❶ log的相乘怎麼算
log的乘法一般都用換底公式來解決:
log(a)b=log(s)b/log(s)a(括弧里的是底數)。
例如:log(2)3*log(3)4=log(2)3*log(2)4/log(2)3=log(2)4=2。
log(a)b=log(s)b/log(s)a(括弧里的是底數)的推導過程:
設log(s)b=M,log(s)a =N,log(a)b=R
則s^M=b,s^N=a,a^R=b
即(s^N)^R=a^R=b
s^(NR)=b
所以M=NR,即R=M/N,log(a)b=log(s)b/log(s)a。
(1)log的計算方法擴展閱讀:
對數的加減乘除運算規則:
1、a^(log(a)(b))=b
2、log(a)(a^b)=b
3、log(a)(MN)=log(a)(M)+log(a)(N)
4、log(a)(M÷N)=log(a)(M)-log(a)(N)
5、log(a)(M^n)=nlog(a)(M)
6、log(a^n)M=1/nlog(a)(M)
❷ log 是什麼 數學里的 在算的時候怎麼算
log是對數計算符號。
如果a的x次方等於N(a>0,且a不等於1),那麼數x叫做以a為底N的對數(logarithm),記作x=logaN。其中,a叫做對數的底數,N叫做真數。
對數相關運算公式示例如下:
1、alogab=b a^{log(a^b)}=b
2、loga(MN)=logaM+logaNlog{a^(MN)}=log(a^M)+log(a^N)
3、loga(M÷N)=logaM-logaN log{a^(M/N)}=log(a^M)-log(a^N)
4、loga(Mn)=nlogaM log{a^(M^n)}=nlog(a^M)
5、log(an)(M)=1/nlogaMlog{(a^n)^M}=1/nlog(a^M)
(2)log的計算方法擴展閱讀:
特別地,我們稱以10為底的對數叫做常用對數(common logarithm),並記為lg。
稱以無理數e(e=2.71828...)為底的對數稱為自然對數(natural logarithm),並記為ln。
對數在數學內外有許多應用。這些事件中的一些與尺度不變性的概念有關。例如,鸚鵡螺的殼的每個室是下一個的大致副本,由常數因子縮放。這引起了對數螺旋。Benford關於領先數字分配的定律也可以通過尺度不變性來解釋。對數也與自相似性相關。
例如,對數演算法出現在演算法分析中,通過將演算法分解為兩個類似的較小問題並修補其解決方案來解決問題。自相似幾何形狀的尺寸,即其部分類似於整體圖像的形狀也基於對數。
❸ log函數運算公式是什麼
logₐ(MN)=logₐM+logₐN
logₐ(M/N)=logₐM-logₐN
logₐ(1/N)=-logₐN
logₐ(ₐᵏ)=k
logₐMⁿ=nlogₐM
相關讀法
如果a的x次方等於N(a>0,且a≠1),那麼數x叫做以a為底N的對數(logarithm),記作x=logaN。
在簡單的情況下,乘數中的對數計數因子。更一般來說,乘冪允許將任何正實數提高到任何實際功率,總是產生正的結果,因此可以對於b不等於1的任何兩個正實數b和x計算對數。
❹ log的計算及其log的計算方法
你好:
log的計算及其log的計算方法
log(ab)=loga+lgb
log(a/b)=loga-lgb
loga+lgb=log(ab)
loga-lgb=log(a/b)
❺ log的公式
該式的意思是,計算以2為底的0.4的對數值。
您應該這樣計算:計算以10為底的0.4的對數=-0.398,以10為底的2的對數=0.301,然後兩者相除=-0.398÷0.301=-1.322。
❻ log的公式大全
如果a>0,且a≠1,M>0,N>0,那麼:
①loga(MN)=logaM+logaN;
②loga(M/N)=logaM-logaN;
③對logaM中M的n次方有=nlogaM;
如果a=e^m,則m為數a的自然對數,即lna=m,e=2.718281828…為自然對數的底。定義:
若a^n=b(a>0且a≠1)
則n=log(a)(b)
一般的,將底數為10的對數叫做常用對數,即lga=log10(a).
基本性質:
1、a^(log(a)(b))=b
2、log(a)(MN)=log(a)(M)+log(a)(N);
3、log(a)(M÷N)=log(a)(M)-log(a)(N);
4、log(a)(M^n)=nlog(a)(M)
5、log(a^n)M=1/nlog(a)(M)
❼ 高中數學log的公式是什麼
高中數學log的公式:log(a)(MN)=log(a)(M)+log(a)(N)。標准語言表達式 是若a=b(a>0且a≠1) 則n=logab 若a^n=b(a>0且a≠1)則n=log(a^b)。
"化乘除為加減",從而達到簡化計算的思路的方法,不正是對數運算的明顯特徵。其中納皮爾的這種計算方法,實際上已經完全是現代數學中"對數運算"的思想了。
性質分析
log,即對數運算的符號英語,是名詞logarithms縮寫而來。對數運算定義如下:若a=b(a>0且a≠1) 則n=logab。其中,a叫做"底數",b叫做"真數",n叫做"以a為底的b的對數"。零和負數沒有對數。當不寫底數時,一般默認以10為底數。
這兩行數字之間的關系是極為明確的:第一行表示2的指數,第二行表示2的對應冪。如果我們要計算第二行中兩個數的乘積,可以通過第一行對應數字的加和來實現。
❽ log怎麼計算
如果a的x次方等於N(a>0,且a不等於1),那麼數x叫做以a為底N的對數(logarithm),記作x=logaN。其中,a叫做對數的底數,N叫做真數。
計算方式:
根據2^3=8,可得log2 8=3。
(8)log的計算方法擴展閱讀:
推導公式
log(1/a)(1/b)=log(a^-1)(b^-1)=-1logab/-1=loga(b)
loga(b)*logb(a)=1
loge(x)=ln(x)
lg(x)=log10(x)
求導數
(xlogax)'=logax+1/lna
其中,logax中的a為底數,x為真數;
(logax)'=1/xlna
特殊的即a=e時有
(logex)'=(lnx)'=1/x[4]
❾ log 的計算方法
1、a^(log(a)(b))=b
2、log(a)(MN)=log(a)(M)+log(a)(N)
3、log(a)(M÷N)=log(a)(M)-log(a)(N)
4、log(a)(M^n)=nlog(a)(M)
5、lgM=log(10)(M)
上是增函數。
❿ log 在數學中的運算公式
1、如果a>0,且a≠1,M>0,N>0.那麼:
(1)loga(M·N)=logaM+logaN;
(2)logaNM=logaM-logaN;
(3)logaMn=nlogaM(n∈R).
(4)(n∈R).
2、換底公式
logab=logcalogcb(a>0,且a≠1;c>0,且c≠1;b>0)
(10)log的計算方法擴展閱讀
對數函數的運算性質的難點:
一、底數不統一
對數的運算性質是建立在底數相同的基礎上的,但實際問題中,卻經常要遇到底數不相同的情況,碰到這種情形,主要有三種處理的方法:
1、化為指數式
對數函數與指數函數互為反函數,它們之間有著密切的關系:logaN=bab=N,因此在處理有關對數問題時,經常將對數式化為指數式來幫助解決。
2、利用換底公式統一底數
換底公式可以將底數不同的對數通過換底把底數統一起來,然後再利用同底對數相關的性質求解。
3、利用函數圖象
函數圖象可以將函數的有關性質直觀地顯現出來,當對數的底數不相同時,可以藉助對數函數的圖象直觀性來理解和尋求解題的思路。