
在比較兩個實數 和 的大小時,可藉助 的符號來判斷。步驟一般為:作差——變形——判斷(正號、負號、零)。變形時常用的方法有:配方、通分、因式分解、和差化積、應用已知定理、公式等。
例1、已知: , ,求證: 。
證明: ,故得 。
2、分析法(逆推法)
從要證明的結論出發,一步一步地推導,最後達到命題的已知條件(可明顯成立的不等式、已知不等式等),其每一步的推導過程都必須可逆。
例2、求證: 。
證明:要證 ,即證 ,即 , , , , ,由此逆推即得 。
3、綜合法
證題時,從已知條件入手,經過逐步的邏輯推導,運用已知的定義、定理、公式等,最終達到要證結論,這是一種常用的方法。
例3、已知: , 同號,求證: 。
證明:因為 , 同號,所以 , ,則 ,即 。
4、作商法(作比法)
在證題時,一般在 , 均為正數時,藉助 或 來判斷其大小,步驟一般為:作商——變形——判斷(大於1或小於1)。
例4、設 ,求證: 。
證明:因為 ,所以 , 。而 ,故 。
5、反證法
先假設要證明的結論不對,由此經過合理的邏輯推導得出矛盾,從而否定假設,導出結論的正確性,達到證題的目的。
例5、已知 , 是大於1的整數,求證: 。
證明:假設 ,則 ,即 ,故 ,這與已知矛盾,所以 。
6、迭合法(降元法)
把所要證明的結論先分解為幾個較簡單部分,分別證明其各部分成立,再利用同向不等式相加或相乘的性質,使原不等式獲證。
例6、已知: , ,求證: 。
證明:因為 , ,
所以 , 。
由柯西不等式
,所以原不等式獲證。
7、放縮法(增減法、加強不等式法)
在證題過程中,根據不等式的傳遞性,常採用捨去一些正項(或負項)而使不等式的各項之和變小(或變大),或把和(或積)里的各項換以較大(或較小)的數,或在分式中擴大(或縮小)分式中的分子(或分母),從而達到證明的目的。值得注意的是「放」、「縮」得當,不要過頭。常用方法為:改變分子(分母)放縮法、拆補放縮法、編組放縮法、尋找「中介量」放縮法。
例7、求證: 。
證明:令 ,則

所以 。
8、數學歸納法
對於含有 的不等式,當 取第一個值時不等式成立,如果使不等式在 時成立的假設下,還能證明不等式在 時也成立,那麼肯定這個不等式對 取第一個值以後的自然數都能成立。
例8、已知: , , ,求證: 。
證明:(1)當 時, ,不等式成立;
(2)若 時, 成立,則

= ,
即 成立。
根據(1)、(2), 對於大於1的自然數 都成立。
9、換元法
在證題過程中,以變數代換的方法,選擇適當的輔助未知數,使問題的證明達到簡化。
例9、已知: ,求證: 。
證明:設 , ,則 ,

(因為 , ),
所以 。
10、三角代換法
藉助三角變換,在證題中可使某些問題變易。
例10、已知: , ,求證: 。
證明:設 ,則 ;設 ,則
所以 。
11、判別式法
通過構造一元二次方程,利用關於某一變元的二次三項式有實根時判別式的取值范圍,來證明所要證明的不等式。
例11、設 ,且 ,求證: 。
證明:設 ,則
代入 中得 ,即
因為 , ,所以 ,即 ,
解得 ,故 。
12、標准化法
形如 的函數,其中 ,且
為常數,則當 的值之間越接近時, 的值越大(或不變);當 時, 取最大值,即

標准化定理:當A+B為常數時,有 。
證明:記A+B=C,則

求導得 ,由 得C=2A,即A=B
又由 知 的極大值點必在A=B時取得
由於當A=B時, ,故得不等式。
同理,可推廣到關於 個變元的情形。
例12、設A,B,C為三角形的三內角,求證: 。
證明:由標准化定理得,當A=B=C時, ,取最大值 ,故 。
13、等式法
應用一些等式的結論,可以巧妙地給出一些難以證明的不等式的證明。
例13(1956年波蘭數學競賽題)、 為 的三邊長,求證:

證明:由海倫公式 ,
其中 。
兩邊平方,移項整理得

而 ,所以 。
14、函數極值法
通過變換,把某些問題歸納為求函數的極值,達到證明不等式的目的。
例14、設 ,求證: 。
證明:
當 時, 取最大值 ;
當 時, 取最小值-4。
故 。
15、單調函數法
當 屬於某區間,有 ,則 單調上升;若 ,則 單調下降。推廣之,若證 ,只須證 及 即可, 。
例15、 ,求證: 。
證明:當 時, ,而

故得 。
16、中值定理法
利用中值定理: 是在區間 上有定義的連續函數,且可導,則存在 , ,滿足 來證明某些不等式,達到簡便的目的。
例16、求證: 。
證明:設 ,則
故 。
17、分解法
按照一定的法則,把一個數或式分解為幾個數或式,使復雜問題轉化為簡單易解的基本問題,以便分而治之,各個擊破,從而達到證明不等式的目的。
例17、 ,且 ,求證: 。
證明:因為

所以 。
18、構造法
在證明不等式時,有時通過構造某種模型、函數、恆等式、復數等,可以達到簡捷、明快、以巧取勝的目的。
例18、已知: , ,求證: 。
證明:依題設,構造復數 , ,則 ,
所以

故 。
19、排序法
利用排序不等式來證明某些不等式。
排序不等式:設 , ,則有
,其中 是 的一個排列。當且僅當 或 時取等號。
簡記作:反序和 亂序和 同序和。
例19、求證: 。
證明:因為 有序,所以根據排序不等式同序和最大,即 。
20、幾何法
藉助幾何圖形,運用幾何或三角知識可使某些證明變易。
例20、已知: ,且 ,求證: 。
證明:以 為斜邊, 為直角邊作
延長AB至D,使 ,延長AC至E,使 ,過C作AD的平行線交DE於F,則 ∽ ,令 ,
所以
又 ,即 ,所以 。

另外,還可以利用重要的不等式來證題,如平均不等式、柯西(Cauchy)不等式、琴生(Jensen)不等式、絕對值不等式、貝努利(J.Bernoulli)不等式、赫爾德(O.HÖlder)不等式、三角形不等式、閔可夫斯基(H.Minkowski)不等式等,這里不再煩述了。
在實際證明中,以上方法往往相互結合、互相包含,證題時,可能同時運用幾種方法,結合起來加以證明。

參考文獻
[1]李玉琪主編•初等代數研究•北京:中國礦業大學出版社,1993
[2]方初寶等編•數學猜想法淺談•重慶:科技文獻出版社重慶分社,1988
[3]吳德風•不等式與線性規劃初步•北京:科學普及出版社,1983

⑻ 高數,證明不等式都有哪些方法

一:假設證明fx<gx
解:令Fx=fx-gx,對Fx求導,得到Fx的單調性,再求一次極限得到Fx的符號,就證明完畢了。(如果一階導看不出來,就求二階導,然後得到一階導的單調性,通過極限得知一階導的符號。)

二:構造函數 ,例如證明a的b次<b的a次
解:原式=b*lna<a*lnb=a/lna<b/lnb,構造函數fx=lnx/x

⑼ 不等式證明的常用方法

不等式的證明的常用方法,一般來說你都可以使用縮放的一種方法,或者是用一些不等式公式進行證明。

⑽ 不等式的證明方法

假設a+b>2,則
a³+b³=(a+b)(a^2+b^2-ab)>
(a+b)(a^2+b^2-(a^2+b^2)/2)>
(a+b)(a^2+b^2)/2)>2
與原題矛盾,假設不成立。
a+b≤2

令x=2cosx,y=2sinx
則:2x+3y=2*(2cosx+3siny)=2根號(2^2+3^2)sin(x+θ)
則取值范圍為[-2根號13,2根號13]

(a/a+b+d)>a/(a+b+c+d)
(b/b+c+a)>b/(a+b+c+d)
(c/c+d+b)>c/(a+b+c+d)
(d/d+a+c)>d/(a+b+c+d)
兩邊相加
則(a/a+b+d)+(b/b+c+a)+(c/c+d+b)+(d/d+a+c)>1

(a/a+b+d)<a/(a+b)
(b/b+c+a)<b/(a+b)
則兩邊相加(a/a+b+d)+(b/b+c+a)<1
同理
(c/c+d+b)<c/(c+d)
(d/d+a+c)<d/(c+d)
則(c/c+d+b)+(d/d+a+c)<1
則兩式相加
(a/a+b+d)+(b/b+c+a)+(c/c+d+b)+(d/d+a+c)<2

令y=(x²+x+1)/(x²+1)
移項,整理
(y-1)x^2-x+y-1=0
顯然,方程有解,則
△=1-4(y-1)^2>=0
則:1/2<=y<=3/2

閱讀全文

與快速證明不等式的方法相關的資料

熱點內容
機動車牌正確安裝方法 瀏覽:418
防盜門的安裝方法 瀏覽:508
剪映的學習方法在剪映哪裡 瀏覽:724
快速製作葡萄酒的方法步驟 瀏覽:438
ipad連接pencil方法 瀏覽:903
鳥籠製作方法視頻 瀏覽:478
用什麼好方法提高成績 瀏覽:974
古玩銅錢鑒別方法 瀏覽:145
薪酬設計製作方法和步驟 瀏覽:503
胸大肌下束訓練方法雙杠 瀏覽:200
如何建立自強的方法有哪些 瀏覽:688
大眾天線安裝方法 瀏覽:52
社會學研究方法pps 瀏覽:848
路亞鉤綁方法圖片 瀏覽:890
測量水的方法和工具 瀏覽:35
水帶掛鉤使用方法 瀏覽:485
孩子不肯背誦換一種方法就能解決 瀏覽:849
如何消除設備靜電的幾個方法 瀏覽:723
木蝴蝶的食用方法 瀏覽:692
巴金的閱讀方法是什麼 瀏覽:793