㈠ 特徵值怎麼求
求矩陣的全部特徵值和特徵向量的方法如下:
第一步:計算的特徵多項式;
第二步:求出特徵方程的全部根,即為的全部特徵值;
第三步:對於的每一個特徵值,求出齊次線性方程組:
的一個基礎解系,則的屬於特徵值的全部特徵向量是其中是不全為零的任意實數。
若是的屬於的特徵向量,則也是對應於的特徵向量,因而特徵向量不能由特徵值惟一確定.反之,不同特徵值對應的特徵向量不會相等,亦即一個特徵向量只能屬於一個特徵值。
(1)a的特徵值計算方法擴展閱讀
求特徵向量
設A為n階矩陣,根據關系式Ax=λx,可寫出(λE-A)x=0,繼而寫出特徵多項式|λE-A|=0,可求出矩陣A有n個特徵值(包括重特徵值)。將求出的特徵值λi代入原特徵多項式,求解方程(λiE-A)x=0,所求解向量x就是對應的特徵值λi的特徵向量。
判斷相似矩陣的必要條件
設有n階矩陣A和B,若A和B相似(A∽B),則有:
1、A的特徵值與B的特徵值相同——λ(A)=λ(B),特別地,λ(A)=λ(Λ),Λ為A的對角矩陣;
2、A的特徵多項式與B的特徵多項式相同——|λE-A|=|λE-B|。