導航:首頁 > 研究方法 > 工程監測方法研究

工程監測方法研究

發布時間:2023-02-03 13:52:08

『壹』 淺議三峽庫區地質災害預警工程常用監測方法及應用

王愛軍1,2薛星橋1,2

(1中國地質大學(武漢),湖北武漢,430074;

2中國地質調查局水文地質工程地質技術方法研究所,河北保定,071051)

【摘要】長江三峽庫區地質災害預警監測是服務於地質災害防治、保障三峽工程建設安全的主要基礎工作。開縣、萬州區、巫山縣的38個滑坡災害專業監測點,採用大地形變監測、深部位移鑽孔傾斜儀監測、地下水動態監測、滑坡推力監測、地表裂縫相對位移監測、GPS全球衛星定位系統監測、TDR時間域反射監測和宏觀監測等綜合系列監測方法。每個滑坡災害點,採用2種以上監測方法,分別監測滑坡體地表內部變形或受力變化;重要災害點採用4~5種方法同時進行監測,以便進行對比和綜合分析。對滑坡監測及監測成果統計分析,多種監測數據成果具有明顯的一致性和相關性,反映了滑坡體的變形情況和特徵,證實監測方法合理有效,監測成果將為地質災害預警工程和地質災害防治工程提供可靠依據。

【關鍵詞】三峽庫區地質災害預警工程監測方法應用

1前言

長江三峽庫區自然地質條件復雜,是地質災害的多發區和重災區。三峽工程的興建和百萬移民工程,在一定程度上改變了原有地質環境的平衡狀態,加劇了地質災害的發生。隨著三峽工程建設的不斷推進,庫區地質災害對三峽工程和庫區人民生命財產安全的影響日益增加,及時有效地防治庫區地質災害已成為三峽工程建設的重要任務之一。地質災害預警監測工作是實現地質災害防治的主要基礎工作。

三峽庫區共有38個滑坡災害專業監測點在進行專業監測工作,其中重慶市開縣14個、萬州區14個、巫山縣10個。

2監測方法

2.1大地形變監測

採用全站儀監測。在滑坡體外選取地質條件較好、基礎相對穩定的點位作為監測基準點,在滑坡體上選擇有代表性的點位作為監測點,標志點全部採用混凝土強制對中監測墩。

2.2深部位移監測

採用鑽孔傾斜儀進行監測。在滑坡體上選擇有代表性的點位布置測斜鑽孔,分別在其主滑方向和垂直主滑方向上進行正反兩回次自下而上的測讀,監測點間距0.5m,使用移動式「CX-01型重力加速度計式鑽孔測斜儀」,監測數據穩定後自動記錄,每期監測共記錄4組數據。

2.3滑坡推力監測

在滑坡體上選擇有代表性的點位布置鑽孔,在鑽孔中選擇適當的深度部位,預置一系列滑坡推力感測器,用傳導光纖連接至地面,每次監測採用「BHT-Ⅱ型崩塌滑坡推力監測系統」測量記錄各點數據。

2.4地表裂縫相對位移監測

在裂縫的兩側適當部位安置數套裂縫計,進行原位裂縫相對位移監測。機械式監測具有干擾少、可信度高、性能穩定特點,監測記錄數據可直接做出時間—位移曲線,測量結果直觀性強。儀器一般量程范圍在25~100mm間,讀數器的解析度為0.01mm,操作溫度在-40℃~+105℃之間。

2.5地下水動態監測

在滑坡體上選擇有代表性的點位布置鑽孔,對地下水水位,孔隙水壓力、土體含水率、溫度等參數監測,採用自動水位記錄儀、孔隙水壓力監測儀等儀器監測。其中孔隙水壓力監測儀的孔隙水壓力量程為-80kPa~200kPa,解析度0.1kPa,精度0.5%F·S;土體含水率量程為0至飽和含水率,解析度1%;溫度量程為0~70℃,解析度0.1℃,精度1%F·S。

2.6GPS全球衛星定位系統監測

在滑坡體外選取地質條件較好,基礎相對穩定的點位,作為監測基準點;在滑坡體上選擇有代表性的點位作為監測點,標志點全部採用混凝土強制對中監測墩,觀測時採取多點聯測。GPS監測方法,可進行全天候監測,不受通視條件限制,同時監測 X、Y、Z三維方向位移量,方便靈活,並可監測災害體所處地帶的區域地殼變形情況。採用的美國 Ashtech公司生產的UZ CGRS型GPS,最小采樣間隔1s,最少跟蹤和接收12顆衛星,使用Ashtech Solution 2.6軟體解算,精度可達水平3mm+1ppm,垂直6mm+2ppm。

2.7時間域反射測試技術(TDR)監測

即採用電纜中的「雷達」測試技術,在電纜中發射脈沖信號,同時進行反射信號監測。在滑坡體上選擇有代表性的點位布置監測鑽孔,將同軸電纜埋入監測孔,地表與 TDR監測儀相連接,把測試信號與反射信號相比較,根據其異常情況判斷同軸電纜的斷路、短路、變形狀態,推斷出電纜的變形部位,進而推算滑坡體地層的變形部位和位移量。TDR監測採用了固定式預置同軸電纜,成本低,可進行自上而下的全斷面連續監測,量程范圍大。

2.8宏觀監測

以定期巡查方法為主,對變形較大的滑坡體,據其變形特徵布置一定數量的簡易觀測點進行定期觀測,及時掌握其變形動態。

對於每個滑坡災害點,採用2種以上監測方法,分別監測滑坡體地表變形和滑坡體內部變形或受力變化,重要災害點採用4~5種方法同時進行監測,以便進行對比和綜合分析。監測點的布置應重點突出,控制滑坡的重點部位;照顧全面,力求能反映滑坡體整體變形情況。鑽孔孔口周圍用混凝土澆築,布置精確監測點位。

3監測效果分析

根據2003年7月至12月滑坡災害專業監測數據資料,初步分析三峽庫區地質災害預警工程監測方法及應用效果。

3.1大地形變監測

大地形變監測,開展了開縣大丘九社和巨坪九社滑坡、巫山縣狗子包滑坡和板壁塘滑坡,共4個滑坡的監測。以下以開縣大丘九社滑坡為例簡述監測效果。

大丘九社滑坡位於開縣鎮東鎮大丘九社斜坡上,滑坡平面形態近似矩形,剖面上呈凹型;分布高程205~300m,滑體長約250m、寬約300m,面積710萬m2,估計厚度20m,體積約140萬m3。滑坡發育於侏羅系中統沙溪廟組(J2s)紫紅色泥岩及砂岩互層組成的平緩層狀斜坡中,滑坡體的物質組成主要為砂岩及砂岩碎塊石土,表層為鬆散土壤,局部出露砂岩碎塊石,為崩滑堆積體滑坡。

圖1開縣大丘九社滑坡累計位移量曲線圖

(a)X方向(b)Y方向(c)H方向 D1——監測點編號

大丘九社滑坡體上布置了3排監測點,每排3個共計9個監測點,滑坡體對面斜坡上布置了2個基準點,分別在2個基準點進行監測。監測網布置既控制了整體滑坡體又突出重點,採用前方交匯法施測。

8月5日進行了首次測量,9月21日進行D1第二次測量成果與之對比,表明變形趨勢明顯,滑體向 NEE向滑移。10月24日監測成果表明各監測點的變形趨於緩和。11月和12月監測成果表明各監測點無明顯變化(見圖1)。監測數據與宏觀調查定性分析相一致。

利用全站儀進行大地形變監測,其特點為監測方便,可隨時對一些危險滑坡監測,既可以在滑坡體上設置永久性監測樁,又可以設置臨時性監測樁;監測精度高,測點中誤差可達到3.5mm;不僅能測定相對位移,而且能監測絕對位移;在滿足測量條件下可進行連續監測,監測滑坡滑移的全過程,不存在量程限制。但該儀器監測受天氣因素和光線條件制約,難以在雨霧條件和夜間實施監測,且受地形和通視條件制約,施測以人工操作為主,不易實現自動化監測。

3.2深部位移鑽孔傾斜儀監測

深部位移鑽孔傾斜儀監測點為開縣6個滑坡、16個鑽孔,巫山縣5個滑坡、19個鑽孔,萬州區8個滑坡、24個鑽孔,共計19個滑坡、59個鑽孔。以下以開縣虎城村滑坡為例簡述監測效果。

虎城村滑坡為堆積層滑坡,位於開縣長沙鎮虎城村斜坡。該滑坡在平面近似矩形,剖面為凹形,分布高程330~400m,縱長約300m,橫寬約500m,滑體估計平均厚度12m,面積15萬m2,體積180萬m3。滑坡發育於侏羅系中統沙溪廟組(J2s)紫紅色泥岩及泥質粉砂岩組成的水平層狀岩層斜坡上,滑體上部為崩坡積紫紅色碎石土層。滑坡威脅居民400餘人及其財產安全。該滑坡布置了3個深部位移鑽孔傾斜儀監測鑽孔。

Kx-162鑽孔位於滑體的中部。2004年10月,在9.5~10.5m測試深度處發生明顯的位移變形,本月變形量5.56mm,變形方向247°。11月,沒有增大趨勢,累積形變4.58mm,略小於10月份累積變形量,變形方向253°(見圖2)。

Kx-165鑽孔位於滑體的下部。2004年10月,在15.0~16.5m測試深度處發生明顯的位移變形(見圖3),本月變形量5.45mm,變形方向241°。11月,沒有明顯的增大趨勢,累積變形5.39mm,同10月份累積變形量相近,變形方向240°。

地質災害調查與監測技術方法論文集

圖2開縣虎城村滑坡 Kx-162鑽孔位移隨深度變化曲線

(a)EW方向(b)SN方向

圖3開縣虎城村滑坡Kx-165鑽孔位移隨深度變化曲線

(a)EW方向(b)SN方向

深部位移鑽孔傾斜儀監測方法,可在滑坡體上一定部位布置的鑽孔中,監測滑坡體內垂直方向上的淺層、中層、深層、滑動帶等滑移方向和相對滑動位移量;但在滑坡發生較大或急劇加速的位移變形時,由於鑽孔和孔內測斜管變形、破壞,測斜儀探頭不能送入鑽孔之內,可能使鑽孔失去監測價值。

3.3 滑坡推力監測

滑坡推力監測共設有2個測點、4個鑽孔:巫山縣淌里滑坡鑽孔2個,曹家沱滑坡鑽孔2個。以下以淌里滑坡為例簡述監測方法與效果。

淌里滑坡位於巫山縣曲尺鄉長江幹流左岸斜坡上,滑坡在平面形態上呈不規則的圈椅狀,前緣分布高程90m,後緣高程400m,平均坡度約30°~40°,縱長約800m,橫寬150~250m,滑體厚20m,面積24萬m2,體積490萬m3。滑坡發育於三疊系巴東組(T2b)灰岩、泥灰岩、泥岩中,滑體物質主要為泥灰岩及泥岩碎塊石土,表層多為鬆散土層,下部碎塊石土結構密實。

Ws-t-tzk1推力孔位於滑體的下部,Ws-t-tzk2推力孔位於滑體的中部。其滑坡推力監測成果數據見圖4、圖5。推力監測曲線圖表明,各次監測數據規律性強,基本一致,感測器沒有發現明顯的數值變化。滑坡推力監測結果與宏觀監測結果和同時進行的鑽孔傾斜儀監測結果相一致,說明此階段滑坡暫時處於相對穩定的微變形狀態。

圖4巫山縣淌里滑坡 Ws-t-tzk1鑽孔滑坡推力監測曲線圖

圖5巫山縣淌里滑坡 Ws-t-tzk2鑽孔滑坡推力監測曲線圖

滑坡推力監測方法屬於固定點式監測,在鑽孔中預置感測器,用感測光纖連接,在地面用滑坡推力監測系統採集感測信息,可在滑坡體上一定部位布置的鑽孔中,自上至下監測滑坡體內垂直方向上的淺層、中層、深層、滑動帶等滑坡推力變化量,可定期進行數據採集監測;在對採集和傳輸處理系統進行改進的基礎上,可實現無值守自動化連續監測。

4結論

(1)通過多手段的綜合監測,掌握了被監測滑坡體的表面、內部自上至下滑移帶的變形及受力情況,數據綜合分析表明其反映了滑坡位移變化及動態特徵,取得了進行災害預警的重要基礎數據資料,說明採用的監測方法合理有效。

(2)鑽孔傾斜儀深部位移監測方法,當滑坡體發生一定量緩變位移後,部分鑽孔不能再進行全孔施測,造成勘察監測資金浪費和滑坡體監測點及監測部位減少。

(3)目前一月一次的監測周期,難以保證在滑坡發生滑移險情時能進行有效監測。為此應在進行專業監測的同時,進行群測群防監測。特殊情況下,對危險滑坡災害點,調整監測方案,進行加密監測或連續監測,使監測滿足預警預報要求。

(4)從長遠發展考慮,監測應以免值守、易維護、低成本、固定式、自動化快速連續採集傳輸和半自動化監測及人工監測相結合為方向,以建立起高效的地質災害監測網路與地質災害預警系統。

參考文獻

[1]王洪德,高幼龍,薛星橋,朱汝烈.鏈子崖危岩體防治工程監測預報系統及效果.中國地質災害與防治學報,2001,12(2):59~63

[2]王洪德,姚秀菊,高幼龍,薛星橋.防治工程施工對鏈子崖危岩體的擾動.地球學報,2003,24(4):375~378

[3]張青,史彥新,朱汝烈.TDR滑坡監測技術的研究.中國地質災害與防治學報,2001,12(2):64~66

[4]董穎,朱曉冬,李媛,高速,周平根.我國地質災害監測技術方法.中國地質災害與防治學報,2001,13(1):105~107

[5]段永侯,等.中國地質災害.北京:中國建築工業出版社,1993

『貳』 建築工程檢測一般都有哪些檢測項目

1、水泥物理力學性能檢驗、

2、砂、石常規檢驗、

3、混凝土強度、抗滲、配合比、

4、砂漿強度、配合比檢驗,乾粉砂漿、聚合物水泥防水砂漿、水泥基結晶防水塗料檢驗、

5、混凝土外加劑、粉煤灰、礦渣粉、硅粉檢驗、

6、牆體材料檢驗,包括燒結普通磚、燒結多孔磚、燒結空心磚和空心砌塊、混凝土多孔磚、普通混凝土小型空心砌塊、

7、防水材料檢測 (瀝青防水材料、高分子防水材料、防水塗料、建築密封材料)、

8、保溫板(EPS板、XPS板、聚氨酯泡沫塑料、泡沫玻璃製品、建築用岩棉礦渣棉絕熱製品、建築絕熱用玻璃棉製品等)檢驗、

9、膠粉聚苯顆粒保溫漿料、加氣混凝土砌塊的檢驗、

10、 保溫用粘粘劑、抹面膠漿、抗裂砂漿、面磚粘結砂漿等的檢驗、

11、增強抗裂膩子、柔性耐水膩子等的檢驗、

12、耐鹼網格布的檢驗、

13、電線電纜截面積和單位長度電阻值檢驗、

14、節能錨栓抗拉拔強度檢驗。

(2)工程監測方法研究擴展閱讀:

為保障已建、在建、將建的建築工程安全,在建設全過程中對與建築物有關的地基、建築材料、施工工藝、建築結構進行測試的一項重要工作。

地基結構檢測:

地基結構檢測研究院包括基坑監測,樁基檢測等等地基基礎工程。 具體樁基檢測(高應變、低應變、鑽芯檢測以及靜載試驗),基坑監測,基坑支護等等。

『叄』 分布式光纖感測技術及其在工程監測中的應用

本項研究受國家傑出青年科學基金項目(40225006)和國家教育部重點項目(01086)資助。

施斌丁勇索文斌高俊啟

(南京大學光電感測工程監測中心,江蘇南京,210093)

【摘要】分布式光纖感測技術,如布里淵散射光時域反射測量技術(簡稱BOTDR),是國際上近幾年才發展成熟的一項尖端技術,應用非常廣泛。本文著重介紹 BOTDR分布式光纖感測技術在隧道、基坑和路面等3個方面的應用。在工程監測過程中積累起來的大量監測數據表明,BOTDR分布式光纖感測技術,是一種全新而可靠的監測方法,它在工程實踐中的應用為工程監測提供了一種新的思路,因而必將擁有一個廣闊的發展前景。

【關鍵詞】BOTDR光纖感測工程監測應變

1引言

隨著人們對工程安全要求的日益提高,近年來,一批新式的感測監測技術得到發展,它們不是對傳統感測監測技術簡單地加以改良,而是從根本上改變了感測原理,從而提供了全新的監測方法和思路。其中,尤以 BOTDR分布式光纖感測技術為世人所矚目,它利用普通的通訊光纖,以類似於神經系統的方式,植入建築物體內,獲得全面的應變和溫度信息。該技術已成為日本、加拿大、瑞士、法國及美國等發達國家競相研發的課題。這一技術在我國尚處於發展階段,目前已在一些隧道工程監測中得到成功應用,並逐步向其他工程領域擴展。

南京大學光電感測工程監測中心在南京大學985工程項目和國家教育部重點項目的支持下,建成了我國第一個針對大型基礎工程的BOTDR分布式光纖應變監測實驗室,開展了一系列的實驗研究,並成功地將這一技術應用到了地下隧道等工程的實際監測中,取得了一批重要成果,為將這一技術全面應用於我國各類大型基礎工程和地質工程的質量監測和健康診斷提供了堅實基礎。

2BOTDR分布式光纖感測技術的原理

布里淵散射同時受應變和溫度的影響,當光纖沿線的溫度發生變化或者存在軸向應變時,光纖中的背向布里淵散射光的頻率將發生漂移,頻率的漂移量與光纖應變和溫度的變化呈良好的線性關系,因此通過測量光纖中的背向自然布里淵散射光的頻率漂移量(vB)就可以得到光纖沿線溫度和應變的分布信息。BOTDR的應變測量原理如圖1所示。

為了得到光纖沿線的應變分布,BOTDR需要得到光纖沿線的布里淵散射光譜,也就是要得到光纖沿線的vB分布。BOTDR的測量原理與OTDR(Optical Time-Domain Reflectometer)技術很相似,脈沖光以一定的頻率自光纖的一端入射,入射的脈沖光與光纖中的聲學聲子發生相互作用後產生布里淵散射,其中的背向布里淵散射光沿光纖原路返回到脈沖光的入射端,進入 BOT-DR的受光部和信號處理單元,經過一系列復雜的信號處理可以得到光纖沿線的布里淵背散光的功率分布,如圖1中(b)所示。發生散射的位置至脈沖光的入射端,即至 BOTDR的距離 Z可以通過式(1)計算得到。之後按照上述的方法按一定間隔改變入射光的頻率反復測量,就可以獲得光纖上每個采樣點的布里淵散射光的頻譜圖。

圖1BOTDR的應變測量原理圖

如圖1中(c)所示,理論上布里淵背散光譜為洛侖滋形,其峰值功率所對應的頻率即是布里淵頻移 vB。如果光纖受到軸向拉伸,拉伸段光纖的布里淵頻移就要發生改變,通過頻移的變化量與光纖的應變之間的線性關系就可以得到應變數。式中:c—真空中的光速;

地質災害調查與監測技術方法論文集

n——光纖的折射率;

T—發出的脈沖光與接收到的散射光的時間間隔。

目前國際上最先進的BOTDR監測設備以日本 NTT公司最新研製開發的最新一代 AQ8603型BOTDR光纖應變分析儀為代表。表1為AQ8603的主要技術性能指標。

表1AQ8603光纖應變分析儀的主要技術性能指標

3隧道安全監測

BOTDR分布式光纖感測技術在隧道方面的應用,目前已經在國內日漸成熟。我們在幾條隧道變形監測系統的建設過程中,已形成了一整套的成功經驗,為該技術在岩土和地質工程安全監測中的推廣提供了堅實的技術基礎。

3.1光纖鋪設

為了使光纖精確地反映被測構築物的應變狀態,必須將之與構築物緊密相連,鋪設在結構物上。鋪設的好壞,直接關繫到監測的實際效果,因而在工程應用中,有著十分重要的意義。

根據光纖監測系統的設計原則,結合工程實際情況以及AQ8603應力分布式光纖感測器的特點,基本有以下兩種鋪設方法:全面接著式鋪設和定點接著式鋪設,如圖2所示。

圖2全面接著和定點接著

3.1.1全面接著式鋪設

分別沿隧道縱深方向和橫斷面按全面接著方式布設感測光纖。沿縱深方向布設的感測光纖用於監測隧道縱向的整體變形情況,而沿橫斷面布設的光纖則是用於監測隧道橫向的變形情況。

全面接著式鋪設的特點是可以全程監測隧道的健康狀況,監測對象為隧道整體,監測結果為隧道整體的變形情況。此種接著方式應用特定的鋪設工藝,使用實驗測定的效果優良的混合膠粘劑(以環氧樹脂為主),將感測光纖按照設計線路粘著在混凝土的表面,並在感測光纖的末段接駁光纜,將監測信號傳送至隧道監控中心。

3.1.2定點接著式鋪設

此種接著方式的特點是重點監測變形縫、應力集中區等潛在(或假定)變形處的變形情況。監測對象為變形縫等潛在(或假定)變形處,監測結果為變形縫等潛在(或假定)變形處的應力應變特徵。此種接著方式的鋪設方法大體等同於全面接著式鋪設方式,所不同的是在設計施工面上選擇一些特殊點進行粘著,即將光纖每隔1m至1.5m確定一個固定點,粘貼在混凝土牆面上,以此來檢測隧道局部接縫處的變形(見圖3)。在某些特點地點,根據實際情況,選擇在特定的線路上在特定的位置安裝接縫感測器,以監測變形縫的變形情況(見圖4)。

圖3隧道接縫布線示意圖

3.2變形計算

由於引起隧道變形的原因比較復雜,有溫度造成的構築物熱脹冷縮的整體變形,也有不同方向裂縫開裂和錯動引起的局部變形,因此,將 BOTDR所測到的隧道的應變轉換到變形,有時比較困難。因此比較可行的解決方法一是要合理地布置光纖監測網,分別監測隧道的整體應變和局部應變及其方向,結合變形特點,計算出構築物的整體變形與局部變形;二是要採用相應的計算方法,將光纖的應變換算為隧道的變形。

圖4接縫感測器示意圖

例如,對於均勻應變,可以由下式計算變形:

地質災害調查與監測技術方法論文集

式中:ε為應變,d為應變段長度,δ為變形。

對於不均勻變形,可以採用按一定間距定點接著的方式鋪設光纖,兩個粘結點間的應變近似地認為是均勻應變,按上式同樣可以得到光纖沿線的不均勻變形。

如果隧道發生整體的不均勻沉降,可以按照撓度的計算方法(見式(3)近似計算它的沉降變形量:

地質災害調查與監測技術方法論文集

式中:ε1、ε2分別為鋪設在構築物頂部和底部的兩條光纖的應變,d為兩條光纖的間距。

此外,結合數值模擬技術也可以實現變形的計算。可以將光纖的應變作為數值計算的邊界條件或者已知條件,通過有限元或有限差分等計算方法,得到構築物不同部位的各種變形。

總之,從隧道的應變轉換到變形的計算常常比較復雜,但是只要通過合理地布置光纖監測網,採用正確的計算方法,隧道變形的計算是可以得到滿意的結果。

4基坑變形監測

基坑變形監測是岩土工程領域的基本問題之一,基坑穩定性的重要性不言而喻。近半年來,課題組通過大量的室內外試驗研究,將 BOTDR技術成功地應用到了南京市的幾個深大基坑工程中,取得了一些十分有價值的成果。

眾所周知,基坑變形原因復雜、類型繁多,但總體來說,主要是由基坑開挖引起的坑體水平位移問題和基底隆起問題。傳統的監測方式,如土壓力盒、測斜管等,由於自身感測方式的限制,往往有精度不高、抗腐蝕性差、損耗較大、浪費人力等缺點。課題組通過研究,成功地研製了一種具有專利技術的基於BOTDR技術的基坑位移監測分布式光纖感測系統(分布式光纖感測智能測斜管)。

圖5基坑位移監測分布式光纖感測系統

如圖5所示,利用傳統的測斜管器件與先進的BOTDR技術相結合,開發出上述感測器。應用傳統的測斜管器件的目的在於:①經傳統方法驗證,測斜管能夠較理想地反映土體變形,是一種良好的材料;②測斜管自身帶有卡槽,免去了人工開槽的工作;③該材料是常用的基坑監測材料,方便易得,比較經濟;④應用與傳統監測方式一致的材料,方便對新、舊技術進行類比。該系統的構成,簡言之是將光纖按照一定的施工工藝,用經室內外試驗和工程實踐驗證過的特殊的膠黏著在測斜管上,構成感測系統,我們稱之為分布式光纖感測智能測斜管。該感測器具有分布式光纖感測器的一切優點,並可進行准實時監測。

應用BOTDR技術的分布式光纖感測器所得到的監測結果,是沿光纖感測器的軸向物理信息(應變、溫度等),因此,如何獲得沿光纖感測器分布的基坑水平變形量,也就成了問題的核心。經過研究,應用計算撓度的方法來近似計算基坑的水平變形量。

由材料力學相關知識可知,沿線各點的撓度可利用下式計算。

地質災害調查與監測技術方法論文集

式中:εx為所求點的光纖實測應變,其值為沿測斜管兩側的兩條光纖的應變差;d為粘貼在測斜管兩側的光纖之間的距離;積分起點為深部某無應變點,v(x)為各點的撓度,可以近似地認為是基坑的水平變形量。

5連續配筋混凝土路面檢測

連續配筋混凝土路面(CRCP)是全部省略接縫的連續混凝土板,是為了減輕因接縫而引起的振動與噪音,或為改善平整度、提高行車舒適性而使用的路面。對於這種高性能的路面結構形式,其鋼筋應力狀態、混凝土應力狀態和路面的裂縫分布是反映該路面使用性能的主要因素[8.9]。將 BOTDR這項優秀的無損檢測技術應用於監測 CRCP路面鋼筋、混凝土應力和路面裂縫,具有重要意義。

圖6為BOTDR分布式光纖感測系統在連續配筋混凝土路面中的布置圖。路面縱向鋼筋共有11根。在其中9根鋼筋上布設了感測光纖,溫度補償光纖4根,應變感測光纖5根,沿中心對稱鋪設。

圖7為澆注混凝土開始5天內BOTDR檢測的板表面混凝土應變變化。從圖上可以清楚看出沿路面縱向表面混凝土應變分布情況,而且可以根據最大拉應變的位置預測出路面可能產生裂縫的位置。如圖中79m處最有可能出現裂縫。

圖6光纖感測系統布置

圖7板表面混凝土應變分布

圖8為澆注混凝土開始5天內 BOTDR檢測的鋼筋應變變化。從圖上可以清楚看出沿路面縱向鋼筋應變分布情況。在混凝土硬化這段時間里,鋼筋應變不是均勻的,通過連續監測鋼筋應變,有助於預測路面的使用性能。

本實驗測試結果表明,BOTDR分布式光纖感測系統能夠在線對連續配筋混凝土路面板中的鋼筋和混凝土應變進行有效的檢測。這說明BOTDR在路面板、橋面板及其他一些類似工程中具有良好的適用性及廣闊的應用前景。

6結語

分布式光纖感測技術在我國尚處於起步階段,雖然在隧道、基坑等部分領域取得了一定成功,但仍然有許多研究工作有待進一步開展,這包括兩個方面,一是分布式光纖感測監測技術本身的進一步改良;二是要不斷地解決在工程監測中的技術問題。可以相信,隨著這一技術的不斷研發和成熟,越來越多的大型基礎工程將採用這一技術進行分布式監控和健康診斷,應用前景十分廣闊,無法估量。

圖8鋼筋應變分布

參考文獻

[1]Horiguchi T,Kurashima T,Tateda M.Tensile strain dependence of Brillouin frequency shift in silica optical fibers.IEEE Photonics Technology Letters,1989,1(5):107~108

[2]Ohno H,Naruse H,Kihara M,Shimada A,Instrial applications of the BOTDR optical fiber strain sensor.Optical Fiber Technology,2001,7(1):45~64

[3]Wu Z S,Takahashi T,Kino H and Hiramatsu K,Crack Measurement of Concrete Structures with Optic Fiber Sensing.Proceedings of the Japan Concrete Institute,2000,22(1):409~414

[4]Wu Z S,Takahashi T and Sudo K,An experimental investigation on continuous strain and crack moni.toring with fiber optic sensors.Concrete Research and Technology,2002,13(2):139~148

[5]Li C et al,Distributed optical fiber bi-directional strain sensor for gas trunk pipelines.Optics and Lasers in Engineering,2001,(36):41~47

[6]Uchiyama H,Sakairi Y,Nozaki T,An Optical Fiber Strain Distribution Measurement Instrument Using the New Detection Method.ANDO Technical Bulletin,2002,(10):52~60

[7]黃民雙,陳偉民,黃尚廉.基於Brillouin散射的分布式光纖拉伸應變感測器的理論分析.光電工程,1995,22(4):11~36

[8]查旭東,張起森,李宇峙,蘇清貴,黃慶.高速公路連續配筋混凝土路面施工技術研究.中外公路,2003,23(1):1~4

[9]謝軍,查旭東編譯.連續配筋混凝土路面設計指南.國外公路,2000,20(5):4~6

[10]施斌等.BOTDR應變監測技術應用在大型基礎工程健康診斷中的可行性研究.岩石力學與工程學報.Vol.22,No.12,2003

[11]Shi Bin et al,A Study on the application of BOTDR in the deformation monitoring for tunnel engineering,Structural Health Monitoring and Intelligent Infrastructure,A.A.Balkema Publishers, 2003:1025~1030

[12]徐洪鍾,施斌,張丹,丁勇,崔何亮,吳智深.基於小波分析的BOTDR光纖感測器信號處理方法.光電子激光,2003(7)

[13]H.Z.Xu,B.Shi,Dan Zhang,Yong Ding,Heliang Cui,Data processing in botdr distributed strain measurement based on wavelet analysis,Structural Health Monitoring and Intelligent Infrastruc ture,A.A.Balkema Publishers,2003:345~349

[14]張巍,呂志濤.光纖感測器用於橋梁監測.公路交通科技,2003,20(3):91~95

[15]張丹,施斌,吳智深,徐洪鍾,丁勇,崔何亮.BOTDR分布式光纖感測器及其在結構健康監測中的應用.土木工程學報,2003,36(11):83~87

[16]Dan Zhang,Bin Shi,Hongzhong Xu,Yong Ding,Heliang Cui&Junqi Gao,Application of BOTDR into structural bending monitoring,Structural Health Monitoring and Intelligent Infrastructure,A.A.Balkema Publishers,2003:271~276

[17]Dan ZHANG,Bin SHI,Junqi GAO,Hongzhong XU,The recognition and location of cracks in RC T-beam structures using BOTDR-based distributed optical fiber sensor,SPIE,2004

[18]張丹,施斌,徐洪鍾,高俊啟,朱虹.BOTDR用於鋼筋混凝土 T型梁變形監測的試驗研究.東南大學學報(待刊)

[19]丁勇,施斌,吳智深.岩土工程監測中的光纖感測器.第四屆全國岩土工程大會會議論文集2003:283~291

[20]Ding,Y.,Shi,B.,Cui,H.L.,Gao,J.Q.,&Chen,B.2003.The stability of optical fiber as strain sensor under invariable stress.Structural Health Monitoring and Intelligent Infrastructure,A.A.Balkema Publishers,2003:267~270

『肆』 急需:高危作業施工監測監控方案(高速公路,我方是施工單位),謝謝!!! 我的郵箱:[email protected]


施工測量及監控方案
目 錄
第一章 施工測量 1
1.1 測量依據 1
1.2 控制測量依據 1
1.3 測量質量管理目標和基本質量指標 1
1.4 基本測量程序 1
1.5 隧道開挖測量 7
1.6 隧道施工測量 8
1.7 隧道貫通誤差測量 9
1.8 地下監控測量成果的檢查與檢測 10
1.9 竣工測量 11
1.10 質量保證措施 13
第二章 安全生產教育和培訓制度 16
2.1 監控量測目的和意義 16
2.2監測方案的設計依據 16
2.3 監測項目 16
2.4 監測點布置 17
2.5 監測方法及監測頻率 17
2.6 監測量測反饋程序 24

第一章 施工測量
1.1測量依據
1)《地下鐵道、輕軌交通工程測量規范》(GB50308-1999)
2)《新建鐵路工程測量規范》(TB10101-99)
3)《北京地鐵房山線施工測量管理細則》
4)《北京地鐵新建線路控制測量總體技術要求》
1.2控制測量依據
地面控制測量由北京城建勘測設計研究院有限責任公司提供平面控制點(DS63、DS65、DS66、DS67)和高程式控制制點(DS63~DS67、BM[4]11~BM[4]12)。經過復測,誤差符合規范要求。
1.3測量質量管理目標和基本質量指標
1)施工測量質量管理目標
確保全線建築物、構築物、設備、管線安裝按設計准確就位,避免因施工控制測量、放樣測量超差而造成重大設計變更和工程事故。
2)質量指標
(1)在任何貫通面上,地下測量控制網的貫通中誤差,橫向不超過±50mm,豎向不超過±25mm。
(2)隧道襯砌不侵入建築限界,設備不侵入設備限界。
3)測量標准
《地下鐵道、輕軌交通工程測量規范》(GB50308-1999)。
1.4基本測量程序
1.4.1地面控制測量
1)平面控制測量
對業主提供的控制導線點進行復測,並與相鄰標段及臨近控制點進行貫通聯測。利用全站儀進行地面施工導線布設,導線點埋設混凝土標石。
2)高程式控制制測量
對業主提供的精密水準點進行復測並與臨近水準點貫通聯測。使用精密水準儀和標尺在提供的水準點之間加密水準網,布設成閉合環線,閉合差≤±8 mm(L為環線長度,以千米計),操作方法精度指標執行Ⅱ等水準點測量要求。

導線測量的主要技術要求
等級 導線長度(km) 平均邊長(km) 測角中誤差(″) 測距相對中誤差 測回數 方位閉合差(″) 相對閉合差
DJ1 DJ2 DJ6
三等 14 3 1.8 ≤1/150000 6 10 3.6
≤1/55000
四等 9 1.5 2.5 ≤1/80000 4 6 5
≤1/35000
一級 4 0.5 5 ≤1/30000 2 4 10
≤1/15000
二級 2.4 0.25 8 ≤1/14000 1 3 16
≤1/10000
三級 1.2 0.1 12 ≤1/7000 1 2 14
≤1/5000
註:①表中n表示測站數。
②測區測圖的比例尺為1:1000時,一、二、三級導線的平均邊長可適當放長,但最大長度不應大於表中規定的2倍。

精密水準測量的主要技術要求
每千米高差中誤差(mm) 符合水準路線的平均長度km 水準儀等級 水準尺 觀測次數 往返誤差,附合或環線閉合差(mm)
偶然中誤差 全中誤差 與已知點聯測 附合線環線 平坦地面 山地
+2 +4 2~4 DS1 銦鋼尺 往返各測一次 往返各測一次
+8√n
+2√n

註:L為往返測段附合或環線的路線長度(以km計),n為單程測站數
精密水準測量觀測的視線長度、視距差、視線高度的要求
標尺
類型 視線長度 前後
視距差
(m) 前後視距累計差
(m) 視線高度
(m)
儀器等級 視距 視線長度20m以上 視線長度20m以下
銦鋼尺 DS1 ≤60 ≤1.0 ≤3.0 0.5 0.3

精密水準測量的測站觀測限差(mm)
基輔分劃讀數差 基輔分劃所測高差之差 上下絲讀數平均值與中絲讀數之差 檢測間歇點高差之差
0.5 0.7 3.0 1.0
1.4.2聯系測量
1)趨近測量
從地面控制點採用趨近導線向豎井引測坐標和方位。地面趨近導線應附合在精密導線點上,近井點要與GPS點或精密導線點通視,使定向最為有利,除近井點設置固定標志外,其它地面趨近導線點均可設置臨時標志,地面趨近導線全長不能超過350m,平均邊長60m,最短邊長大於30m,趨近導線採用嚴密平差,其近井點的點位中誤差在±10mm之內。
導線點可做成如下形式:

單位:mm

2)豎井開挖測量
豎井四個角點,用鋼板或木板做成三角架固定在鎖口圈上,斜邊中心做記號吊5kg以上的垂球控制開挖輪廓線。如右圖:
(3)豎井定向控制測量
豎井施工完成到設計標高時,根據現場的實際情況和現有的儀器設備,採用投點儀投點,把井口上測設的臨時導線點投在投點板上。

(投點儀標稱精度1/200000)
為了提高投點精度,在豎井口長邊對角適當位置設置投點P1,P2點,如圖1。然後利用地面上的控制網進行聯測,將測量數據進行平差後,計算出P1、P2各點的坐標(或用前方交會法,定出P1、P2各點),將P1、P2點投在井下的投點板上,如圖2所示。
為了檢核投點精度,在井上作兩次投點。投在投點板上的P1′P2′、P1〞、P2〞點。然後將全站儀分別架設在各點上,觀測通道內設置的P3、P4,採用測回法觀測各點的角度、距離、平差後計算出各點坐標,以此作為通道、隧道暗挖控制的定向邊(P3~P4)。
(4)高程傳遞
利用加密水準網點作趨近水準測量,按Ⅱ等水準測量方法和儀器施測,限差≤±8 mm,埋設不少於兩點的高程點,以利校核。使用檢定過的鋼尺及檢定重量的重錘用懸吊的方法經豎井傳遞高程,上、下兩台水準儀同時觀察讀數,每次錯動鋼尺3cm~5cm,測三測回。高差較差控制在±3mm以內,取平均值使用。如下圖:

1.4.3地下控制測量
1)地下導線測量
地下施工控制測量用控制導線,直線隧道掘進大於200m時,曲線隧道掘進到直緩點時,埋設洞內導線控制點,直線隧道施工控制導線點平均邊長為150m,特殊情況下,不短於100m。曲線隧道施工控制導線點埋設在曲線五大樁點上,一般邊長不小於60m。邊長往返觀測各兩測回,往返觀測平均值較差小於7mm,每次延伸施工控制導線測量前提是對已有的施工控制導線前三個點進行檢測,檢測點如有變動,選擇另外穩定點的施工控制導線點進行施工控制導線延伸測量。施工控制導線在隧道貫通前測量三次,測量時間與豎井定向同步。重合點重復測量的坐標值與原測量的坐標值較差小於10mm時,採用逐次的加權平均值作為施工控制導線延伸量的起算值。如下圖:

2)地下高程式控制制測量
①地下水準測量用Ⅱ等水準測量的方法和儀器施測,不等值、閉合差限差滿足≤±8 mm的精度。
②開挖至隧道全長1/3和2/3處,貫通前50m~100m,分別對地下水準點按Ⅱ等水準精度要求復測,保障高程貫通精度。
1.5隧道開挖測量
直線隧道施工測量在線路中線上安設激光導向儀,激光導向儀調節後的激光束代表線路中線的方向和線路縱斷面的坡度。曲線隧道施工測量把激光導向儀安裝在線路弦線上,調節後的激光束代表線路弦線的方向及線路縱斷面的坡度。利用內業計算資料的弦線偏距及里程、標高指導施工,隧道上部開挖用激光導向儀控制標高,下部開挖採用放起拱線標高來控制,要經常檢測激光導向儀的中線和坡度,抄平時要往返水準測量。激光導向儀的安裝如下圖所示:

標准段激光導向儀安裝 人防段激光導向儀安裝

1.6隧道施工測量
斷面測量採用支距法。拱部斷面採用五寸台法測繪,沿中線自外拱頂線高程向下每隔0.5m向兩側測設斷面的開挖支距,然後把各支距的端點連接起來,為拱部開挖斷面的輪廓線。如下圖所示:

洞門斷面的測量:曲牆地段自起拱線高程起,沿中線向下每隔0.5m向左右兩側按開挖的尺寸量取支距,至軌頂高程為止。直牆地段自起拱線高程起,沿中線向下每1m向下左右兩側按開挖尺寸量取支距至軌頂高程為止。仰拱斷面應由內軌頂高程每隔0.5m向下量支距至開挖深度。
如圖所示:

量支距時,應考慮隧道中線和線路中線的偏移值d,直線地段d值為零,即兩線重合。在曲線地段,隧道中線從線路中線向圓心方向內移一個d值,而標定在開挖面上的中線是按線路中線標定的,所以在繪斷面圖時,內側支距都比外側支距大2d。
1.7隧道貫通誤差測量
平面貫通測量,貫通面處採用坐標法從兩端測定貫通點坐標差,並歸算到預留的斷面和中線上,求得橫向貫通誤差和縱向貫通誤差。平面與高程貫通誤差限差如下表:
平面與高程貫通誤差限差表
地面控制測量 聯系測量 地下控制測量 總貫通中誤差
橫向貫通中誤差 ≤±25 mm ≤±25 mm ≤±35 mm ≤±50 mm
縱向貫通中誤差 L/40000 L/40000 L/40000 L/12000
豎向貫通中誤差 ≤±16mm ≤±12mm ≤±15mm ≤±25mm
區間隧道貫通後,當地下導線閉合差不超過限差規定時,進行平差計算。按導線點平差後的坐標值調整線路中線點,改點後再進行中線點檢測,直線夾角不符值≤±6″,曲線上折角互差≤±7″,高程也用平差後成果。將平差後成果作為凈空測量的起始數據,凈空斷面測量採用解析法。
1.8地下控制測量成果的檢查與檢測
為確保隧道正確貫通和滿足凈空限界,建立嚴格的檢查和檢測制度,檢測按規定的同等級精度作業要求進行:地上、地下導線的坐標互差≤±12mm,≤±20mm;地上、地下高程點的高程互差≤±3mm,≤±5mm;地下導線基線邊方位角互差≤±10″;相鄰高程點的高程互差≤±3mm;導線邊的邊長互差≤±8mm;隧道中線點坐標的互差≤±16mm;經豎井懸吊鋼尺傳遞高程的互差≤±3mm。
1.9竣工測量
隧道直線地段每50m,曲線地段每20m,以及其它需要地方,均應測量隧道凈空斷面。凈空斷面測量應以線路中線為准,測量內拱頂高程、軌頂面以上1m、2m、3m、4m處的寬度,其允許偏差為±3mm。如圖所示:

隧道竣工後,在中線復測的基礎上埋設永久中線點。復測工作依據施工中線進行。永久中線在直線上每200~250米設置一個,緩和曲線的始點各設一個,圓曲線地段按通視條件加設。永久中線點用混凝土包金屬心標志埋設。如圖:

永久中線點設立後,在隧道邊牆上繪出標志。
洞內高程點在復測的基礎上每千米埋設一個。小於一千米的隧道設一個,並在牆上繪出標志。標志如下圖所示:

1.10質量保證措施
地下工程施工測量不同於一般工程測量,施測的周圍環境和條件復雜,要求的施測精度相當高,因此必須精心組織實施。
1)施工准備
(1)為確保地鐵測量精度,我們將抽調具有地鐵測量經驗的測量工程師和有測量上崗證的測量員組成精測隊,配備全站儀和精密水準儀。
(2)開工前,根據設計提供的測量數據資料,布設施工控制網點,這些網點必須吻合設計提供的三角網和水準網點的基本數據,並滿足規定的施測精度。
2)分級測量復核制度
(1)工區負責本作業區的日常施工測量,施工放樣及控制樁點的埋設及防護。
(2)經理部精測組負責復核和指導測量組完成施工測量任務,並負責向工區測量組現場交點、交樁、交測量資料和成果。負責控制護樁的測量。
(3)現場監理工程師對日常測量工作進行監督和復測。
(4)施工控制導線由城勘院測量隊復核。
3)內業資料計算
工區日常測量資料必須由兩名以上技術員獨立計算並相互核對計算數據,核對無誤後交由技術主管復核、鑒認,主管鑒認後方可交付測量組使用;進行施工控制樁測量,在此基礎上由測量工程師復核,認為無誤後方可使用。
4)外業測量
以備內業計算時能夠及時發現錯誤,日常測量必須保證兩個測回,施工控制樁測設則須四個測回,外業測量必須進行閉合測量,外業記錄資料必須完整、詳細,閉合到業主交付的導線點上,經過內業計算達到精度後方可使用,對業主提供的導線點及自己布設的施工控制樁必須定期復核,精度達不到規范要求時,及時調整。豎井、施工通道及正線每施工5m由工區測量人員貫通復測,施工10m由經理部測量組貫通復測。
5)人員配備
指定專人負責,日常測量不少於3人,施工監測不少於3人,每組必須兩人精通,可相互使用儀器及內業資料計算。每個工程隊指定2人為經理部測量組成員,需要貫通復測時由測量工程師抽調,直接安排工作,其餘時間由工區安排。
6)測量儀器的管理
(1)測量儀器實行分級管理制度,精密測量儀器由經理部統一管理,一般測量儀器由工區自行管理,建立保管、使用、維修制度。
(2)各種測量儀器、量具按計量部門有關規定定期進行計量檢定,做好日常保養工作,保證狀態良好,建立測量設備台帳,准確記錄檢定維修情況。
主要儀器設備
儀器名稱 規 格 生產廠家 數 量
全站儀 TCRA1102 瑞士 1
萊卡投點儀 NL 瑞士 1
精密水準儀 AT—G2 日 本 1
經緯儀 TDJ2 博 飛 3
水準儀 C32Ⅱ 索 佳 3

第二章 監控量測
2.1監控量測目的和意義
1)監控量測目的
「信息化施工」的前提是對施工過程中的地層變形、支護結構的受力有清楚的了解。要達到這樣一個目的,必須在很大程度上依賴於施工監測,根據監測結果,調整支護參數或修改施工方案。
2)監控量測意義
本區間的監測意義在於:
(1)掌握隧道周圍地層、支護結構、地下管線和周邊建築物的動態,觀測開挖過程中隧道的狀態及其對周邊環境的影響,預防工程破壞事故和環境事故的發生。
(2)將現場測量結果與預測值相比較以判別前一步施工工藝和施工參數是否符合預期要求,以確定和優化下一步施工參數,從而指導現場施工,做到信息化施工。
(3)將量測結果用於信息化反饋優化設計,使設計達到優質安全、經濟合理、施工快捷。另外還可將現場監測結果與理論預測值相比較,用反分析法導出更為接近實際的理論公式用於指導其它工程。
2.2監測方案的設計依據
1)北京地鐵房山線大葆台站至郭公庄站區間設計圖紙。
2)中華人民共和國國家標准《地下鐵道設計規范》(GB50157-92)。
3)中華人民共和國國家標准《建築變形測量規范》(JGJ/T 8-97)。
2.3監測項目
監控量測項目主要根據工程地質、水文地質、結構形式、施工方法、周邊環境等因素綜合確定,力求在滿足需要的前提下,少而精。
本工程的主要監測項目如下:
1)A項量測項目(常規監測)
主要有:地質及支護觀察、地表沉降、周邊管線及建築物變形、拱頂下沉、周邊收斂。
2)B項量測項目
主要有:土體水平位移、土體垂直位移、圍岩壓力、鋼架應力、襯砌內應力。
2.4監測點布置
A項量測中的地表沉降、拱頂下沉,凈空收斂沿隧道中線每10米布設1個監測斷面。其中地表沉降點沉降點按斷面總寬70m在隧道中心線左右平均布置,每個斷面21個測點,測點距離2.5~5米。
B項量測項目選有代表性的2個斷面,並在斷面變化處或介面處布設B項量測項目。
詳見圖13-1「大葆台站~郭公庄站區間監測點布置圖」。
2.5監測方法及監測頻率
1)工程地質與支護狀況的觀察
①洞室開挖完成後,立即進行工程地質狀況的觀察記錄和地質描述,這對於判斷圍岩穩定性和預測開挖面前方的地質條件,為地層超前支護提供真實的地層參數是十分必要的。
②初期支護完成後,進行噴層表面觀察、記錄和裂縫描述,若發現初期支護有不穩定趨勢,及時採取補強措施,並為後續工程提供、改進支護參數。
2)地表沉降監測
①測點布置
在地表沿隧道軸線方向每10m設一個量測斷面,每斷面對稱布置21個測點,測點為埋入地表下一定深度的鋼樁,並用混凝土固定,以保證其不移動、丟失。
②量測方法
利用精密水準儀和銦鋼塔尺。按照一定的量測頻率和時間進行觀測,並做好記錄,繪制散點圖。隧道開挖前在變形影響范圍外,便於長期保存的穩定位置,埋設基準點,進行水準布網,測得量測點初始讀數。
③量測頻率
在洞室開挖或支護的半個月內,每天觀測2次;半個月到一個月內,每兩天觀測一次;一到三個月每周觀測2次;三個月後,每月觀測2次;遇有突發性事件則加強監測,一般每1~2小時監測一次。
④控制基準
根據本工程的實際情況,我們將地表沉降管理基準值分兩種情況來考慮:當地表有重要管線,取管理基準值為15mm,其他情況取30mm。當監測數據達到管理基準值70% 時,加強監測頻率,當監測數據達到或超過管理基準值時,停止施工。修正支護參數後方能繼續施工。
3)初期支護位移量測
洞室開挖改變了圍岩的初始應力狀態,由於圍岩應力重分布和隧道周邊應力釋放,使圍岩產生了變形,隧道周邊初期支護有不同程度的凈空向內位移和拱頂下沉,因此,必須在隧道開挖支護後及時進行初期支護位移量測,根據量測結果判斷圍岩和支護結構的穩定性,並及時修改支護參數,確保施工安全。
初期支護位移量測分如下幾項:
①拱頂下沉量測
沿隧道軸線方向每10m設置一個量測斷面,測點採用鋼樁預埋在拱頂初期支護中,用精密水準儀和經校驗的鋼尺進行測量。
②洞周邊收斂量測
沿隧道縱向每10m設一個量測斷面,該斷面與拱頂下沉量測斷面為同一斷面,每斷面設1對測點,採用收斂儀進行量測,通過測微計讀取隧道周邊兩點相對位置的變化,從而計算出該兩點在連線上的相對位移值。拱頂下沉及收斂測點布置見下圖。

③監測頻率:
洞周邊收斂位移和拱頂下沉的監測頻率可根據位移速度而定,如下表所列:
位移速率(mm/d) 15 1~15 0.5~1 0.2~0.5 <0.2
頻率 1~2次/d 1次/d 1次/2d 1次/7d 1次/15d
④控制基準
當拱頂下沉達到35mm時,加強監測頻率,當監測數據達到或超過50mm時,停止施工。修正支護參數後方能繼續施工。洞周收斂位移控制基準值為0.005B(B為坑道寬度)。
4)建築物沉降、傾斜及裂縫監測
①建築物的沉降監測
A.人行天橋的沉降觀測點的位置和數量根據天橋的基礎型式、結構類型及地質條件因素綜合考慮。為了反映沉降特徵和便於分析,測點埋設在天橋的橋面及橋柱基礎上。
B. 監測方法:採用精密水準儀及銦鋼塔尺量測。
C.監測頻率:在洞室開挖或支護的半個月內,每天觀測2次;半個月到一個月內,每兩天觀測一次;一到三個月每周觀測2次;三個月後,每月觀測2次;遇有突發性事件則加強監測,一般每1~2小時監測一次。
②建築物傾斜監測
A.監測方法
傾斜監測就是對建築物的傾斜度、傾斜方向和傾斜速率進行監測。由於天橋具有明顯的外部特徵和寬敞的觀測場地,所以採用投點法或測水平角法。
B.監測儀器及監測頻率:用高精度J2經緯儀及S1水準儀每5天觀測1次。
C.控制基準:當建築物傾斜率超過0.002時,立即停止施工。修正支護參數後,方能繼續施工。
③周圍建築物裂縫監測
A.裂縫寬度的量測方法
a.一般量測
對於測量精度要求不高的部位,如牆面開裂,簡易有效的方法是粘貼石膏餅,將10mm厚、50mm寬的石膏餅騎縫粘貼在牆面上,當裂縫繼續發展時,石膏餅隨之開裂。裂縫寬度用裂縫寬度板來對比。
b.對於精度要求較高的裂縫量測,如混凝土構件的裂縫,採用儀表進行量測,在裂縫兩側粘貼幾對手持應變計的頭子,用手持式應變儀量測。
B.裂縫深度的量測方法
a.淺層裂縫:採用鑿出法或單面接觸超聲波法。鑿出法就是預先在細小裂縫中灌入彩色溶液如墨水,若裂縫走向是垂直的,用針筒打入,待其乾燥後從裂縫一側將混凝土漸漸鑿除,露出裂縫另一側,觀察是否留有溶液痕跡(顏色),以判斷裂縫深度。
b.深層裂縫:當裂縫發展很深時,採用取芯法量測裂縫深度。取芯法是用鑽芯機配人造金剛石(空心薄壁)鑽頭,跨於裂縫之上沿裂縫面由表向里鑽孔取芯。當一次取芯未及裂縫深度時,可換直徑小一號的鑽頭繼續往裡取,直至裂縫末端出現,然後將取芯拼接起來,量測裂縫深度。
④監測儀器及監測頻率:用高精度J2經緯儀及S1水準儀每5天觀測1次。
5)圍岩與初期支護間的接觸應力量測
①沿隧道縱向選取有代表性地段設置量測斷面,在每個斷面的拱頂、拱腰、起拱、邊牆、仰拱等處布點,在初期支護背後埋設鋼弦式雙模壓力盒,配合頻率接收儀量測壓力值。壓力盒的布置見下圖:

區間標准斷面壓力盒布置圖
②量測頻率
開挖初期,每天測1次,14~30天後每2天測1次,基本趨於穩定後,每周量測1~2次。
③數據處理
將圍岩各部位量測壓力值與理論計算的豎向壓力、側向壓力進行比較,分析判斷作用在初期支護上土壓力大小及分布狀態,反映出結構實際受力狀態。
6)初期支護結構應力監測
①測點布置
在初期支護結構中有代表性位置的鋼格柵上,焊接鋼弦式鋼筋計,通過感測器採集數據。標准段如下圖所示:

區間標准段鋼筋計安裝布置圖
②應力感測器的安裝
A.根據測點應力計算值,選擇鋼筋應力計的量程,在安裝前對鋼筋計進行拉、壓受力狀態的標定。
B.安裝時盡可能使鋼筋應力計處於不受力狀態,更不能處於受彎狀態。將應力計上的導線逐段捆紮在鄰近鋼筋上,引到初期支護結構外側試匣中。
C.噴射混凝土後,檢查應力計電路電阻值和絕緣情況,做好引出線和測試匣的保護。
③量測頻率
噴射混凝土結束後測出應力感測器的穩定測量值,作為計算應力變化的初始值。洞室開挖初期,每天測1次,14~30天每2天測1次,基本趨於穩定後每周至少測量1次,每次應力量測值與初始值之差,即為應力變化。
7)地下水位監測
在距隧道外側5m左右布設地下水位觀測孔,監測隧道開挖期間地下水位變化。水位觀測孔採用地質鑽機鑽孔,孔徑φ128mm,鑽孔深度達到隧道基底下2m,用鋼尺量測地下水位變化。一旦發現降水不滿足施工要求時,則立即與降水部門協調解決。
7)隧底回彈監測
在隧道底典型位置設三處,用地中位移計進行隧底回彈監測。
2.6監控量測反饋程序
監控量測資料均用計算機配專業技術軟體進行自動化初步分析、處理。根據實測數據分析、繪制各種表格及曲線圖,當曲線趨於平衡時推算出最終值,並提示結構物的安全性。
監測人員按時向施工監理、設計單位提交監控量測周報和月報,同時對當月的施工情況進行評價並提出施工建議,及時反饋指導信息,調整施工參數,保證安全施工。
2.6.1監測資料的反饋程序
監測資料的反饋程序見下圖所示。

2.6.2監控信息的反饋程序
監測信息反饋流程見下圖所示:

『伍』 基於GIS的大型工程分布式光纖感測監測系統研究

基金項目:國家傑出青年基金項目(40225006),國家教育部重點項目(010886),南京大學985工程項目。

索文斌王寶軍施斌劉傑

(南京大學地球科學系地球環境計算工程研究所,南京,210093)

【摘要】BOTDR是一種新型的分布式光纖感測監測技術,其分布式、高精度、長距離、實時性、遠程式控制制等特點,已逐漸受到工程界的廣泛關注。由於監測是分布式的,所以得到的數據與地理位置具有重要的相關性。結合工程實踐中遇到的具體問題,研發了一套基於GIS的大型工程分布式光纖感測監測系統。本文重點論述系統的設計要求,包括設計目標、技術框架和特色功能。結合某隧道 BOTDR監測工程開發的一套相應的監測數據管理系統,實現了工程監測數據的採集與管理、監測結果的可視化、監測信息的對比查詢等功能,是一套集智能化分析與決策化管理為一體的多功能管理系統。

【關鍵詞】BOTDRGIS分布式光纖感測器監測系統

1引言

光纖感測技術以其良好的耐久性、抗腐蝕、抗電磁干擾,適合於在惡劣環境中長期工作等優點受到越來越多的工程建設者和科研人員的重視[~3]。BOTDR(Brillouin Optic Time-Domain Reflectometer)布理淵光時域反射計,作為新型的分布式感測技術,逐漸得到工程界的認可。日本、加拿大、瑞士等國已成功地將該技術應用到水壩、樁基、邊坡、堤岸等工程的監測中[~3]。我國自2001年由南京大學地球環境計算工程研究所率先從日本引進該技術以來,開展了大量的室內外實驗研究,並成功地完成了多個工程項目,取得了一系列重要的研究成果[4-7]

在具體應用中,BOTDR所提供的監測結果存在諸如直觀表現差、數據配准和空間定位困難、綜合管理功能弱等方面的缺陷,未經過系統培訓的工程技術人員,很難讀懂 BOTDR的監測結果,後期成果處理也非常繁瑣。本文針對大型工程分布式光纖感測監測領域存在的數據分析與管理中存在的不足,提出了一套比較切合工程實際的解決方案,並結合具體工程實例設計和開發了一套應用系統。實踐表明,該系統可以很好地實現對監測數據的採集與管理、監測結果的可視化顯示以及監測信息的對比查詢等功能。

2問題的提出

2.1 BOTDR的監測原理[1]

激光在光纖中傳播時,光波與光聲子相互作用即會產生布理淵散射光。當環境溫度的變化量不大(T≤5°)時,布理淵光頻率漂移量(vB)與光纖所受的應變數(ε)成正比,其關系式如下式所示:式中:υB(ε)表示光纖受到ε應變時的布理淵頻率漂移量;υB(0)表示光纖不受應變時的布理淵頻率漂移量;

為比例系數,約為0.5GHz;ε為光纖的實際應變數。

地質災害調查與監測技術方法論文集

為了得到沿光纖分布的應變信息,只需測量沿光纖分布的布理淵頻率漂移量的變化情況,沿光纖距離光源為Z長度的點可由下式求得:

地質災害調查與監測技術方法論文集

式中:c為光速,n為光纖折射率,T為自激光發射與接收到布理淵散射光所經歷的時間。

監測原理如圖1所示。

圖1BOTDR的應變監測原理圖

2.2 BOTDR在結果表現上存在的問題

在實際工程應用中,根據工程實際情況的不同,可按照不同的黏著方式將感測光纖粘貼在所需監測結構(或材料)的表面,從而獲得被粘貼結構(或材料的)沿光纖的徑向應變分布信息。但 BOTDR所提供的監測結果存在以下幾個方面的缺陷:

(1)海量數據的綜合管理缺陷。BOTDR提供的監測數據是沿光纖徑向的每一點的應變信息(點之間的間距和儀器的距離分解度相關),而這些點的應變信息是以數據點的形式給出的,造成原始數據繁多復雜。

(2)實際里程與監測結果的數據配准問題。分布式光纖感測器在實際鋪設過程中,出於定位需要,經常預留一些冗餘光纖,為了將所測得的應變數和實際的光纖里程對應起來,必須獲得發生應變部位距離光纖光源的實際里程,而 BOTRD提供的監測里程是光纖的實際長度(包括冗餘部分),並不是工程實際里程,也就是說監測結果與實際里程之間存在數據配准問題。

(3)監測結果的直觀表現不佳。BOTDR原始監測系統並不提供閾值設定功能,即對於特定的工程而言,我們必須人為地設定閾值尋找應變異常信息。

(4)實測數據影響因子多。BDTOR監測結果是在諸如溫度影響在內的多種因子的影響下測得的數據,未經處理的實測數據可信度差。

(5)缺乏面向最終用戶的監測數據。BOTDR監測結果是未經配准和處理的純文本文件,這些數據並不是面向最終用戶,而是面向具有 BOTDR操作經驗的科研人士,也就是說未經專業培訓的工程技術人員很難讀懂 BOTDR的原始成果。

3基於GIS的大型工程分布式光纖感測監測系統設計

3.1系統設計目標

針對上述所存在的問題,基於GIS的大型工程分布式光纖感測監測系統應該遵循以下的總體設計目標:

(1)完成對所監測工程的日常健康診斷,分析工程安全性。以應變分析為核心,建立工程安全評價體系,完成對影響規劃、管理、決策及科學研究的數據進行儲存更新、查詢檢索、智能評價、統計分析、類比判別和制圖製表等任務,提高工程管理質量和效率。

(2)利用BOTDR提供的數據,經系統處理後再配合工程實地調查數據,完成以工程質量為目標的各項監測工作。應用橫向縱向兩方面類比模式監測工程安全性,即利用不同光纖反饋回來的數據,以及同一根光纖不同時間測試的數據進行類比分析,得出工程可信的結果。

3.2系統技術框架

結合目前GIS的發展趨勢,並考慮工程實際的可操作性,系統應用ESRI公司提供的MapOb-jects組件,在Visual Basic 6.0環境下開發了以組件式GIS為核心的管理系統,系統的技術框架如圖2所示:

圖2系統技術框架圖

從圖2的技術框架圖中可以直觀地看出,系統設計以各種不同用戶的需求作為指導,並在開發中通過信息反饋不斷更新和完善系統功能及工作模式。系統以基礎地理及屬性資料庫為基礎利用GIS的開發實現空間數據的提取,結合光纖監測資料庫實現監測數據的配准以及可視化表示,以不斷更新和完善的管理與決策資料庫實現科學決策,構建集基礎功能、智能分析、決策管理於一體的多功能系統。

3.3系統的功能與特色

基於GIS的大型工程分布式光纖感測監測系統基本實現了如圖3所示功能。

從圖3可以看出,該系統基本上可以解決工程監測數據的採集與管理、監測結果的可視化顯示、監測結果的智能化分析,是一個以工程應用為目標,以監測結果為核心的多功能管理與智能化分析系統。

(1)圖層控制:系統載入多個圖層(ESRI的Shape文件、AutoCAD的DXF文件或圖像文件JPG、BMP、GIF、TIF等)。在使用中用戶可以通過圖層控制圖層是否可見、圖元顏色、可視化范圍、圖層順序等,以便於對特定圖層進行瀏覽。

圖3系統的功能與特色

(2)視圖控制:系統提供圖像的放大、縮小,全局顯示、局部顯示,漫遊等基本功能。

(3)動態標註:系統實現了空間任意位置的動態跟蹤標注。用戶點擊滑鼠後可隨時獲得滑鼠所在位置的屬性信息。

(4)數據維護:用戶可以選擇兩種不同方式查詢、檢索、更改數據,提供完善的從圖到屬性和從屬性到圖的數據查詢、檢索、更改方式。

(5)繪圖功能:系統提供自助的繪圖方式,用戶可按照自己的想法和要求新建圖層或者在原圖上自行繪制圖形,並根據程序提供的屬性表為數據添加屬性。

(6)元素選取:系統能夠識別圖中選取的元素,通過線、矩形、區域、多邊形、圓來拾取物體,並顯示拾取元素的屬性數據。當選中特定位置的光纖時,光纖以閃爍3次來回應用戶選中的光纖。

除上述功能之外,鑒於分布式光纖監測的工程特點,本系統還具備以下幾個特色功能:

(1)數據分析:系統以繪制專題應變曲線圖的方式提供數據分析功能。通過 BOTDR實測數據,繪制光纖應變曲線專題圖,根據不同的閾值設置不同顏色的應變曲線圖。

(2)數據配准:在實測數據與工程實際里程之間,根據實際工程光纖鋪設的特徵數據信息(光纖定位信息),系統提供一個精確的配准模塊,誤差小,應用性強。

(3)圖例顯示:系統提供獨特的圖例,便於工程管理。如,實際工程若鋪設5根光纖,並且光纖鋪設在不同牆面,採取二維示意圖顯示,可以繪制不同的圖例顯示,用以區別不同牆面鋪設的不同光纖。

(4)對比查詢:系統提供了由系統操作主界面至應變曲線繪制界面的對比查詢方式,用戶可選則從圖到曲線或從曲線到圖的兩種方式進行結果查詢,這樣,工程監測的質量和效率就大大提高了。

4工程應用實例

4.1工程概況

某隧道工程是一湖底隧道,全長約2.56km,其中湖底隧道長約1.66km,為雙向六車道,三箱室結構形式,其中左右兩個箱式為車行道,中間箱室為凈寬3m的管廊與檢修通道。隧道設計寬約32m,凈空高度4.5m,設計車速為60km/h。

2002年7月,隧道項目指揮部經反復調研和論證後,決定採用BOTDR技術進行隧道整體變形監測。2002年11月~12月,項目組完成了感測光纖鋪設,鋪設情況如圖4所示,並分階段對隧道變形進行監測。2003年1月~4月,為施工監測階段,2003年5月通車後至9月為常規監測階段。施工監測階段主要進行由於後期施工對隧道變形的影響以及隧道箱體接縫變形監測,監測頻率為2天/次。常規監測階段主要進行通車條件下隧道穩定性監測,監測頻率3~5次/周。

圖4某隧道光纖總體平面布置圖

4.2隧道工程監測數據管理的系統實現

4.2.1數據准備

系統的基本數據包括施工區域圖、隧道信息、光纖鋪設信息、光纖監測數據等四大類。這四類數據既包含了空間信息數據又包含了屬性數據,是構成系統數據結構的基礎,又是系統數據分析和管理的前提。

(1)施工區域圖。主要提供隧道基本信息與周邊環境狀況,用以確定施工地理信息、施工線路等,為繪制隧道二維示意圖提供標准。

(2)隧道信息。主要提供隧道縱剖面、橫剖面信息。橫剖面信息用於了解光纖鋪設里程和方位,縱剖面信息主要用於掌握具體施工操作面,為准確繪制隧道二維示意圖做數據基礎。

(3)光纖鋪設信息。主要提供感測光纖鋪設信息。擬鋪設的5條感測光纖處在隧道南洞、北洞不同的牆面上,每條光纖的實際鋪設長度與工程里程必有誤差,通過在鋪設過程中了解光纖定位信息,為數據配准模塊提供數據基礎。

(4)光纖監測數據。主要指 BOTDR實測應變數據,這些實測數據通過數據配准、閾值設定等系統轉換處理後,將得到精確的隧道不同位置的應變信息。

4.2.2系統工作流程

數據管理與分析是該系統的核心組成部分,是得到精確工程監測信息的重要組成部分。數據管理與分析主要靠以下流程來實現:

步驟一:數據准備

將BOTDR實測數據以*.txt文件存放到指定位置,以備數據處理調用。

步驟二:選擇光纖

在5根鋪設的光纖中,在主操作界面中點擊所需監測光纖,即完成所需光纖的選擇,點擊所選光纖時,與之相對應的系列在後台被調入。

步驟三:選擇系列

所謂系列,就是不同時間監測的不同光纖的應變信息和數據配准信息。選擇系列操作包括調入監測數據,選擇數據配准,設置隧道變形閾值等。

步驟四:應變分析

進行系列選擇之後,選擇繪制曲線,系統即在新窗口繪制出經數據配準的隧道整體應變分析圖。

除上述主要數據管理與分析功能之外,系統還設置了分段管理與分析的功能,即通過對所需監測段進行設置起點、設置終點操作,進行局部數據的管理與分析。另外,系統還提供了由圖到曲線(或曲線到圖)的對比查詢方式,選擇圖到曲線(或曲線到圖)的菜單項之後,圖和曲線完美地對應起來,並提供了閾值設定功能,做到自動預警,避免人為干擾。圖5至圖7顯示了系統數據與管理功能的操作界面,其中,圖5為數據分析界面,圖6為選擇系列界面,圖7為隧道應變分析曲線界面。

圖5數據分析界面圖

圖6選擇系列界面

圖7隧道應變分析曲線界面

5結語

綜上所述,應用GIS管理分布式光纖監測工程可實現海量數據的高效管理。GIS以其獨特的數據管理、查詢、檢索、分析模式成為工程管理的首選。它的海量數據分層管理、數據結果的可視化表現、實現雙向查詢、面向最終用戶的特點更顯示其理想的工程管理能力。具體的說,系統具有以下優點:

(1)系統改善了BOTDR原系統中海量數據的綜合管理模式,結果顯示更加清晰直觀。

(2)系統設置了數據配准、閾值管理等模塊,監測結果可直接應用,避免了人為判別的誤差,提高了工作效率。

(3)系統採用可視化顯示,面向最終用戶,無須對具體工程監測人員進行系統培訓。

(4)系統實現了工程監測數據的採集與管理、監測結果的可視化顯示、監測信息的對比查詢等功能,是一個集智能化分析與決策化管理為一體的多功能管理系統。

本系統以具體工程為實例,具有更加科學、高效、直觀、方便等優點,並減少了BOTDR監測結果的後期人為干擾,使得測試結果更加客觀、准確,有利於科學管理和提高效率。

參考文獻

[1]Hiroshige Ohno,Hiroshi Naruse,et al.Instrial Applications of the BOTDR Optical Fiber Strain sensor[J].Optical Fiber Technology 7,2001:45~64

[2]Inaudi D, Casanova N.Geo-structural monitoring with long-gage interferometric Sensors[A].Proceedings Of The Society Of Photo-Optical Instrumentation Engineers(SPIE),3995[C].Bellingham,WA:Spie-Int Society Optical Engineering,2000:164~174

[3]Ohno H, Naruse H,Kurashima T,et al.Application of Brillouin Scattering-Based Distributed Optical Fiber Strain Sensor to Actual Concrete Piles[J].IEICE Trans.Electron,2002,E85-C(4):945~951

[4]Shi B,Xu H Z,Zhang D,et al.A study on BOTDR application in monitoring deformation of a tunnel[A].Proc 1 st inter conf of structuraI health monitoring and intelligent infrastructure[C].Netherlands:A.A.Balkema,2003:1025~1030

[5]Ding Y,Shi B,Cui H L,et al.The stability of optic fiber as strain sensor under invariable stress[A].Proc 1 st inter conf of structural health monitoring and intelligent infrastructure[C].Netherlands:A.A.Balkema,2003:267~270

[6]Zhang D,Shi B,Xu H Z,et al.Application of BOTDR into structural bending monitoring[A].Proc 1 st inter conf of structural health monitoring and intelligent infrastructure[C].Netherlands:A.A.Balkema,2003:271~276

[7]Xu H Z,Shi B,Zhang D,et al.Data processing in the distributed strain measurement of BOTDR based on wavelet analysis[A].Proc 1 st inter conf of structural health monitoring and intelligent infrastructure[C].Netherlands:A.A.Balkema,2003:271~276

[8]Building Applicatins with MapObjects[M]USA.Enviromental System Research,Institute,Inc.1999

閱讀全文

與工程監測方法研究相關的資料

熱點內容
銅絲米數計算方法 瀏覽:837
感應電筆怎麼用使用方法 瀏覽:853
雀梅如何地栽方法 瀏覽:137
釘釘圖片合成編輯方法 瀏覽:838
120除以5簡便方法 瀏覽:484
鋁縮管連接方法 瀏覽:98
剖視圖常用的剖切方法 瀏覽:803
研究數學方法有哪些 瀏覽:145
甲醛檢測研究方法 瀏覽:444
加班工資計算方法是稅前還是稅後 瀏覽:894
導線測量方法及計算方法 瀏覽:35
治療神經功能紊亂方法 瀏覽:935
電動頭與閥門的連接方法 瀏覽:312
多夢的原因及治療方法 瀏覽:187
手殘黨綁鉤方法視頻 瀏覽:301
邁騰換舒適電腦匹配方法 瀏覽:696
額竇囊腫怎麼治療最好的方法 瀏覽:580
舌根靈活度最佳方法 瀏覽:489
實木樓梯扶手安裝方法 瀏覽:579
手工網紗花朵製作方法步驟 瀏覽:988