A. 乘法运算律有哪些
乘法的运算定律,有交换律,结合律和分配律。
一、定义:乘法运算定律,也叫乘法的性质,有交换律,结合律, 分配律,应用这些运算定律,可以使部分乘法题计算简便。
1、乘法交换律:
乘法交换律是两个数相乘,交换因数的位置,它们的积不变。
a×b=b×a
则称:交换律。
2、乘法结合律:
三个数相乘,先把前两个数相乘,再和另外一个数相乘,或先把后两个数相乘,再和另外一个数相乘,积不变。主要公式为a×b×c=a×(b×c), ,它可以改变乘法运算当中的运算顺序 。在日常生活中乘法结合律运用的不是很多,主要是在一些较复杂的运算中起到简便的作用。
3、乘法分配律:
两个数的和同一个数相乘,等于把两个加数分别同这个数相乘,再把两个积加起来,和不变。字母表达是:a×(b+c) =a×b+a×c
①、变式一:a×(b-c) =a×b-a×c
②、变式二:a×b+a=a×(b+1)
B. 利用乘法公式进行简便运算
前面的括号部分,先乘以(3-1),再除以2
各个括号依次应用平方差公式
最后等于,(3的4096次方 - 1)÷2
再与后面的,2分之3的4096次方相减
最后结果是:负一
C. 乘法简便计算的方法规律
乘法(multiplication),是指将相同的数加起来的快捷方式。其运算结果称为积,“x”是乘号。从哲学角度解析,乘法是加法的量变导致的质变结果。整数(包括负数),有理数(分数)和实数的乘法由这个基本定义的系统泛化来定义。
乘法也可以被视为计算排列在矩形(整数)中的对象或查找其边长度给定的矩形的区域。 矩形的区域不取决于首先测量哪一侧,这说明了交换属性。 两种测量的产物是一种新型的测量,例如,将矩形的两边的长度相乘给出其面积,这是尺寸分析的主题。
乘法是四则运算之一
例如4乘5,就是4增加了5倍率,也可以说成5个4连加。
使用铅笔和纸张乘数的常用方法需要一个小数字(通常为0到9的任意两个数字)的存储或查询产品的乘法表,但是一种农民乘法算法的方法不是。
将数字乘以多于几位小数位是繁琐而且容易出错的。发明了通用对数以简化这种计算。幻灯片规则允许数字快速乘以大约三个准确度的地方。从二十世纪初开始,机械计算器,如Marchant,自动倍增多达10位数。现代电子计算机和计算器大大减少了用手倍增的需要。
3×5表示5个3相加
5x3表示3个5相加。
注意:1.在如上乘法表示什么中,常把乘号后面的因数做为乘号前因数的倍数。
2.参见wiki中对乘数和被乘数的定义
另:乘法的新意义:乘法不是加法的简单记法
Ⅰ 乘法原理:如果因变量f与自变量x1,x2,x3,….xn之间存在直接正比关系并且每个自变量存在质的不同,缺少任何一个自变量因变量f就失去其意义,则为乘法。
在概率论中,一个事件,出现结果需要分n个步骤,第1个步骤包括M1个不同的结果,第2个步骤包括M2个不同的结果,……,第n个步骤包括Mn个不同的结果。那么这个事件可能出现N=M1×M2×M3×……×Mn个不同的结果。
Ⅱ 加法原理:如果因变量f与自变量(z1,z2,z3…, zn)之间存在直接正比关系并且每个自变量存在相同的质,缺少任何一个自变量因变量f仍然有其意义,则为加法。
在概率论中,一个事件,出现的结果包括n类结果,第1类结果包括M1个不同的结果,第2类结果包括M2个不同的结果,……,第n类结果包括Mn个不同的结果,那么这个事件可能出现N=M1+M2+M3+……+Mn个不同的结果。
以上所说的质是按照自变量的作用来划分的。
此原理是逻辑乘法和逻辑加法的定量表述。
法则
两数相乘,同号得正,异号得负,并把绝对值相乘。
运算定律
整数的乘法运算满足:交换律,结合律, 分配律,消去律。
随着数学的发展, 运算的对象从整数发展为更一般群。
群中的乘法运算不再要求满足交换律。 最有名的非交换例子,就是哈密尔顿发现的四元数群。 但是结合律仍然满足。
1.乘法交换律: ,注:字母与字母相乘,乘号不用写,或者可以写成·。
2.乘法结合律: ,
3.乘法分配律: 。
D. 乘法怎样简便运算
1、两个数相乘,交换因数的位置,积相等。 ab=ba
2、三个数相乘,先把前两个数相乘,或先把两个数相乘,积相等。(ab)c=a(bc)
3、一个数,同两个数的和相乘,等于把这个数分别同这个数相乘,再把积相加。
a(b+c)=ab+ac
E. 利用乘法公式简便计算
F. 简便方法运算公式有哪几种
加法运算分为:加法交换律和加法结合律
乘法运算分为:乘法交换律、乘法结合律和乘法分配律
除法性质:商不变
减法性质: 差不变
小数性质
G. 利用乘法公式简便计算,谢谢
原式=(2014+1)(2014-1)-2014^2
=2014^2-1+2014^2
=1