导航:首页 > 使用方法 > 三角函数常用解题方法

三角函数常用解题方法

发布时间:2022-08-06 02:26:33

1. 三角函数的求值方法有几种

方法归纳:
(1)利用三角函数的定义求一个角的三角函数值需要明确三个量:角的终边上任意一个异于原点的点的横坐标X,纵坐标Y,该点到原点的距离r
(2)当求角a的终边上点的坐标时,要根据角的范围,结合三角函数进行求解
(3)同角三角函数间的关系应注意正确选择公式,注意公式应用的条件。
题型二:结合条件等式进行化简求值
方法归纳:
(1)给式求值:给出某些式子的值,求其它式子的值。解此类问题,一般应先将所给式子变形,将其转化成所求函数式能使用的条件,或将所求函数式变形为可使用条件的形式。
(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系。
(3)给值求角:解此类问题的基本方法是:先求出“所求角”的某一三角函数,再确定“所求角”的范围,最后借助三角函数图象、诱导公式求角。
题型三:向量与三角求值结合
平面向量与三角函数交汇点较多,向量的平行、垂直、夹角、数量积等知识都可以与三角函数进行交汇,不论是哪类向量知识与三角函数的交汇试题,都会出现交汇问题中的难点,对此类问题的解决方法就是利用向量的知识条件转化为三角函数中的“数量关系”,在利用三角函数的相关知识进行求解

2. 三角函数解题思路和技巧

三角函数解题思路和技巧:
求三角函数值的问题,可依循三种途径:
1、先化简再求值,将式子化成能够利用题设已知条件的最简形式;
2、从已知条件出发,选择合适的三角公式进行变换,推出要求式的值;
3、将已知条件与求值式同时化简再求值。

3. 三角函数的解题方法有哪些

高考最常考的就是把三角函数与必修5的解三角形结合起来,要求你要掌握:
降幂公式(sinxcosx=1/2sin2x;(cosx)的平方=(1+cos2x)/2;(sinx)的平方=(1-cos2x)/2);
辅助角公式(asinx+bcosx=根号下(a的平方+b的平方)乘sin(x+y))
通过应用这两个公式就可以把函数类型转换成y=Asin(wx+y)的形式,那有关此三角函数的一切性质(最值、周期、单调、对称中心、对称轴、奇偶性、平移)就可以迎刃而解了。
不知道你学没学必修5,如果是高二的学生,那三角还会和不等式结合在一起考!
这个是高考最常见的大题,此类问题属于易、中、难之中的易。
其实三角函数问题,最重要的就是牢记公式,必须记!然后学以致用!

4. 三角函数解法有哪些

三类:
一)同角三角函数的基本关系:
(sinθ)^2+(cosθ)^2=1;
tanθcotθ=sinθcscθ=cosθsecθ=1;
(secθ)^2-(tan^θ)^2=(cscθ)^2-(cosθ)^2=1
二)诱导公式,在360°内的变换(角度制):
取值 sinθ cosθ tanθ
α sinα cosα tanα
-α -sinα cosα -tanα
180+α -sinα -cosα tanα
180-α sinα -cosα -tanα
360+α sinα cosα tanα
360-α -sinα cosα -tanα
90+α cosα -sinα -cotα
90-α cosα sinα cotα
270+α -cosα sinα -cotα
270-α -cosα -sinα cotα
三)两个角的变换关系,不属于初中内容:
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
以此四个公式为基础,可推导出其他公式。

用以上这些公式可以计算很多几何,代数,微积分,解析几何等等
三角函数微积分公式
微积分公式
Dx sin x=cos x
cos x = -sin x
tan x = sec2 x
cot x = -csc2 x
sec x = sec x tan x
csc x = -csc x cot x
sin x dx = -cos x + C
cos x dx = sin x + C
tan x dx = ln |sec x | + C
cot x dx = ln |sin x | + C
sec x dx = ln |sec x + tan x | + C
csc x dx = ln |csc x - cot x | + C
sin-1(-x) = -sin-1 x
cos-1(-x) = - cos-1 x
tan-1(-x) = -tan-1 x
cot-1(-x) = - cot-1 x
sec-1(-x) = - sec-1 x
csc-1(-x) = - csc-1 x
Dx sin-1 ()=
cos-1 ()=
tan-1 ()=
cot-1 ()=
sec-1 ()=
csc-1 (x/a)=
sin-1 x dx = x sin-1 x++C
cos-1 x dx = x cos-1 x-+C
tan-1 x dx = x tan-1 x- ln (1+x2)+C
cot-1 x dx = x cot-1 x+ ln (1+x2)+C
sec-1 x dx = x sec-1 x- ln |x+|+C
csc-1 x dx = x csc-1 x+ ln |x+|+C
sinh-1 ()= ln (x+) xR
cosh-1 ()=ln (x+) x≥1
tanh-1 ()=ln () |x| 1
sech-1()=ln(+)0≤x≤1
csch-1 ()=ln(+) |x| >0
Dx sinh x = cosh x
cosh x = sinh x
tanh x = sech2 x
coth x = -csch2 x
sech x = -sech x tanh x
csch x = -csch x coth x
sinh x dx = cosh x + C
cosh x dx = sinh x + C
tanh x dx = ln | cosh x |+ C
coth x dx = ln | sinh x | + C
sech x dx = -2tan-1 (e-x) + C
csch x dx = 2 ln || + C

5. 三角函数解题思路和技巧

三角函数解题思路和技巧:

求三角函数值的问题,可依循三种途径:

1、先化简再求值,将式子化成能够利用题设已知条件的最简形式;

2、从已知条件出发,选择合适的三角公式进行变换,推出要求式的值;

3、将已知条件与求值式同时化简再求值。

一、直接法

顾名思义,就是直接进行正确的运算和公式变形,结合已知条件,得到正确的答案。三角函数中大量的题型都是根据该方法求值解答的,需要对三角函数的基本公式要牢牢掌握。

二、换元法

换元法就是用一个量替代另一个量,发现题设中(隐含)条件,进行带式替换,从而将三角函数求值转变成代数式求值。

三、比例法

对三角等式变形,找出与之有关的函数值,利用比例性质,对三角函数值进行计算。

(5)三角函数常用解题方法扩展阅读:

三角函数的常见技巧性公式:

1、sin(A+B)=sinAcosB+cosAsinB

2、sin(A-B)=sinAcosB-sinBcosA

3、cos(A+B)=cosAcosB-sinAsinB

4、cos(A-B)=cosAcosB+sinAsinB

5、tan(A+B)=(tanA+tanB)/(1-tanAtanB)

6、tan(A-B)=(tanA-tanB)/(1+tanAtanB)

6. 数学三角函数常见题型及解题策略

常见题型:
1、解三角形——这个需要掌握根据正弦余弦定理进行边角互化,学会类比SSS,SAS,ASA,AAS等全等三角形判定定理和大边对大角等性质确定三角形的唯一性,SSA可能有两种解。
2、三角函数定义,单位圆,诱导公式,和角公式,差角公式,倍角公式,半角公式,切割化弦,和差化积,积化和差,万能公式。已知三角函数值求角注意先确定角的范围。
3、三角函数图像的性质。单调区间,对称轴,对称中心,周期的求法。图像变换——平移变换,周期变换,相位变换,伸缩变换等。

7. 高中三角函数解题有什么技巧

第一,死记硬背,把所有三角函数公式背熟,不管是积化和差还是和差化积,以及常用三角函数比如30°,45°,60°,90°,15°,75°的各种三角函数值背熟;


第二,熟练画出三角函数图像,知道三角函数的周期规律;


第三,做题总结,有信心。相信按着某一个方向三角函数的换算一定会成功,只是多写几步;


第四,融会贯通。没有难的三角函数,只有懒的学生。

8. 三角函数的解题思路方法一般是。。。

三角函数解题方法与技巧 (1)
角的变换
在三角函数的求值、化简与证明题中,表达式往往出现较多的相异角,此时可根据角与角之间的和差、倍半、互余、互补的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解。常见角的变换方式有:;;;等等。
例1、已知,求证:。
分析:在条件中的角和 与求证结论中的角是有联系的,可以考虑配凑角。
解:,,

函数名称的变换
三角函数变换的目的在于“消除差异,化异为同”。而题目中经常出现不同名的三角函数,这就需要将异名的三角函数化为同名的三角函数。变换的依据是同角三角函数关系式或诱导公式。如把正(余)切、正(余)割化为正、余弦,或化为正切、余切、正割、余割等等。常见的就是切割化弦。
例2 、(2001年上海春季高题)已知 ,试用表示的值。
分析:将已知条件“切化弦”转化为的等式。
解:由已知;


常数的变换
在三角函数的、求值、证明中,有时需要将常数转化为三角函数,例如常数“1”的变换有:,,等等。
例3、(2004年全国高考题)求函数的最小正周期,最大值和最小值。
分析:由所给的式子可联想到。
解:


所以函数的最小正周期是,最大值为,最小值为。
公式的变形与逆用
在进行三角变换时,我们经常顺用公式,但有时也需要逆用公式,以达到化简的目的。通常顺用公式容易,逆用公式困难,因此要有逆用公式的意识。教材中仅给出每一个三角公式的基本形式,如果我们熟悉其它变通形式,常可以开拓解题思路。如由可以变通为与;由可变形为等等。
例4、求的值。
分析:先看角,都是,再看函数名,需要切割化弦,最后在化简过程中再看变换。
解:原式(切割化弦)

(逆用二倍角公式)
(常数变换)
(逆用差角公式)
(逆用二倍角公式)。
这里我们给出了四种三角函数的变换方法与技巧,在处理三角函数问题的过程中若能注意到这些变换的方法与技巧,将有利于我们对三角函数这一章内容的理解。
三角函数变换的方法与技巧(2)
在上一部分我们介绍了部分三角函数的娈换技巧与方法,下面我们再介绍四种变换的方法与技巧:
引入辅助角
可化为,这里辅助角所在的象限由的符号确定,角的值由确定。
例5、求的最大值与最小值。
分析:求三角函数的最值问题的方法:一是将三角函数化为同名函数,借助三角函数的有界性求出;二是若不能化为同名,则应考虑引入辅助角。
解:

其中,,
当时,;
当时,。
注:在求三角函数的最值时,经常引入辅助角,然后利用三角函数的有界性求解。
幂的变换
降幂是三角变换时常用的方法,对于次数较高的三角函数式,一般采用降幂处理的方法。常用的降幂公式有:,和
等等。降幂并非绝对,有时也需要升幂,如对于无理式常用升幂化为有理式。
例6、化简。
分析:从“幂”入手,利用降幂公式。
解:原式

消元法
如果所要证明或要求解的式子中不含已知条件中的某些变量,可以使用消元法消去此变量,然后再求解。
例7、求函数的最值。
解:原函数可变形为:,即

解得:,。
变换结构
在三角变换中,常常对条件、结论的结构施行调整,或重新分组,或移项,或变乘为除,或求差等等。在形式上有时须和差与积互化,分解因式,配方等。
例8、化简。
分析:本题从“形式”上看,应把分析式化为整式、故分子分母必有公因式,只需把分子分母化成积的形式。
解:

所以。
九、思路变化
对于一道题,思路不同,方法出随之不同。通过分析,比较,才能选出思路最为简例9、求函数 的最大值。
解:由于,则为点与点()连线的斜率。则斜率最为当连线与半单位圆相切时,如图所示:
此时, 。
捷的方法。

9. 三角函数的解法

你需要牢记公式才能够灵活运用。我们也是在初三初次学习三角函数,高一正式接触。高中的三角函数不是很难,只要用心学习,就会觉得很轻松的。
sinx= 对边/斜边
cosx= 临边/斜边
tanx= 对边/临边
secx= 1/cosx=斜边/临边

正弦函数 sin(A)=a/h

余弦函数 cos(A)=b/h

正切函数 tan(A)=a/b

余切函数 cot(A)=b/a

正割函数 sec (A) =h/b

余割函数 csc (A) =h/a
注:a—所研究角的对边
b—所研究的邻边
h—所研究角的斜边

三角函数常用公式:
同角三角函数间的基本关系式:
·平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
·商的关系:
tanα=sinα/cosα cotα=cosα/sinα
·倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1

三角函数恒等变形公式:
·两角和与差的三角函数:
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

·倍角公式:
sin(2α)=2sinα·cosα
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]

·三倍角公式:
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα

·半角公式:
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα

·万能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]

·积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

·和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
参考资料:http://ke..com/view/91555.htm

阅读全文

与三角函数常用解题方法相关的资料

热点内容
白癫治疗佳方法 浏览:913
宗教研究的方法与理论 浏览:525
改善头油有什么方法 浏览:377
小芒果怎么保存方法 浏览:273
胖子要减肥有哪些方法 浏览:424
铃声下载到手机的简单方法 浏览:87
蜂场鉴定最简单的方法 浏览:345
胃病幽门杆菌四联单治疗方法 浏览:138
75x32x125的简便方法是什么 浏览:634
慢性前列腺治疗方法 浏览:658
龋齿上海哪里治疗方法 浏览:54
佳音使用方法 浏览:569
威海市灵活就业退休金计算方法 浏览:714
电脑广告背胶的制作方法 浏览:470
手机关机的快速方法 浏览:581
贵州花式鲜炖燕窝的食用方法 浏览:782
简便方法算最小公倍数 浏览:593
hbv检测方法 浏览:834
石桌椅安装方法 浏览:658
困难的原因和解决方法 浏览:32