㈠ 高中数学数列求解方法
①等差数列和等比数列有通项公式
②累加法:用于递推公式为
且f(n)可求积
④构造法:将非等差数列、等比数列,转换成相关的等差等比数列
⑤错位相减法:用于形如数列由等差×等比构成:如an=n·2^n
数列问题解题方法技巧
1.判断和证明数列是等差(等比)数列常有三种方法:
(1)定义法:对于n≥2的任意自然数,验证 为同一常数。
(2)通项公式法:
①若 = +(n-1)d= +(n-k)d ,则 为等差数列;
②若 ,则 为等比数列。
(3)中项公式法:验证中项公式成立。
2. 在等差数列 中,有关 的最值问题——常用邻项变号法求解:
(1)当 >0,d<0时,满足 的项数m使得 取最大值.
(2)当 <0,d>0时,满足 的项数m使得取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
3.数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。
三、数列问题解题注意事项
1.证明数列 是等差或等比数列常用定义,即通过证明 或 而得。
2.在解决等差数列或等比数列的相关问题时,“基本量法”是常用的方法,但有时灵活地运用性质,可使运算简便,而一般数列的问题常转化为等差、等比数列求解。
3.注意 与 之间关系的转化。如:
= , = .
4.数列极限的综合题形式多样,解题思路灵活,但万变不离其宗,就是离不开数列极限的概念和性质,离不开数学思想方法,只要能把握这两方面,就会迅速打通解题思路.
5.解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向,形成解题策略.原文链接: http://www.90house.cn/shuxue/shi/288.html
㈢ 数学高中数列10种解题技巧有哪些
一、高中数列,有规律可循的类型无非就是两者,等差数列和等比数列,这两
者的题目还是比较简单的,要把公式牢记住,求和,求项也都是比较简单的,公式的运用要熟悉。
二、题目常常不会如此简单容易,稍微加难一点的题目就是等差和等比数列的
一些组合题,这里要采用的一些方法有错位相消法。
三、题目变化多端,往往出现的压轴题都是一些从来没有接触过的一些通项,
有些甚至连通项也不给。针对这两类,我认为应该积累以下的一些方法。
四、对于求和一类的题目,可以用柯西不等式,转化为等比数列再求和,分母的放缩,数学归纳法,转化为函数等方法等方法。
五、对于求通项一类的题目,可以采用先代入求值找规律,再数学归纳法验
证,或是用累加法,累乘法都可以。
㈣ 关于高中数列的常见解题思路
1;有递推公式求通向公式,这个有点难度那得看递推公式了
一般有累加法
累乘法
有一种典型的递推公式要设未知数大题中考的比较频繁的是把给的递推公式经过等价的变形后的某种形式是等比数列或等差数列你应该做过这样的题吧?高三时貌似经常做这样的题,还有种是最难的了
貌似只有高考如果最后个大题是数列才会这样考,就是用数学归纳求。这种别乱用啊
只有在其他方法不管用是才用
至于用递推求通向就不用我讲了吧
令n=n-1代入原式出来一个新式用两个式子一起求
很简单
2;等比和等差不用我说了吧
还有一种叫错位相减求和,这种只适用于一个数列可以写成一个等差乘以一个等比数列形式的数列,在n个式子相加的形式
令n=n-1得到一个式子在令两式子相减可转化成等比数列的求和
还有列项相消
这种只适用于相除的数列形式一定要注意!!!!重点:注意观察裂开后拿项和那项可以消去
有的一个消一个
但有的是两个消两个
两个的容易错
3;啥叫差比数列啊?
4;在1;种有提及一般有两种形式第一种
是明着用数学归纳
这种简单
一般有三问
第一问求第二项第三项第四项或更多
第二问
有第一问求出来的
猜想通向
第三问用数学归纳证明
第二是暗着的
就是不明告诉你用数学归纳
一般在用所有方法都不行时在用这个方法
难点在于你一点要猜想对
才能证明对
5;这种最常考的是数列不等式用数学归纳证明不等式成立或用函数单调性证明不等式成立一般是比较喃的
6;应用题吗主要是理解题意
然后转化成数列模型
在用个以上数列地方法解决就行理解题意!!!2/3的时间用在理解题意上呢切记切记
7;利用不动点列出一个等式,这个等式几乎就是通向,在用通向解决吧
打这么多字挺累的
这事我高中时的总结
岁有很多忘记了
但想起来的
我都写上了
如果还有什么疑问
我尽量帮你解决
希望会对你有用!
㈤ 数学高中数列10种解题技巧
答题技巧一、高中数列,有规律可循的类型无非就是两者,等差数列和等比数列,这两者的题目还是比较简单的,要把公式牢记住,求和,求项也都是比较简单的,公式的运用要熟悉。
答题技巧二、题目常常不会如此简单容易,稍微加难一点的题目就是等差和等比数列的一些组合题,这里要采用的一些方法有错位相消法。
答题技巧三、题目变化多端,往往出现的压轴题都是一些从来没有接触过的一些通项,有些甚至连通项也不给。针对这两类,我认为应该积累以下的一些方法。
答题技巧四、对于求和一类的题目,可以用柯西不等式,转化为等比数列再求和,分母的放缩,数学归纳法,转化为函数等方法等方法
答题技巧五、对于求通项一类的题目,可以采用先代入求值找规律,再数学归纳法验证,或是用累加法,累乘法都可以。
答题技巧六、总之,每次碰到一道陌生的数列题,要进行总结,得出该类的解题方法,或者从中学会一种放缩方法,这对于以后很有帮助。
㈥ 数学高中数列10种解题技巧是什么
如下:
一、高中数列,有规律可循的类型无非就是两者,等差数列和等比数列,这两者的题目还是比较简单的,要把公式牢记住,求和,求项也都是比较简单的,公式的运用要熟悉。
二、题目常常不会如此简单容易,稍微加难一点的题目就是等差和等比数列的一些组合题,这里要采用的一些方法有错位相消法。
三、题目变化多端,往往出现的压轴题都是一些从来没有接触过的一些通项,有些甚至连通项也不给。针对这两类,我认为应该积累以下的一些方法。
四、对于求和一类的题目,可以用柯西不等式,转化为等比数列再求和,分母的放缩,数学归纳法,转化为函数等方法等方法。
五、对于求通项一类的题目,可以采用先代入求值找规律,再数学归纳法验证,或是用累加法,累乘法都可以。
㈦ 高中数学数列答题技巧有哪些
(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
(3)数列的应用问题,其中主要是以增长率问题为主。
试题的难度有三个层次,小题多以基础题为主,解答题多以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题,难度较大。
接下来为大家介绍下高中数列解题中,经常会用到的几种方法,大家可以按照这个解题思路来回答数列相关的问题,掌握了这几点并融会贯通,你会发现,数列其实并不难。
(1)函数的思想方法
数列本身就是一个特殊的函数,而且是离散的函数,因此在解题过程中,尤其在遇到等差数列与等比数列这两类特殊的数列时,可以将它们看成一个函数,进而运用函数的性质和特点来解决问题。
(2)方程的思想方法
数列这一章涉及了多个关于首项、末项、项数、公差、公比、第n项和前n项和这些量的数学公式,而公式本身就是一个等式,因此,在求这些数学量的过程中,可将它们看成相应的已知量和未知数,通过公式建立关于求未知量的方程,可以使解题变得清晰、明了,而且简化了解题过程。
(3)不完全归纳法
不完全归纳法不但可以培养学生的数学直观,而且可以帮助学生有效的解决问题,在等差数列以及等比数列通项公式推导的过程就用到了不完全归纳法。
(4)倒序相加法
等差数列前n项和公式的推导过程中,就根据等差数列的特点,很好的应用了倒序相加法,而且在这一章的很多问题都直接或间接地用到了这种方法。
(5)错位相减法
错位相减法是另一类数列求和的方法,它主要应用于求和的项之间通过一定的变形可以相互转化,并且是多个数求和的问题。等比数列的前n项和公式的推导就用到了这种思想方法。
㈧ 高中数列问题常用解题方法
数列的求和
求数列的前n项和Sn,重点应掌握以下几种方法:
1.倒序相加法:如果一个数列{an},与首末两项等距的两项之和等于首末两项之和,可采用把正着写和与倒着写和的两个和式相加,就得到一个常数列的和,这一求和的方法称为倒序相加法.
2.错位相减法:如果一个数列的各项是由一个等差数列与一个等比数列对应项乘积组成,此时求和可采用错位相减法.
3.分组转化法:把数列的每一项分成两项,或把数列的项“集”在一块重新组合,或把整个数列分成两部分,使其转化为等差或等比数列,这一求和方法称为分组转化法.
4.裂项相消法:把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,在求和时一些正负项相互抵消,于是前n项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法.
5.公式法求和:所给数列的通项是关于n的多项式,此时求和可采用公式法求和,常用的公式有:
6.无穷递缩等比数列求和公式:
考点练习
1.数列{an}的前n项和Sn=n2+1,则an= _____________.
2.已知{an}的前n项和Sn=n2-4n+1,则|a1|+|a2|+…|a10|=( )
(A)67 (B)65
(C)61 (D)56
3.一个项数是偶数的等比数列,它的偶数项的和是奇数项和的2倍,又它的首项为1,且中间两项的和为24,则此等比数列的项数为( )
(A) 12 (B) 10
(C) 8 (D) 6
4.计算机是将信息转换成二进制进行处理的,二进制即“逢2进1”,如(1101)2表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数(111…11)2位转换成十进制形式是( )
(A) 217-2 (B) 216-2 (C) 216-1 (D)215-1
5.数列 的前n项之和为Sn,则Sn的值得等于( )
(A) (B)
(C) (D)
6、设 利用课本中等差数列前n项和公式的推导方法,求
f(–5)+f(–4)……+f(0)+……+f(5)+f(6)的值为__________.
典型题选讲
1.求下列各数列前n项的和Sn:
(1) 1×4,2×5,3×6,…n(n+3);
(2)
(3)
【解题回顾】对类似数列(3)的求和问题,我们可以推广到一般情况:设{an}是公差为d的等差数列,则有
特别地,以下等式都是①式的具体应用:
上述方法也称为“升次裂项法”.
2.求数列a,2a2,3a3,…,nan,…(a为常数)的前n项的和.
【解题回顾】若一个数列的各项是由一个等差数列与一个等比数列的对应项乘积组成,则求此数列的前n项和多采用错位相减法.
3.已知数列{an}中的a1=1/2,前n项和为Sn.若Sn=n2an,求Sn与an的表达式.
【解题回顾】
当本题解出Sn+1/Sn=(n+1)2/(n+2)n,下面要想到迭代法求Sn,(即选乘),同样如得出Sn+1-Sn=f(n),可用迭差.
4.若数列{an}中,an=-2[n-(-1) n],
求S10和S99 .
【解题回顾】若构成数列的项中含有(-1)n,则在求和Sn时,一般要考虑n是奇数还是偶数.
5.等比数列的首项为a,公比为q,Sn为前n项的和,求S1+S2+……+Sn.
6.在数列{an}中,an>0, 2√Sn = an +1(n∈N)
①求Sn和an的表达式;
②求证:
【解题回顾】利用 ,再用裂项法求和.利用
此法求和时,要细心观察相消的规律,保留哪些项等.必要时可适当地多写一些项,防止漏项或增项.
误解分析
1.求数列通项时,漏掉n=1时的验证是致命错误.
2.求数列前n项和时,一定要数清项数,选好方法,否则易错.
㈨ 高考数列题型及解题方法
2020高考数学题型之数列
链接: https://pan..com/s/1-LRqsp8Y6B6vWM_VZPQ8PA
若资源有问题欢迎追问~
㈩ 高中数学大题解题方法有哪些
一、三角函数题
注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。
二、数列题
1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;
2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
3.证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。
三、立体几何题
1.证明线面位置关系,一般不需要去建系,更简单;
2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;
3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
四、概率问题
1.搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;
2.搞清是什么概率模型,套用哪个公式;
3.记准均值、方差、标准差公式;
4.求概率时,正难则反(根据p1+p2+...+pn=1);
5.注意计数时利用列举、树图等基本方法;
6.注意放回抽样,不放回抽样;
7.注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;
8.注意条件概率公式;
9.注意平均分组、不完全平均分组问题。
五、圆锥曲线问题
1.注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;
2.注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;
3.战术上整体思路要保7分,争9分,想12分。
六、导数、极值、最值、不等式恒成立(或逆用求参)问题
1.先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);
2.注意最后一问有应用前面结论的意识;
3.注意分论讨论的思想;
4.不等式问题有构造函数的意识;
5.恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);
6.整体思路上保6分,争10分,想14分。