⑴ 遇到a*b-c这种算式怎么简便计算
遇到a×b-c的简便计算时,要把c给拆分掉
分为a×d或b×d的形式,这样原式变为:a×b-a×d或a×b-b×d的形式
再进一步化简为:a×(b-d)或b×(a-d),这样就可以进行简便计算了
举一个简单的例子例:
25×16-200
=25×16-25×8
=25×(16-8)
=25×8
=200
⑵ a乘一b减a乘c脱式简便
a乘一b减a乘c脱式简便
a*b-a*c
=a*(b-c)
乘法分配律
⑶ a乘以b减去c乘以b用字母表示简便算法的算式等于什么
a乘以b减去c乘以b用字母表示简便算法的算式等于什么
a乘以b减去c乘以b
=b*(a-c)
乘法分配律
答
⑷ a-b-c =( )用简便方法计算
简便计算
a-b-c
=a-(b+c)
也可以先减去b,然后减去c
⑸ A乘B减A怎么算
A乘(1减B乘C)为什么呢? 减号怎么就变成乘了呢? 反过来想 a×(1-b×c) =a×1-a×b×c =a-(a×b×c) 很简单… A乘(1减B乘
⑹ a×b+a÷c用简便方法计算
应用乘法分配率的逆运算,
a×b+a÷c=a×b+a×1/c=a×(b+1/c)=a×(bc+1)/c
⑺ 简便方法计算
提取公因式
这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。
注意相同因数的提取。
例如:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
利用公式法
(1) 加法:
交换律,a+b=b+a,
结合律,(a+b)+c=a+(b+c).
(2) 减法运算性质:
a-(b+c)=a-b-c,
a-(b-c)=a-b+c,
a-b-c=a-c-b,
(a+b)-c=a-c+b=b-c+a.
(3):乘法(与加法类似):
交换律,axb=bxa,
结合律,(axb)xc=ax(bxc),
分配率,(a+b)xc=ac+bc,
(a-b)*c=ac-bc.
(4) 除法运算性质(与减法类似):
a÷(b*c)=a÷b÷c,
a÷(b÷c)=a÷bxc,
a÷b÷c=a÷c÷b,
(a+b)÷c=a÷c+b÷c,
(a-b)÷c=a÷c-b÷c.
前边的运算定律、性质公式很多是由于去掉或加上括号而发生变化的。其规律是同级运算中,加号或乘号后面加上或去掉括号,后面数值的运算符号不变。
例 题
例1:
283+52+117+148
=(283+117)+(52+48)
(运用加法交换律和结合律)。
减号或除号后面加上或去掉括号,后面数值的运算符号要改变。
例2:
657-263-257
=657-257-263
=400-263
(运用减法性质,相当加法交换律。“带符号搬家”)
例3:
195-(95+24)
=195-95-24
=100-24
(运用减法性质)
例4:
150-(100-42)
=150-100+42
(去括号时,括号前面是减号,括号里面的运算符号要变成逆运算)
例5:
(0.75+125)x8
=0.75x8+125x8=6+1000
. (运用乘法分配律))
例6:
( 125-0.25)x8
=125x8-0.25x8
=1000-2
(同上)
例7:
(1.125-0.75)÷0.25
=1.125÷0.25-0.75÷0.25
=4.5-3=1.5。
( 运用除法性质)
例8:
(450+81)÷9
=450÷9+81÷9
=50+9=59.
(同上,相当乘法分配律)
例9:
375÷(125÷0.5)
=375÷125x0.5=3x0.5=1.5.
(运用除法性质)
例10:
4.2÷(0.6x0.35)
=4.2÷0.6÷0.35
=7÷0.35=20
(运用除法性质)
例11:
12x125x0.25x8
=(125x8)x(12x0.25)
=1000x3=3000.
(运用乘法交换律和结合律)
例12:
(175+45+55+27)-75
=175-75+(45+55)+27
=100+100+27=227.
(运用加法性质和结合律)
例13:
(48x25x3)÷8
=48÷8x25x3
=6x25x3=450.
⑻ A乘B加C用简便方法形式
乘法分配律:A(B+C)=AB+AC
⑼ 小学数学简便计算公式
总结了小学数学的计算公式,及其灵活运用,简便计算技巧。
①加法
加法交换律:a+b=b+a;
加法结合律:a+b+c=a+(b+c)=(a+b)+c;
②减法
a-b=-(b-a)
a-b-c=a-(b+c)
减法有一个口诀:加括号,变符号。
③乘法
乘法交换律:a x b=b x a;
乘法结合律:a x b x c=a x (b x c);
乘法分配律:a x (b±c)=a x b±a x c;
小学数学试题中常考的一种题型-计算复杂数式。
经常就会用到乘法分配律,来提取公因数,简化计算。
【例1】计算:7.19x1.36+3.13x2.81+1.77x7.19
分析:这道题就是加法结合律,乘法交换律,乘法分配律的综合运用。
7.19x1.36+3.13x2.81+1.77x7.19
=7.19x(1.36+1.77)+3.13x2.81
=7.19x3.13+3.13x2.81
=(7.19+2.81)x3.13
=10x3.13
=31.3
④除法
a÷b÷c=a÷(b x c)(b,c不等于0);
a x b÷c=a÷cxb(c不等于0);
以上公式是解四则运算题目的基本关系式。
灵活学习,灵活运用。
它们除了正着用,有时候还得会倒着用。
【例2】计算:47.9x6.6+529x0.34;
分析:6.6+3.4=10,能不能想办法把凑出一个3.4,然后让3.4和6.6相加?
47.9x6.6+529x0.34
=47.9x6.6+529÷10x10x0.34
=47.9x6.6+52.9x3.4(3.4已经凑出来了)
=47.9x6.6+(47.9+5)x3.4
=47.9x6.6+47.9x3.4+5x3.4(6.6+3.4也凑出来了)
=47.9x(6.6+3.4)+17
=496
注意:例2题目中我们将乘法分配律倒着使用。
52.9x3.4=(47.9+5)x3.4=47.9x3.4+5x3.4
除此之外还用到了一个特别的公式。
529x0.34=529÷10x10x0.34
这个公式总结出来,即:
a x b=a÷c x c x b(c不等于0)。
⑽ 乘法简便运算技巧
乘法简便运算方法
一、结合法
一个数连续乘两个一位数,可根据情况改写成用这个数乘这两个数的积的形式,使计算简便。
例1 计算:19×4×5
19×4×5
=19×(4×5)
=19×20
=380
在计算时,添加一个小括号可以使计算简便。因为括号前是乘号,所以括号内不变号。
二、分解法
一个数乘一个两位数,可根据情况把这个两位数分解成两个一位数相乘的形式,再用这个数连续乘两个一位数,使计算简便。
例2 计算:45×18
48×18
=45×(2×9)
=45×2×9
=90×9
=810
将18分解成2×9的形式,再将括号去掉,使计算简便。
三、拆数法
有些题目,如果一步一步地进行计算,比较麻烦,我们可以根据因数及其他数的特征,灵活运用拆数法进行简便计算。
例3 计算:99×99+199
(1)在计算时,可以把199写成99+100的形式,由此得到第一种简便算法:
99×99+199
=99×99+99+100
=99×(99+1)+100
=99×100+100
=10000
(2)把99写成100-1的形式,199写成100+(100-1)的形式,可以得到第二种简便算法:
99×99+199
=(100-1)×99+(100-1)+100
=(100-1)×(99+1)+100
=(100-1)×100+100
=10000
四、改数法
有些题目,可以根据情况把其中的某个数进行转化,创造条件化繁为简。
例4 计算:25×5×48
25×5×48
=25×5×4×12
=(25×4)×(5×12)
=100×60
=6000
把48转化成4×12的形式,使计算简便。
例5 计算:16×25×25
因为4×25=100,而16=4×4,由此可将两个4分别与两个25相乘,即原式可转化为:(4×25)×(4×25)。
16×25×25
=(4×25)×(4×25)
=100×100
=10000