导航:首页 > 知识科普 > 单向反复加载的试验方法有哪些

单向反复加载的试验方法有哪些

发布时间:2022-03-07 16:56:02

❶ 低周反复加载静力试验的加载制度

(一)单向反复加载:1.控制位移加载法,在控制位移的情况下,又可分为变幅加载、等幅加载和变幅等幅混合加载;2控制作用力加载法;3控制作用力和控制位移的混合加载法;
(二)双向反复加载:XY轴双向同步加载,XY轴双向异步加载;

什么是低周反复加载试验

参照 低循环疲劳(低周疲劳),作用于零件、构件的应力水平较高 ,破坏循环次数一般低于10^3~10^4的疲劳,如压力容器、燃气轮机零件等的疲劳。
低周反复加载试验,就是在试验样品上加上较大载荷,进行类似工作状态的反复运动,最终使试验样品发生疲劳断裂的试验。

❸ 疲劳试验如何分类(周期,环境,加载方式)求解

疲劳试验有多种分类方法,以下就举出一些疲劳试验分类方法。1. 按试样破断时应力(应变)循环周次高低可分为:低周疲劳试验、高周疲劳试验。失效循环周次大于5X104的称为高周疲劳试验,小于5X104的称为低周疲劳试验。2. 按试验环境可分为:室温疲劳试验、低温疲劳试验、高温疲劳试验、热疲劳试验、腐蚀疲劳试验、接触疲劳试验、微动磨损疲劳试验等。3. 按试样的加载方式可分为:拉-压疲劳试验、弯曲疲劳试验、扭转疲劳试验、复合应力疲劳试验。弯曲疲劳试验又可分为旋转弯曲疲劳试验、圆弯曲疲劳试验、平面弯曲疲劳试验;又可分为三点弯曲、四点弯曲、悬臂弯曲疲劳试验。4. 按应力循环的类型可分为:等幅疲劳试验、变频疲劳试验、程序疲劳试验、随机疲劳试验等。
5. 按应力比可分为:对称疲劳试验,非对称疲劳试验。 非对称疲劳试验又可以分为单向、双向加载疲劳试验。单向加载疲劳试验又可以分为脉动疲劳试验、波动疲劳试验。6. 按试验目的可分为:性能测试疲劳试验、影响系数疲劳试验、对比疲劳试验、筛选疲劳试验、验证疲劳试验等。7. 按试样有无预制裂纹可分为:常规疲劳试验、疲劳裂纹扩展试验

❹ 混凝土构件检测的加载方式有哪些,各有什么特点

一、结构混凝土无损检测条件:同条件试件或标准试件数量不足。

数量不足;试件质量缺乏代表性;试件抗压试验不符合标准要求;

对试件抗压强度试验结果有疑问;混凝土由于材料和施工不良而产生。

二、结构混凝土的检测方法和特点:

(1)超声波法:检测过程不损害材料和结构的使用性能;直接。

对结构物进行检测试验,确定其实际强度和缺陷性质;重复检验方。

(2)回弹方法:简单方便,但离散性大。

(3)超声波回弹综合法:可以减少各种因素对结果的影响。

两者各有不足,测试精度较高。

(4)钻芯法:检测结果直观准确,可检测强度和厚度,但可操作。

拔出法:检测结果直观、准确,但操作复杂,对混凝土造成轻微破坏,结果离散度大。

(6)瞬态激振(敲击)时域频域分析(小应变):适用。

基特点是操作简单,检测速度快,结果比较精确。

地质雷达法:主要用于对大面积混凝土进行质量检测,如对隧道衬砌混凝土进行检测,其特点是检测速度快,检测厚度准确。

❺ 单桩水平静载试验

桩所受的水平荷载有多种形式,如:风力、制动力、地震力、船舶撞击力及波浪力等等。

近年来,单桩水平静载试验是采用接近于水平受荷桩实际工作条件的试验方法,来确定单桩水平临界荷载和极限荷载,推定土抗力参数。

一、单桩水平静载试验装置(图2-26,图2-27)

1.水平推力加载装置

宜采用卧式液压千斤顶,加载能力不得小于最大试验荷载的1.2倍,采用荷重传感器直接测定荷载大小,也可用并联液路的液压表或液压传感器测量液压,根据千斤顶率定曲线换算荷载。

图2-26 单桩水平静载试验装置立面示意图

图2-27 单桩水平静载试验装置平面布置示意图

试验的水平力作用点,宜与实际工程的桩基承台底面标高一致;如果高于承台底标高,试验时在相对承台底面处会产生附加弯矩而影响测试结果,应予以修正。在千斤顶与试桩接触处,宜安置一球形铰座,以保证千斤顶作用力能水平穿过桩身轴线。

2.量测装置

水平位移测量宜采用大量程位移计。在水平力作用平面的受检桩两侧,应对称安装两个位移计测量地面处的桩水平位移;当需测量桩顶(旋)转角时,应在水平力作用平面以上50cm处受检桩两侧,对称安装两个位移计,利用上、下位移计差与位移计距离的比值,可求得地面以上桩的转角。固定位移计的基准点宜设置在试验影响范围之外。

二、单桩水平静载试验方法

单桩水平静载试验宜根据工程桩实际受力特性,选用单向多循环加载法或慢速维持荷载法。对长期承受水平荷载作用的工程桩,宜采用慢速维持荷载法的加载方式。对需测量桩身应力或应变的试验桩,不宜采取单向多循环加载法,因为它会对桩身内力的测试带来不稳定因素,因而应采用慢速或快速维持荷载法。

1.加、卸载方式和水平位移测量

(1)单向多循环加载法的分级荷载,应取预估水平极限承载力的1/10~1/15作为每级荷载的加载增量。根据桩径大小并适当考虑土层软硬,对于直径300~1000mm的桩,每级荷载增量可取2.5~20kN;每级荷载施加后,恒载4min后可测读水平位移,然后卸载为零;再停2min测读残余水平位移,至此完成一个加、卸载循环。如此循环5次便完成一级荷载的位移观测。试验不得中间停顿。

(2)慢速维持荷载法的具体做法是:按一定要求将荷载分级加到试桩上,每级荷载维持不变直到桩的测点变形量达到某一规定的相对稳定标准(每小时的水平变形量不超过0.1mm,并连续出现2次),然后继续加下一级荷载。当达到规定的终止试验条件时,停止加荷。

2.变形观测

每级加载后,间隔5min、10min、15min各测读一次,以后每隔15min测读一次,累计1h后每隔30min测读一次;卸载观测的每级卸载值为加载值的两倍。卸载时,每级荷载维持1h,按第15min、30min、60min测读测点水平变形量后,即可卸下一级荷载;卸载至零后,应测读残余水平变形量,维持时间为3h,测读时间为第15min、30min,以后每隔30min测读一次。

3.变形相对稳定标准

连续2h每小时内的水平变形值不超过0.1mm,认为已达到该级荷载作用下的相对稳定,可加下一级荷载。测量数据应及时填写到单桩水平静载试验记录表中(表2-12)。

表2-12 单桩水平静载试验记录表

在进行循环载荷试验时,对卸荷的要求是:每级卸载值为加载值的二倍。卸载后,每隔15min测读一次,读两次后,隔半小时再读一次,即可卸下一级荷载。全部卸载后,隔3~4小时再测读一次。

4.终止加载条件

当出现下列情况之一时,即可终止加载:

(1)桩身折断。对长桩和中长桩,水平承载力作用下的破坏特征是桩身弯曲破坏;

(2)水平位移超过30~40mm(软土取40mm)(据《建筑桩基技术规范》(JGJ 94—94));

(3)水平位移达到设计要求的水平位移允许值。

试验记录表格式见表2-11。

三、资料整理与成果分析

对单向多循环加荷、卸荷试验,应绘制水平力—时间—位移(H0-t-Y0,见图2-28)、水平力—位移梯度(H0-ΔY0/ΔH0)或水平力—位移双对数(lgH0-lgY0)曲线;当测量桩身应力时,应绘制应力沿桩身分布和水平力与最大弯矩截面钢筋应力的(H0s)等相关曲线。

图2-28 单向多循环加荷试验水平力—时间—位移(H0-t-Y0)曲线

采用慢速维持荷载法时,应绘制水平力—时间—力作用点位移(H0-t-Y0)的关系曲线;水平力—位移梯度(H0-ΔY0/ΔH0)的关系曲线;力作用点位移—时间对数(Y0—lgt)的关系曲线;和水平力—力作用点位移双对数(lgH—lgY0)关系曲线;绘制水平力、水平力作用点位移与地基土水平抗力系数的比例系数的关系曲线(H—m、Y0—m)。当桩顶自由且水平力作用位置位于地面处时,m值可根据试验结果按下列公式确定:

土体原位测试与工程勘察

土体原位测试与工程勘察

式中:m为地基土水平力抗力系数的比例系数(kN/m4);α为桩的水平变形系数(m-1);νy为桩顶水平位移系数(表2-13);H为作用于地面的水平力(kN);Y0为水平力作用点的水平位移(m);EI为桩身抗弯刚度(kN·m2);b0为桩身计算宽度(m)。

表2-13 桩顶水平位移系数νy

注:h为桩的入土深度。

对于圆形桩:当桩径D≤1m时,b0=0.9(1.5D+0.5);当桩径D>1m时,b0=0.9(D+1)。

对于矩形桩:当边宽B≤1m时,b0=1.5B+0.5;当边宽B>1m时,b0=B+1。

对桩的换算埋深αh>4.0的弹性长桩,可取αh=4.0的值即νy=2.441;而对于2.5<αh<4.0的有限长度中长桩,应根据上表调整νy,重新计算m值。

1.单桩水平临界荷载的确定

对中长桩,水平力临界荷载Hcr值在桩身产生开裂时所对应的水平荷载,为单桩水平临界荷载;

取单向多循环加载法时的H—t—Y0曲线,或慢速维持荷载法时的H—Y0曲线在出现拐点的前一级水平荷载值,为单桩水平临界荷载;

取H0—ΔY0/ΔH0曲线或lgH-lgY0曲线上第一拐点所对应的水平荷载值,为单桩水平临界荷载;

取H-σs曲线第一拐点为单桩水平临界荷载。

2.单桩水平极限承载力的确定

单桩水平极限承载力是对应于桩身折断或桩身钢筋应力达到屈服时的前一级水平荷载值。它有下列确定方法:

(1)取单向多循环加载法时的H—t—Y0曲线,或慢速维持荷载法时的H—Y0曲线产生明显陡降的起始点对应的水平荷载值,为单桩水平极限承载力;

(2)取慢速维持荷载法时的Y0—lgt曲线尾部出现明显弯曲的前一级水平荷载值,为单桩水平极限承载力;

(3)取水平力-位移梯度(H0—ΔY0/ΔH0)曲线或水平力与力作用点位移双对数(lgH—lgY0)曲线上第二拐点对应的水平荷载值,为单桩水平极限承载力;

(4)取桩身折断或受拉钢筋屈服时的前一级水平荷载值,为单桩水平极限承载力。

3.单桩水平承载力特征值的确定

单位工程同一条件下的单桩水平承载力特征值的确定,应符合下列规定:

(1)当水平承载力按桩身强度控制时,取水平临界荷载统计值作为单桩水平承载力特征值;

(2)当桩受长期水平荷载作用且桩不允许开裂时,取水平临界荷载统计值的0.8倍作为单桩水平承载力的特征值;

(3)当水平承载力按设计要求的水平允许位移控制时,可取设计要求的水平允许位移对应的水平荷载,作为单桩水平承载力特征值。但应满足有关规范抗裂设计的要求。

❻ 单向通行的方式有哪些

公共汽车上的乘客,在汽车启动以后,总希望一路都是绿灯,尽量不“吃”红灯或少“吃”红灯。采用单向通行方式,就是实现这一愿望的有效措施。

单向通行在我国习惯上叫单行线。单向通行有一条道路上只有一个车道的单向行驶,也有多个车道的单向行驶;不仅在支路上使用,而且也常用于干道上。纽约市早在30年代,市中心的曼哈顿区就有2800千米的道路实行单向通行。巴黎也有1000多条单向通行道路。日本于1956年开始采用单向通行方式,到70年代末期,东京都采用单向通行的路线达3400千米,约占全部道路的20%。大阪市有38%的道路采用单向通行,其中大部分是干线道路。

单向通行的方式大致有以下四种:一是固定的单向通行方式,主要用于交通拥挤的棋盘型道路。二是可以改变方向的单向通行方式,例如上午,大部分人是从市郊到市中心上班或购物,所以规定上午从市郊到市中心方向为单向通行;下午大部分人要从市中心回到市郊住所,所以规定下午从市中心到市郊方向为单向通行。三是时间性的单向通行方式,例如仅在早晚交通高峰时采用单向通行,而在非高峰时采用双向通行。四是某种车辆的单向通行方式,例如有的采用机动车单向通行,而自行车可以双向通行;有的采用小汽车或卡车单向通行,而公共汽车和自行车可以双向通行。

实践证明,单向通行是解决城市交通拥挤、增加交通容量的最直接、最有效、最经济的一种方法。根据美国有关城市资料,单向通行的交通容量比双向通行时增加20%以上,而且路面越宽,增加率越大。交通事故可以减少30%~55%。英国伦敦一些街道实行单向通行后,车辆平均运行速度从每小时13~16千米,提高到26~32千米,即增加了一倍。

单向通行的一个重要优点是便于组织“绿波”交通。这是一种新的道路交通组织方法。“绿波”的实质,就是根据行车速度和有交通信号灯的十字路口之间的距离,连续开通绿色信号灯,使车辆能在街道上不停地运行,以提高交通效率。也就是说,在单行道上行车,如保持规定车速行进,一旦遇到绿灯,接下去各个路口都是绿灯。这样,从被组织的单行道上各交叉路口的信号灯来看,绿灯像波浪一样地向前行进,而形成“绿波”。莫斯科已经在26条交通干线和街道上实施。北京也在某些大街上进行试验。采用这种方法,不仅能减少车辆在路线上消耗的时间,降低噪声级,减少排入大气的废气量,而且可以大大减少不必要的刹车、加速和各种调车的次数。据测算证明,交叉路口的通行能力提高28%,主干道方向的受阻率减少50%,全线旅行时间缩短19%,每辆汽车每百千米行程可节约汽油1升。

❼ 试简述利用单向周期性振动台进行结构模型动力加载试验的一般试验步骤

该试验步骤如下:
1.结构模型的静力试验,测量模型在静力作用下各部位的位移。
2.用张拉突卸法、锤击法或脉动法等测量结构模型的动力特性。也可以输入正弦波进行连续扫描,通过共振试验,由共振反应求得模型的自振频率和相应的各阶振型,但必须控制输入信号的幅值,测得的自振频率的数值都要低于在地面上测得的结果。
3.逐级增大输入波形信号的幅值,测得相应的动力反应,同时在每次加振试验后,用输入幅值相等的简谐波再次进行扫频试验,观测模型自振频率与振型的变化。随着变形增大,模型刚度减小,而自振频率也会不断降低,振型也会有一些变化。
4.最后参考理论计算结果,在某一加振频率和加速度幅值下,使模型发生共振而破坏。

❽ 在模拟地震振动台试验中,一般采用多次性加载方案,该方案有何不足

模拟地震振动台可以很好地再现地震过程和进行人工地震波的试验,它是在试验室中研究结构地震反应和破坏机理的最直接方法,这种设备还可用于研究结构动力特性、设备抗震性能以及检验结构抗震措施等内容。另外它在原子能反应堆、海洋结构工程、水工结构、桥梁工程等方面也都发挥了重要的作用,而且其应用的领域仍在不断地扩大。模拟地震振动台试验方法是目前抗震研究中的重要手段之一。
20世纪70年代以来,为进行结构的地震模拟试验,国内外先后建立起了一些大型的模拟地震振动台。模拟地震振动台与先进的测试仪器及数据采集分析系统配合,使结构动力试验的水平得到了很大的发展与提高,并极大地促进了结构抗震研究的发展。
二、常用振动台及特点
振动台可产生交变的位移,其频率与振幅均可在一定范围内调节。振动台是传递运动的激振设备。振动台一般包括振动台台体、监控系统和辅助设备等。常见的振动台分为三类,每类特点如下:
1、 机械式振动台。所使用的频率范围为1~100Hz,最大振幅±20mm,最大推力100kN,价格比较便宜,振动波形为正弦,操作程序简单。
2、 电磁式振动台。使用的频率范围较宽,从直流到近10000Hz,最大振幅±50mm,最大推
力200kN,几乎能对全部功能进行高精度控制,振动波形为正弦、三角、矩形、随机,只有极低的失真和噪声,尺寸相对较大。
3、 电液式振动台。使用的频率范围为直流到近2000Hz,最大振幅±500mm,最大推力
6000kN,振动波形为正弦、三角、矩形、随机,可做大冲程试验,与输出力(功率)相比,尺寸相对较小。
4、 电动式振动台。是目前使用最广泛的一种振动设备。它的频率范围宽,小型振动台频率
范围为0~10kHz,大型振动台频率范围为0~2kHz,动态范围宽,易于实现自动或手动控制;加速度波形良好,适合产生随机波;可得到很大的加速度。原理:是根据电磁感应原理设置的,当通电导体处的恒定磁场中将受到力的作用,半导体中通以交变电流时将产生振动。振动台的驱动线圈正式处在一个高磁感应强度的空隙中,当需要的振动信号从信号发生器或振动控制仪产生并经功率放大器放大后通到驱动线圈上,这时振动台就会产生需要的振动波形。组成部分:基本上由驱动线圈及运动部件、运动部件悬挂及导向装置、励磁及消磁单元、台体及支承装置。
三、组成及工作原理
1.振动台台体结构
振动台台面是有一定尺寸的平板结构,其尺寸的规模由结构模型的最大尺寸来决定。台地震模拟振动台的组成和工作原理 体自重和台身结构是与承载试件的重量及使用频率范围有关。一般振动台都采用钢结构,控制方便、经济而又能满足频率范围要求,模型重量和台身重量之比以不大于2为宜。振动台必须安装在质量很大的基础上,基础的重量一般为可动部分重量或激振力的10~20倍以上,这样可以改善系统的高频特性,并可以减小对周围建筑和其他设备的影响。
2.液压驱动和动力系统
液压驱动系统给振动台以巨大的推力,按照振动台是单向(水平或垂直)、双向〔水平一水平或水平一垂直)或三向(二向水平一垂直)运动,并在满足产生运动各项参数的要求下,各向加载器的推力取决于可动质量的大小和最大加速度的要求;自前世界上已经建成的大中型的地震模拟振动台,基本是采用电液伺服系统来驱动。它在低频时能产生大推力,故被广泛应用。
3.控制系统
在目前运行的地震模拟振动台中有两种控制方法:一种是纯属于模拟控制;另一种是用数字计算机控制。模拟控制方法有位移反馈控制和加速度信号输入控制两种。在单纯的位移反馈控制中,由于系统的阻尼小,很容易产生不稳定现象,为此在系统中加入加速度反馈,增大系统阻尼从而保证系统稳定。与此同时,还可以加入速度反馈,以提高系统的反应性能,由此可以减小加速度波形的畸变。为了能使直接得到的强地震加速度记录推动振动台,在输入端可以通过二次积分,同时输入位移、速度和加速度三种信号进行控制。
为了提高振动台控制精度,采用计算机进行数字迭代的补偿技术,实现台面地震波的再现。试验时,由振动台台面输出的波形是期望再现的某个地震记录或是模拟设计的人工地震波。由于包括台面、试件在内的系统的非线性影响,在计算机给台面的输入信号激励下所得到的反应与输出的期望之间必然存在误差。这时,可由计算机将台面输出信号与系统本身的传递函数(频率响应)求得下一次驱动台面所需的补偿量和修正后的输入信号。经过多次迭代,直至台面输出反应信号与原始输人信号之间的误姜小与预先给定的量值,完成佚代补偿并得到满意的期望地震波形。
4.测试和分析系统
测试系统除了对台身运动进行控制而测量其位移、加速度等外,还可对被测试模型进行多点测量,一般是测量位移、加速度和应变等,根据需要来了解整个模型的反应。位移测量多数采用差动变压器式和电位计式的位移计,可测量模型相对于台面的位移或相对于基础的位移;加速度测量多采用应变式加速度计、压电式加速度计,近年来也有采用差容式或伺服式加速度计。
电液式激振器的优点是重量轻、体积小,但却能产生很大的激振力,这种电液式激振器又称为动力千斤顶、电液伺服千斤顶、加振器、作动器等。电液式振动台推力可达几十kN~几百kN,主要用于大型结构物的振动试验,诸如汽车的行驶模拟试验、工程结构的抗震试验、飞行器的动力试验以及电工、电子产品的整机环境试验、筛选试验等。 四、加载设计
1、地震模拟振动台试验的加载设计
地震模拟振动台试验的加载设计是非常重要的,荷载选取过大,试件可能很快进人塑性阶段甚至破坏倒塌,难以完整地量测和观察到结构的弹性和弹塑性反应的全过程,甚至可能发生安全事故。荷载选取太小,不能达到预期日的。产生不必要的重复。影响试验进展,而且多次加载能对试件产生损伤积累。因此,为获得系统的试验资料,必须周密地考虑试验加载程序的设计。
进行结构抗震动力试验,振动台台面的输人一般选用地面运动的加速度。常用的地震波谱有天然地霞记录和拟合反应谱的人工地震波。
振动台是一个非线性系统,直接用地震波信号通过D/A转换和模拟控制系统放大后驱动振动台,在台面上无法得到所要求的地震波。在实际试验时,地展模拟振动台的计算机系
统将根据振动台的频谱特性。对输入的地震波进行分析、计算,经处理后再进行D/转换和模拟放大,使振动台能够再现的地震波。
2、在选择和设计台面的输人运动时,需要考虑下列有关因素:
(1)试验结构的周期
如果模拟长周期结构并研究它的破坏机理,就要选择长周期分量占主导地位的地震记录或人工地震波,以便使结构能产生多次瞬时共振而得到清晰的变化和破坏形式
(2)结构所在的场地条件
如果要评价建立在某一场地土上的结构的抗震能力,就应选择与这类场地土相适应的地震记录,即要求选择地震记录的频谱特性尽可能与场地的频谱特性相一致,并需要考虑地震烈度和震中距离的影响。在进行实际工程地震模拟振动台试验时,这个条件尤其重要。
(3)考虑振动台台面的输出能力
主要考虑振动台台面的输出的频率范围、最大位移、速度和加速度、台面承载能力等性能,在试验前应认真核查振动台台面特性曲线是否满足试验要求。
3、地震模拟振动台试验的加载过程和试验方法
地震模拟振动台试验的加载过程包括:结构动力特性试验、地震动力反应试验和量测结构不同工作阶段(开裂、屈服、破坏阶段)自振特性变化等试骏内容。
结构动力特性试验,是在结构模型安装在振动台以前,采用自由振动法或脉动法进行试验量测。试验时应将模型基础底板或底梁固定。模型安装在振动台上以后则可采用小振幅的白噪声输人振动台台面,进行激振试验,量侧台面和结构的加速度反应。通过传递函数、功率谱等频谱分析,求得结构模型的自振频率、阻尼比和振型等参数。也可采用正弦波输人连续扫频,通过共振法测得模型的动力特性。当采用正弦波扫频试验时,应特别注意由于共振作用对结构模型强度所造成的影响,避免结构开裂或破坏。
根据试脸目的的不同,在选择和设计振动台台面输人加速度时程曲线后,试验的加截过程可以是一次性加载或多次加载的不同方案。

❾ 低周反复加载试验有哪些优点和不足

优点:
1、设备简单,耗资少,便于观察试验现象;
2、加载历程可以人为控制,并可以按需加以修正;
3、能做大型的结构试验及其他各种类型的结构试验。
缺点:
不能与任一次确定性的非线性地震反应结构相比。

❿ 岩石变形试验中,逐级一次连续加载法,逐级一次循环法,逐级多次循环法各表示什么意思

您好,希望回答对您有帮助。

所谓“逐级”,就是一级一级地增加载荷。比如第一次施加5MPa,第二次施加10MPa,第三次施加15MPa。
所谓“一次”,就是一次性加荷到预期的荷载,比如一次性给岩块施加15MPa的荷载。
所谓“逐级循环加载”,就是每次卸载后再加载到原来的应力后再继续增加荷载,比如先加载到5MPa,然后卸荷,然后再加载到5MPa,然后再在5MPa的基础上加荷到10MPa。

阅读全文

与单向反复加载的试验方法有哪些相关的资料

热点内容
如何改善唇深的方法 浏览:200
地球计算方法最新2012 浏览:487
儿童游泳的正确方法图解 浏览:635
如何用卡纸做灯笼手工制作方法 浏览:343
灭蚁灵分析方法 浏览:951
接触器连接方法和图例 浏览:104
多元回归分析方法的选择 浏览:228
狐臭治疗方法手术 浏览:351
找一下清理手机垃圾的方法 浏览:621
如何腌竹笋方法 浏览:291
如何了解字谜的方法 浏览:120
龙支付使用方法 浏览:415
烧烤烤盘使用方法 浏览:941
两轮特技训练方法 浏览:401
丹参染色鉴别方法 浏览:624
细胞免疫的研究方法 浏览:782
华为云电脑dnf游戏按键在哪里设置方法 浏览:477
青光眼自我检测方法 浏览:409
水准测量车站检验方法 浏览:929
阴道冲洗器使用方法图解 浏览:103