导航:首页 > 使用方法 > 常用审敛方法

常用审敛方法

发布时间:2022-01-24 06:41:50

① 【比较审敛法】常常拿来比较的级数有哪些

主要是两类,教材上有讲
一.几何级数,表示等比数列的前n项和,又称为等比级数。

② 高数 请详细说一下 比较审敛法与比较审敛法的极限形式的运用

比较审敛法就相当于放缩,他的极限形式经常把Vn设为n的有理分式,n的对数,n正弦正切,调和级数,Un的等价无穷小

③ 比较审敛法经典例题

lim n^(1/n)) =1
∑(n=1,n→∞) 1/(n*n^(1/n)) 与∑1/n敛散性相同,原级数发散.

如何用比较审敛法判断收敛性

⑤ 用比较审敛法判断级数敛散性

解:①小题,设vn=1/n,un=1/[n*n^(1/n)],则l=lim(n→∞)vn/un=lim(n→∞)n^(1/n)=e^[lim(n→∞)lnn/n]=1。∴根据比值审敛法,∑vn与∑un具有相同的敛散性。
而,∑vn为p=1的p-级数,发散。∴级数∑1/[n*n^(1/n)]发散。
②小题,当0<a<1时,lim(n→∞)1/(1+a^n)=1≠0,按照级数收敛的必要条件可知,其发散。当a=1时,显然,∑1/(1+a^n)→∞,发散。当a>1时,设vn=1/a^n,un=1/(1+a^n)],则l=lim(n→∞)vn/un=lim(n→∞)(1+a^n)/a^n=1。∴根据比值审敛法,∑vn与∑un具有相同的敛散性。
而,∑vn为首项为1/a、公比q=1/a的等比数列,且丨q丨<1,∴∑vn收敛。
∴综上所述,0<a≤1时,级数∑1/(1+a^n)发散;a>1时,级数∑1/(1+a^n)收敛。
供参考。

⑥ 高数 审敛法

首先必须是正项级数,然后根据通项优先考虑比值审敛法或根值审敛法,如果你用这两种方法得出极限值为1,无法判定敛散性,这两种方法失效,这时候一般用比较审敛法是有效的。前两种审敛法简单粗暴,但是适用范围有效,一旦极限值为1,就没有用了,比较审敛法适用范围更广,但是蛋疼的在于怎么找一个已知的级数用来有效地判定所求级数的敛散性,感觉还是多做题就好了

⑦ 比较”审敛法,有些常用的级数作比较,我就想知道有哪些常用的级数可以作比较。有谁能告诉我吗

当 a>1 时,
1/(1+a^n)<1/(a^n)=a^(-n),
而Σa^(-n) 收敛,据比较判别法得知原级数收敛;
当 01/2,
不以 0 为极限,故据级数收敛的必要条件得知原级数发散。

⑧ 比较审敛法找基本级数的方法

一般找p级数来比较,看1/n^p 的p是否大于1.
比如第一个,显然 n/(n^2+1)>n/(n^2+n^2)=1/(2n)
1/n为调和级数,发散,所以原级数发散
第二个,分子总是在[-π/2,π/2],所以,只要需要看分母
由p级数的性质,分母阶次为3/2>1, 则级数收敛!

⑨ 比较审敛法极限形式

请仔细看看比较申敛法的极限形式的叙述,你就不会有这样的疑问了.
另外,一般项趋于0是级数收敛的必要条件,也就是说只要级数收敛,则一般项必趋于0,即只要一般项不趋于0,则级数必发散.

阅读全文

与常用审敛方法相关的资料

热点内容
西餐的使用方法视频 浏览:513
材料分析方法的总复习 浏览:153
器材锻炼肌肉最快的方法 浏览:986
检查皮肤癣菌用什么染色方法 浏览:203
喜糖伴手礼连接方法 浏览:675
问题讨论教学方法的合理性 浏览:678
除数竖式的简便方法 浏览:733
后座垫套座套安装方法 浏览:536
社会研究方法教程考点 浏览:857
二保焊的焊接方法和技巧图解 浏览:495
工厂生产面包的制作方法和步骤 浏览:675
男声优的训练方法 浏览:412
自拍神器杆使用方法 浏览:404
教材比较研究的方法 浏览:234
什么方法分析报纸不用检验信效度 浏览:652
墙靠边停车方法及技巧 浏览:776
有多少种方程以及解决方法 浏览:239
列举三种鉴别浓硫酸浓盐酸的方法 浏览:745
解方程简便算式方法 浏览:655
板子忽高忽低的解决方法 浏览:50