① 平方怎麼快速計算
平方想要快速計算的話,可以直接這個數乘以這個數,進行豎式計算的乘法運算得到答案。
② 平方怎麼算
平方是一種運算,比如,a的平方表示a×a,簡寫成a²,也可寫成a×a(a的一次方乘a的一次方等於a的2次方),例如4×4=16,8×8=64,平方符號為2。
副標題回答:
平方=長*寬=130cm*80cm=10400cm*cm
{圓形(正圓)面積=圓周率×半徑×半徑}
舉例:
長方形的面積公式是長乘寬等於的就是面積,面積的單位是平方,不是你說的平方面積。
例如:長方形的長和寬分別是8米和5米,長方形的面積是:8米*5米=40(平方米)。
單位換算:1 ㎡(1平方米)= 100 dm²(100平方分米)=10000 cm²(10000平方厘米)=1000000 mm²(1000000平方毫米)= 0.0001公頃=0.000001km² (0.000001平方公里)= 0.01公畝=0.0002471054英畝=0.0000003861平方英里=10.763910417平方英尺=0.0015畝
③ 如何快速求一個數平方的方法
1、求任意一個兩位數的平方
方法:先把這個數看成 5 的倍數與一個小於 5 的數的和(或差)的形式,再用這兩個數的平方和加上(或減去)這兩個數的積的 2 倍。
2、求任意一個兩位數的平方
方法:用這個數加上它的個位數的補數的和乘以它們的差,再用這個積加上這個補數的平方。
3、求一千零幾的平方
方法:先寫上這個數加上個位數的 2 倍的和,再寫上一個 0,最後寫上個位數的平方(個位數的平方小於 10,就在它前面補一個 0)。
4、求九百九十幾的平方
方法:先寫上 1000 減去這個數的補數的 2 倍的差,再寫一個 0,最後寫上補數的平方(補數的平方小於 10,就在它前面補一個 0)。
5、求末兩位是 25 的數的平方
方法:用十位前面的數乘以在它後面添上 5 的數,在積後添上 625。
(3)平方速算方法和技巧擴展閱讀:
關於的平方故事
相傳印度有位外來的大臣跟國王下棋,國王輸了,就答應滿足他一個要求:在棋盤上放米粒。第一格放1粒,第二格放2粒,然後是4粒,8粒,16粒…直到放到64格。國王哈哈大笑,認為他很傻,以為只要這么一點米。
按照大臣的要求,放滿64個格,需米 2的64次方間1粒。這個數是18446744073709551615,是二十位的數字。這些米別說傾空國庫,就是整個印度,甚至全世界的米,都無法滿足這個大臣的要求!
④ 一平方怎麼算出來的
平方是面積單位,不同圖形面積計算方法不一樣,長方形面積等於長乘寬。
以1平方米為例,1平方米等於100平方分米。
計算方法:1米=10分米,1平方米=1米×1米=10分米×10分米=100平方分米。
平方米(m²,英文:square meter),是面積的公制單位。定義為邊長為1米的正方形的面積。在生活中平方米通常簡稱為「平米」或「平方」。平方分米(符號為dm²)是面積的公制單位(SI Unit),其定義是「邊長為1分米的正方形的面積」。
房子的面積分為套內面積、建築面積和公攤面積三個部分組成
套內面積就是指使用面積,也可以理解為室內面積,用牆壁作為分割線,套內面積包括了牆體的面積和陽檯面積。毛坯房還沒裝修之前,裡面的格局和牆全部加上去就是套內面積。
房子的使用面積包括了房屋內的卧室、客廳、廚房、起居室、過道、陽台、夾層、閣樓、地下室等面積的總和。
⑤ 平方面積怎麼算的啊,我想用面積算出平方該怎麼算
用面積算出平方的方法如下:
1、長方形由長與寬構成,其面積公式為S=a X b,其中S為長方形面積,a為長方形的長,b為長方形的寬。
2、正方形由四條邊構成,四條邊相等,其面積公式為S=a2,其中S為正方形面積,a為正方形邊長。
3、平行四邊形是由兩組平行線段組成的閉合圖形。其面積公式為S=a X h,其中S為平行四邊形面積,a為平行四邊形的底長,h為平行四邊形的高。
面積公式,其中包括長方形面積公式、正方形面積公式、扇形面積公式,圓形面積公式,弓形面積公式,菱形面積公式,三角形面積公式,梯形面積公式等多種圖形的面積公式。
(5)平方速算方法和技巧擴展閱讀:
面積可以通過將固定尺寸的形狀與正方形進行比較來測量形狀的面積。在國際單位制(SI)中,標准單位面積為平方米(平方米),面積為一米長的正方形面積,面積為三平方米的形狀將與三個這樣的廣場相同。
在數學中,單位正方形被定義為具有區域1,任何其他形狀或表面的面積都是無量綱實數。有幾種眾所周知的簡單形狀的公式,如三角形,矩形和圓形。使用這些公式,可以通過將多邊形分成三角形來找到任何多邊形的面積。
對於具有彎曲邊界的形狀,通常需要微積分來計算面積。事實上,確定飛機數字面積的問題是演算歷史發展的主要動機。如球體、錐體或圓柱體的實體形狀,其邊界面的面積被稱為表面積,簡單形狀的表面區域的公式由古希臘人計算,但計算更復雜形狀的表面積通常需要多變數微積分。
⑥ 平方怎麼算公式是什麼
平方是一種運算,比如,a的平方表示a×a,簡寫成a²,也可寫成a×a(a的一次方乘a的一次方等於a的2次方),例如4×4=16,8×8=64,平方符號為2。
副標題回答:
平方=長*寬=130cm*80cm=10400cm*cm
{圓形(正圓)面積=圓周率×半徑×半徑}
舉例:
長方形的面積公式是長乘寬等於的就是面積,面積的單位是平方,不是你說的平方面積。
例如:長方形的長和寬分別是8米和5米,長方形的面積是:8米*5米=40(平方米)。
單位換算:1 ㎡(1平方米)= 100 dm²(100平方分米)=10000 cm²(10000平方厘米)=1000000 mm²(1000000平方毫米)= 0.0001公頃=0.000001km² (0.000001平方公里)= 0.01公畝=0.0002471054英畝=0.0000003861平方英里=10.763910417平方英尺=0.0015畝
⑦ 平方是怎麼算的
1、算面積:
在生活中平方米通常簡稱為「平米」或「平方」。1平方即1平方米=1米x1米。
例如:長306.5cm, 寬346.5cm 的房間面積為10.620225平方米。
解:面積S=長x寬=306.5厘米x346.5厘米=3.065米x3.465米=10.620225平方米。
2、一個數的平方:
a的平方表示a×a,簡寫成a²,也可寫成a×a(a的一次方乘a的一次方等於a的2次方)。
例如:4×4=16,8×8=64,平方符號為²。
粒。這個數是18446744073709551615,是二十位的數字。這些米別說傾空國庫,就是整個印度,甚至全世界的米,都無法滿足這個大臣的要求。
⑧ 算平方的最快方法
具體如下:
1、求任意一個兩位數的平方
方法:先把這個數看成 5 的倍數與一個小於 5 的數的和(或差)的形式,再用這兩個數的平方和加上(或減去)這兩個數的積的 2 倍。
2、求任意一個兩位數的平方
方法:用這個數加上它的個位數的補數的和乘以它們的差,再用這個積加上這個補數的平方。
3、求一千零幾的平方
方法:先寫上這個數加上個位數的 2 倍的和,再寫上一個 0,最後寫上個位數的平方(個位數的平方小於 10,就在它前面補一個 0)。
注意事項:
1、平方米(㎡,英文:square meter),是面積的公制單位。在生活中平方米通常簡稱為「平米」或「平方」。港台地區則稱為「平方公尺」。
2、平方米的單位換算:
1 ㎡(1平方米)= 100 dm²(100平方分米)=10000 cm²(10000平方厘米)=1000000 mm²(1000000平方毫米)= 0.0001公頃=0.000001km² (0.000001平方公里)= 0.01公畝=0.0002471054英畝=0.0000003861平方英里=10.763910417平方英尺=0.0015畝。
⑨ 平方米怎麼算的
1平方米=1米x1米。
則長306.5cm, 寬346.5cm 的房間面積為10.620225平方米。解法如下:
解:面積S=長x寬=306.5厘米x346.5厘米
=3.065米x3.465米
=10.620225平方米
(9)平方速算方法和技巧擴展閱讀:
1、表示面積的單位有平方米、平方分米、平方厘米。其相互之間的換算關系為:
1平方米=100平方分米=10000平方厘米
1平方厘米=0.01平方分米=0.0001平方米
2、常見圖形的面積公式
(1)長方形面積S=長x寬
(2)正方形面積S=邊長x邊長
參考資料來源:網路-平方米
⑩ 求背平方的技巧
多科學家背平方運用自如,如愛因斯坦、陳景潤、鮑萊爾等。每周文摘曾報道,印度小學生要求背二位數平方表。其實背熟二位數平方表並不難,只要掌握了以下速算的方法,通過心算和背讀,多練習,就能較快地背熟二位數的平方,甚至一口說出二位數的平方數。背平方學速算,不但算得快,又能增強思維能力和提高智力。
求二位數平方的速算方法:
1.求個位數為5的二位數平方:十位數字與比它大1的數相乘,所得的積擴大100倍,再加上25。
例如:35×35=3×4×100+25=1225 25×25=2×3×100+25=625
752=7×8×100+25=5625 952=9×10×100+25=9025
2. 求十幾的平方:把一個數加上它的個位數字,所得的結果擴大10倍(即末尾添一個零),再加個位數字的平方(即個位數字的自乘積)。
例如:13×13=(13+3)×10+3×3=160+9=169
14×14=(14+4)×10+4×4=180+16=196
17×17=(17+7)×10+7×7=240+49=289
3. 求 九十幾的平方:把一個數減去它的補數(與100之差稱補數),所得結果擴大100倍(即末尾添二個零),再加上它的補數的平方(即補數的自乘積)。
例如: 97×97=(97-3)×100+3×3=9400+9=9409
93×93=(93-7)×100+7×7=8600+49=8649
98×98= (98-2) × 100+2×2=9600+4=9604
4.利用大約弱數(或大約強數)法求平方:
大約弱數(或大約強數)指的是其末尾有一個零或幾個零的數,當它小於這個數,稱為這個數的大約弱數;當它大於這個數,稱為這個數的大約強數。
⑴大約弱數法求二位數的平方:這個數加上它的個位數字,乘以這個數的大約弱數(即這個數的十位數值),再加上個位數字的平方。此法是求二位數平方的常用方法,特別用於求十幾、二十幾、五十幾的平方易算。
例如:132=(13+3)×10+32=160+9=169 182=(18+8)×10+82=260+64=324
222=(22+2)×20+22=480+4=484 242=(24+4)×20+42=560+16=576
522=(52+2)×50+22=2700+4=2704 572=(57+7)×50+72=3200+49=3249
332=(33+3)×30+32=1080+9=1089 672=(67+7)×60+72=4440+49=4489
⑵大約強數法求二位數的平方:這個數減去它的補數(補數指的是大約強數與這個數的差),乘以這個數的大約強數,再加上補數的平方。這種方法可用在求四十幾、九十幾的平方及個位數≥7的二位數平方易算。
例如:432=(43-7)×50+72=1800+49=1849 482=(48-2)×50+22=2300+4=2304
922=(92-8)×100+82=8400+64=8464 972=(97-3)×100+32=9400+9=9409
782=(78-2)×80+22=6080+4=6084 672=(67-3)×70+32=4480+9=4489
用大約弱數法或大約強數法求平方,都根據公式a2=(a+b)(a-b)+b2推理而來,計算的結果一樣,可靈活應用。
5.求個位數為1、9、4、6的二位數的平方:已知一個整數的平方,可求與它相鄰兩個自然數的平方。 因1、9與整十相鄰,4、6與5相鄰,據公式(a±1)2=a2±2a+1就能很快算出個位數1、9、4、6的二位數的平方。
例如:已知202=400,502=2500 求21、19、51、49的平方,可以這樣計算:
212=202+2×20+1=400+40+1=441 192=202-2×20+1=400-40+1=361
512=502+2×50+1=2500+100+1=2601 492=502-2×50+1=2500-100+1=2401
再如:已知152=225,652=4225求16、14、66、64的平方,可以這樣計算:
162=152+2×15+1=225+30+1=256 142=152-2×15+1=225-30+1=196
662=652+2×65+1=4225+130+1=4356 642=652-2×65+1=4225-130+1=4096
通過以上學習,基本知道求二位數平方的速算方法,培養和鍛煉自己能見數識積,做到一口說出它的平方數(即一口清),在下面介紹另一種求平方的方法。
6.在背熟11~25的平方情況下求其它二位數平方的方法。
⑴背熟11~25的平方:
112=121 122=144 132=169 142=196 152=225 162=256 172=289
182=324 192=361 202=400 212=441 222=484 232=529 242=576 252=625
⑵求25~50之間的某數的平方:
將這個數減去25,所得的差擴大100倍,再加上50與這個數的差的平方。用公式可表示為:a2=(a-25)×100+(50-a)2 (25<a≤50)。
例如:362=(36-25)×100+(50-36)2=11×100+142=1100+196=1296
432=(43-25)×100+(50-43)2=18×100+72=1800+49=1849
註:26~49平方的末尾兩位數字與24~1平方的末尾兩位數字相同。如26與24平方的末尾都是76,42與8平方的末尾都是64,兩個數的和等於50,其末尾兩位數相同。
速記四十幾的平方:15加上個位數字,後面添兩個零,再加上個位數字的補數的平方。
例如:422=(15+2)×100+82=1764 472=(15+7)×100+32=2209
⑶求50~75之間的某數的平方:
將這個數減去25,所得的差擴大100倍,再加上這個數與50的差的平方。用公式可表示為:a2=(a-25)×100+(a-50)2 (50<a≤75)。
例如:532=(53-25)×100+(53-50)2=28×100+32=2800+9=2809
722=(72-25)×100+(72-50)2=47×100+222=4700+484=5184
註:51~74平方的末尾兩位數字與1~24平方的末尾兩位數字相同。如53與3平方的末尾都是09,69與19平方的末尾都是61。
速記五十幾的平方:25加上個位數字,後面添兩個零,再加上個位數字的平方。
例如:532=(25+3)×100+32=2809 582=(25+8)×100+82=3364
⑷求75~100之間的某數的平方:
將這個數減去它的補數(100與這個數的差稱補數),所得的差擴大100倍,再加上補數的平方。用公式可表示為:a2=(a-h)×100+h2 (75<a<100,h=100-a。)
例如:782=(78-22)×100+222=5600+484=6084 78的補數為22
862=(86-14)×100+142=7200+196=7396 86的補數為14
942=(94-6)×100+62=8800+36=8836 94的補數為6
註:76~99平方的末尾兩位數字與26~49(或24~1)平方的末尾兩位數字相同。如78與28、22平方的末尾都是84。
速記九十幾的平方:這個數減去個位數字的補數,後面添兩個零,再加上個位數字的補數的平方。
例如:932=(93-7)×100+72=8649 982=(98-2)×100+22=9604
背熟了1~25的平方等於記住了自然數平方的末尾兩位數值,在1~99的平方中,除了個位數是0或5的以外,都有四個數的平方,其末尾兩位數值是相同的。例如:82=64 422=1764 582=3364 922=8464, 132=169 372=1369 632=3969 872=7569。
掌握了以上求平方的常用速算方法,計算過程中隨機應變,靈活應用各種方法,培養和提高自己的心算能力和敏銳的觀察力,通過練習中比較,尋找最快的心演算法和記憶規律,可較快背熟二位數的平方,既掌握了各種方法,又能一口說出二位數的平方數,就可以為學習其它速演算法打下良好的基礎。