Ⅰ 单片机软件调试方法,请问单片机程序调试都有什么方法
用keil调试,主要是设置断点,单步执行,运行到光标处,查看运行时间,监视变量和表达式的值,这些都是常用的手段,你仔细看看工具栏就知道了
Ⅱ 程序调试的方法
一,简单调试方法:步骤
1,在程序中插入打印语句、优点是能够显示程序的动态过程,比较容易检查源程序的有关信息。缺点是效率低,可能输入大量无关的数据,发现错误带有偶然性。
2,运行部分程序。有时为了测试某些被怀疑有错的程序段,却将整个程序反复执行许多次,在这种情况下,应设法使被测程序只执行需要检查的程序段,以提高效率。
3,借助调试工具。目前大多数程序设计语言都有专门的调试工具,可以用这些工具来分析程序的动态行为。
二,回溯法排错。确定最先发现错误症状的地方,人工沿程序的控制流往回追踪源程序代码,直到找到错误或范围。
三,归纳法排错。是一种系统化的思考方法,是从个别推断全体的方法,这种方法从线索(错误征兆出发),通过分析这些线索之间的关系找出故障。主要有4步:
(1)收集有关数据。收集测试用例,弄清测试用例观察到哪些错误征兆,以及在什么情况下出现错误等信息。
(2)组织数据。整理分析数据,以便发现规律,即什么条件下出现错误,什么条件下不出现错误。
(3)导出假设。分析研究线索之间的关系,力求找出它们的规律,从而提出关于错误的一个或多个假设,如果无法做出假设,则应设计并执行更多的测试用例,以便获得更多的数据。
(4)证明假设。假设不等于事实,证明假设的合理性是极其重要的,不经证明就根据假设排除错误,往往只能消除错误的征兆或只能改正部分错误。证明假设的方法是用它解释所有原始的测试结果,如果能圆满地解释一切现象,则假设得到证明,否则要么是假设不成立或不完备,要么是有多个错误同时存在。
四,演绎法排错 。设想可能的原因,用已有的数据排除不正确的假设,精化并证明余下的假设。
五、对分查找法。如果知道每个变量子啊程序内若干个关键点上的正确值,则可用赋值语句或输入语句在程序中的关键点附近“注入”这些变量的正确值,然后检查程序的输出。如果输出结果是正确的,则表示错误发生在前半部分,否则,不妨认为错误在后半部分。这样反复进行多次,逐渐逼近错误位置。
Ⅲ java程序调试的5种方法
1.debug。断点调试。
2.输出消息。system.out.println();来调试。
3.动态代理(Dynamic Proxy)。动态代理是一个特定的Java特性,它允许开发者引入proxy类,加进某一给定类之前,并通过某一给定接口截获所有调用。你可以在很短时间内用一个普通代理设置一个虚拟事件处理器,来查看事件发生顺序。当需要理解事件处理器时这是最简单和快捷的方法。
4.运行时剖析器(Run-time Profiler)。剖析器是通过特定的JVM hooks在系统中跟踪所有调用的强大工具。但是用它来跟踪执行过程是大才小用。
5.Aspects。面向方面编程。它是截获你的代码执行既快速又容易的方法。你可以围绕方法、构造器、属性访问等等有选择地设置hook,而不需要修改原始代码。在这些hook中,你可以打印调试消息。
1.2常用的。3.4.5网上找的。
Ⅳ 程序调试主要对程序进行何种调试常用的测试数据有哪几种
需求获取的常用方法有哪些 1)用户访谈 用户访谈是一种最基本的需求获取手段,它是指分析人员以个别访谈或小组合议的形式与用户进行初步的沟通。用户访谈的形式包括结构化和非结构化两种,结构化是指分析人员按照——定准则事先准备好一系列问题,通过用户对问题的回答来获取有关目标软件方面的内容;非结构化则是只列以一个粗糙的想法,根据访谈的民体情况来进行发挥。 2)用户调查 在进行用户防谈时,由于很多关键人员的时间有限,不易安排过多的时间或者项日涉及的客户面较广。不可能——一访谈。因此,就需要借助用户调杏的方法,通过精心设计要问的问题,然后下发到相关的人员手中,让他们填写,再从所填写的内容中获取系统的需求倍息,这样就可以克服上述的问题。 用户调查最大的不足就是缺乏灵活性,而且可能存在受调查人员不能很好表述自己想法的限制。 3)现场观摩 俗话说,百闻石如一见,对于许多较为复杂的流程和系统而言,是很难用自然语言表达清楚的。因此,为了能够对系统的需求获得全面的了解,实际观察用户的操作过程就是一种行之合效的方法。现场观摩就是走到客户的工作场所,一边观察,一边听客户讲解,甚至可以安排人员跟随用户一起工作一段时间。这样就可以使得分析人员对客户的需求有更加直观的理解。但是,在现场观摩过程中必须切记;建造软件系统不仅仅只是为了模拟客户的手下操作过程,还必须将最好的经济效益、最快的处理速度、最合理的操作流程和最友好的用户界而等作为软件设计的目标。 4)文档考古 文档考古是指对历史存在的—些文档进行研究,从带有数据的文件、表单、报表等文档中获取所需信息的过程。对于一些数据流程比较复杂的、工作表单较多的项目来说,就可以应用这种方法。 5)建立联合分析小组 在系统开发时,系统分析员和用户之间由于知识结构的差异,难免存在难逾越的交流鸿沟。 用广提供的需求信息,在系统分析员看来可能是零散和片面甚至无法理解的。因此,为了能够减少交流上的问题,就需要一个领域专家来帮助进行沟通,即可以建立一个由用户、系统分析员和领域专家参加的联合分析小组来共同完成需求的获地。 6)原型法 原型是在软件开发中被广泛使用的一种工具,在软件系统的很多开发阶段都起着非常重要的作用。原型法就是尽可能快地建造一个祖糙的系统,这系统实现了目标系统的某些或全部功能,但是这个系统可能在可靠性、界面的友好性或其他方向上存在缺陷。建造这样一个系统的目的是为了看,考察某一方面的可行性。如算法的可行性,技术的可行性,或考察是否满足用户的需求等。原型是在最终系统产生之前的一个局部真实表现,可以让人们能够对一些具体问题进行基于文物的有效沟通,从而帮助人们尽早解决软件开发个存在的各种不确定性。 7)模型驱动 前面的面谈、原型、观察以及文档审查等方法可以通过执行一些具体的获取行为来对系统需求进行认知和理解。但是大多数软件系统,尤其是对于复杂的系统而言,它们的需求获取任务绝不是可以通道一两次这样简单的获取行为就能够完成的。为了能够使得获取行为相互配合、减少不必要的精力耗费和防止出现获取信息的遗漏,可以采用模型驱动的方法。 8)基于上下文的方法 软件系统是作为一个整体存在的,它通过和环境的交互来解决用户的问题,满足用户的需求。软件系统中的每项功能都是依存于一定的背景和上下文环境,因此,要正确地理解系统的功能就必须要正确地理解它的背景和上下文知识。基于上下文的方法就是注重于系统的环境、开发组织的业务背景、涉众的特征以及目标等。与前面的方法相比,它更加注重用户在—定环境下表现出来的行为,通过分析用户的行为得到信息。 说明软件测试和调试的目的有何区别 1、目的不同 软件测试的目的是发现错误,至于找出错误的原因和错误发生的地方不是软件测试的任务,而是调试的任务.调试的目的是为了证明程序的正确,因此它必须不断地排除错误.它们的出发点不一样。前者是挑错,是一种挑剔过程,属于质盘保证活动。后者是排错,是一种排除过程,是编码活动的一部分. 2、任务不同 既然软件测试属于质量保证活动,因此它贯穿于整个开发过程.从需求分析开始,就要制订软件测试计划,软件设计时要设计系统软件测试、集成侧试用例,编码阶段要设计单元软件测试用例并进行单元软件测试,软件测试阶段要进行集成软件测试、系统软件测试等,直到产品交付。只要有修改就有软件测试,产品交付后同样。它是比较有规律的活动,有系统的方法、原则作指导。 而调试是编码活动的一部分,因此有编码就有调试.它的任务主要就是排错。调试的方法经常与使用的开发工具有关,例如:解释型的开发工具可以交互式调试,编译型开发工具就很难较好地查错。当然它有一些启发式的方法,它是一种比较依赖开发人员经验的活动。 3、指导原则和方法不同 软件侧试是一种有规律的活动,有一系列软件软件测试的原则.其中主要是制订侧试计划,然后严格执行.其次是一种挑剔性行为,因此它不但要侧试软件应该做的,还需要侧试软件不应该做的事情。调试所遵循的规律主要是一些启发式规则,是一个推理过程。例如使用归纳法、演绎法、回溯法等。 软件测试的输出是预知的,其软件测试用例必须包括预期的结果,而调试的输出大多是不可预见的,需要调试者去解释、去发现产生的原因。 4、操作者 因为心理状态是软件测试程序的障碍,所以执行软件测试的人一般不是开发人员,以使软件测试更客观、更有效,而调试人员一般都是开发人员.
Ⅳ 哪位大师讲讲代码调试都有哪些手段
调试程序bug的方法很多,比如最基础的加断点,单步执行等,另外还可以借助一些其他功能,比如调用堆栈,可以看到出错时调用的那个函数,内存窗口,查看内存,监视窗口可以方便的查看各个变量的值等。
Ⅵ C语言程序设计中软件调试方法有哪三种
软件调试主要采用以下三种方法:
强行排错法:作为传统的调试方法,其过程可概括为设置断点、程序暂停、观察程序状态、继续运行程序。
回溯法:该方法适合于小规模程序的排错、即一旦发现了错误,先分析错误征兆,确定最先发现“症状”的位置。
原因排除法:原因排除法是通过演绎和归纳,以及二分法来实现。
Ⅶ 在嵌入式系统开发中,常用的程序调试手段有哪些
不同系统下有不同的软件支持,,,
wince
vxworks
linux
这是系统,
好多都是交叉编译,
windows下也有好多工具,如:ADS
,SDT2.51
linux下也有好多,和gcc相关的工具,
不知道常用的调试手段有什么
不过有仿真的工具吧。应该能调试吧。
手动,让程序自己输出一些信息,还有设置一些中断也行吧。。。
Ⅷ 求安卓程序开发中常用的调试方法
可以在需要查看信息的地方log.i(),括号里填你需要的字符串或者表达式(字符串形式)。然后在logcat里就能看到这句是否执行,或是获得的信息是不是你想要的信息
Ⅸ 调试程序方法
1,在程序中插入打印语句、优点是能够显示程序的动态过程,比较容易检查源程序的有关信息。确定是效率低,可能输入大量无关的数据,发现错误带有偶然性。
2,运行部分程序。有时为了测试某些被怀疑有错的程序段,却将整个程序反复执行许多次,在这种情况下,应设法使被测程序只执行需要检查的程序段,以提高效率。
3,借助调试工具。目前大多数程序设计语言都有专门的调试工具,可以用这些工具来分析程序的动态行为。
Ⅹ 对C语言进行调试的最好方法是什么
要了解调试程序的最好方法,首先要分析一下调试过程的三个要素:
应该用什么工具调试一个程序?
用什么办法才能找出程序中的错误?
怎样才能从一开始就避免错误?
应该用什么工具调试一个程序?
有经验的程序员会使用许多工具来帮助调试程序,包括一组调试程序和一些"lint”程序,当然,编译程序本身也是一种调试工具。
在检查程序中的逻辑错误时,调试程序是特别有用的,因此许多程序员都把调试程序作为基本的调试工具。一般来说,调试程序能帮助程序员完成以下工作:
(1)观察程序的运行情况
仅这项功能就使一个典型的调试程序具备了不可估量的价值。即使你花了几个月的时间精心编写了一个程序,你也不一定完全清楚这个程序每一步的运行情况。如果程序员忘记了某些if语句、函数调用或分支程序,可能会导致某些程序段被跳过或执行,而这种结果并不是程序员所期望的。不管怎样,在程序的执行过程中,尤其是当程序有异常表现时,如果程序员能随时查看当前被执行的是那几行代码,那么他就能很好地了解程序正在做什么以及错误发生在什么地方。
(2)设置断点
通过设置断点可以使程序在执行到某一点时暂时停住。当你知道错误发生在程序的哪一部分时,这种方法是特别有用的。你可以把断点设置在有问题的程序段的前面、中间或后面。当程序执行到断点时,就会暂时停住,此时你可以检查所有局部变量、参数和全局变量的值。如果一切正常,可以继续执行程序,直到遇到另一个断点,或者直到引起问题的原因暴露出来。
(3)设置监视
程序员可以通过调试程序监视一个变量,即连续地监视一个变量的值或内容。如果你清楚一个变量的取值范围或有效内容,那么通过这种方法就能很快地找出错误的原因。此外,你可以让调试程序替你监视变量,并且在某个变量超出预先定义的取值范围或某个条件满足时使程序暂停执行。如果你知道变量的所有行为,那么这么做是很方便的。
好的调试程序通常还提供一些其它功能来简化调试工作。然而,调试程序并不是唯一的调试工具,lint程序和编译程序本身也能提供很有价值的手段来分析程序的运行情况。
注意:lint程序能分辨数百种常见的编程错误,并且能报告这些错误发生在程序的哪一部分。尽管其中有一些并不是真正的错误,但大部分还是有价值的。
lint程序和编译程序所提供的一种典型功能是编译时检查(compile—time checks),这种功能是调试程序所不具备的。当用这些工具编译你的程序时,它们会找出程序中有问题的程序段,可能产生意想不到的效果的程序段,以及常见的错误。下面将分析几个这种检查方式的应用例子,相信对你会有所帮助。
等于运算符的误用
编译时检查有助于发现等于运算符的误用。请看下述程序段:
void foo(int a,int b)
{
if ( a = b )
{
/ * some code here * /
}
}
这种类型的错误一般很难发现!程序并没有比较两个变量,而是把b的值赋给了a,并且在b不为零的条件下执行if体。一般来说,这并不是程序员所希望的(尽管有可能)。这样一来,不仅有关的程序段将被执行错误的次数,并且在以后用到变量a时其值也是错误的。
未初始化的变量
编译时检查有助于发现未初始化的变量。请看下面的函数:
void average ( float ar[], int size )
{
float total;
int a;
for( a = 0;a<size; ++a)
{
total+=ar[a];
}
printf(" %f\n", total / (float) size );
}
这里的问题是变量total没有被初始化,因此它很可能是一个随机的无用的数。数组所有元素的值的和将与这个随机数的值相加(这部分程序是正确的),然后输出包括这个随机数在内的一组数的平均值。
变量的隐式类型转换
在有些情况下,C语言会自动将一种类型的变量转换为另一种类型。这可能是一件好事(程序员不用再做这项工作),但是也可能会产生意想不到的效果。把指针类型隐式转换成整型恐怕是最糟糕的隐式类型转换。
void sort( int ar[],int size )
{
/* code to sort goes here * /
}
int main()
{
int arrgy[10];
sort( 10, array );
}
上述程序显然不是程序员所期望的,虽然它的实际运行结果难以预测,但无疑是灾难性的。
用什么办法才能找出程序中的错误?
在调试程序的过程中,程序员应该记住以下几种技巧:
先调试程序中较小的组成部分,然后调试较大的组成部分
如果你的程序编写得很好,那么它将包含一些较小的组成部分,最好先证实程序的这些部分是正确的。尽管程序中的错误并不一定发生在这些部分中,但是先调试它们有助于你理解程序的总体结构,并且证实程序的哪些部分不存在错误。进一步地,当你调试程序中较大的组成部分时,你就可以确信那些较小的组成部分是正常工作的。
彻底调试好程序的一个组成部分后,再调试下一个组成部分
这一点非常重要。如果证实了程序的一个组成部分是正确的,不仅能缩小可能存在错误的范围,而且程序的其它组成部分就能安全地使用这部分程序了。这里应用了一种很好的经验性原则,简单地说就是调试一段代码的难度与这段代码长度的平方成正比,因此,调试一段20行的代码比调试一段10行的代码要难4倍。因此,在调试过程中每次只把精力集中在一小段代码上是很有帮助的。当然,这仅仅是一个总的原则,具体使用时还要视具体情况而定。
连续地观察程序流(flow)和数据的变化
这一点也很重要!如果你小心仔细地设计和编写程序,那么通过监视程序的输出你就能准确地知道正在执行的是哪部分代码以及各个变量的内容都是什么。当然,如果程序表现不正常,你就无法做到这一点。为了做到这一点,通常只能借助于调试程序或者在程序中加入大量的print语句来观察控制流和重要变量的内容。
始终打开编译程序警告选项 并试图消除所有警告
在开发程序的过程中,你自始至终都要做到这一点,否则,你就会面临一项十分繁重的工作。尽管许多程序员认为消除编译程序警告是一项繁琐的工作,但它是很有价值的。编译程序给出警告的大部分代码至少都是有问题的,因此用一些时间把它们变成正确的代码是值得的;而且,通过消除这些警告,你往往会找到程序中真正发生错误的地方。
准确地缩小存在错误的范围
如果你能一下子确定存在错误的那部分程序并在其中找到错误,那就会节省许多调试时间,并且你能成为一个收入相当高的专业调试员。但事实上,我们并不能总是一下子就命中要害,因此,通常的做法是逐步缩小可能存在错误的程序范围,并通过这种过程找出真正存在错误的那部分程序。不管错误是多么难于发现,这种做法总是有效的。当你找到这部分程序后,就可以把所有的调试工作集中到这部分程序上了。不言而喻,准确地缩小范围是很重要的,否则,最终集中精力调试的那部分程序很可能是完全正确的。
如何从一开始就避免错误?
有这样一句谚语——“防患于未然”,它的意思是避免问题的出现比出现问题后再想办法弥补要好得多。这在计算机编程中也是千真万确的!在编写程序时,一个经验丰富的程序员所花的时间和精力要比一个缺乏经验的程序员多得,但正是这种耐心和严谨的编程风格使经验丰富的程序员往往只需花很少的时间来调试程序,而且,如果此后程序要解决某个问题或做某种改动,他便能很快地修正错误并加入相应的代码。相反,对于一个粗制滥造的程序,即使它总的来说还算正确,那么改动它或者修正其中一个很快就暴露出来的错误,都会是一场恶梦。
一般来说,按结构化程序设计原则编写的程序是易于调试和修改的,下面将介绍其中的一些原则。
程序中应有足够的注释
有些程序员认为注释程序是一项繁琐的工作,但即使你从来没想过让别人来读你的程序,你也应该在程序中加入足够的注释,因为即使你现在认为清楚明了的语句,在几个月以后往往也会变得晦涩难懂。这并不是说注释越多越好,过多的注释有时反而会混淆代码的原意。但是,在每个函数中以及在执行重要功能或并非一目了然的代码前加上几行注释是必要的。下面就是一段注释得较好的代码:
/*
* Compute an integer factorial value using recursion.
* Input an integer number.
* Output : another integer
* Side effects : may blow up stack if input value is * Huge *
*/
int factorial ( int number)
{
if ( number < = 1)
return 1; /* The factorial of one is one; QED * /
else
return n * factorial( n - 1 );
/ * The magic! This is possible because the factorial of a
number is the number itself times the factorial of the
number minus one. Neat! * /
}
函数应当简洁
按照前文中曾提到的这样一条原则——调试一段代码的难度和这段代码长度的平方成正比——函数编写得简洁无疑是有益的。但是,需要补充的是,如果一个函数很简洁,你就应该多花一点时间去仔细地分析和检查它,以确保它准确无误。此后你可以继续编写程序的其余部分,并且可以对刚才编写的函数的正确性充满信心,你再也不需要检查它了。对于一段又长又复杂的例程,你往往是不会有这样的信心的。
编写短小简洁的函数的另一个好处是,在编写了一个短小的函数之后,在程序的其它部分就可以使用这个函数了。例如,如果你在编写一个财务处理程序,那么你在程序的不同部分可能都需要按季、按月、按周或者按一月中的某一天等方式来计算利息。如果按非结构化原则编写程序,那么在计算利息的每一处都需要一段独立的代码,这些重复的代码将使程序变得冗长而难读。然而,你可以把这些任务的实现简化为下面这样的一个函数:
/*
* ComDllte what the "real" rate of interest would be
* for a given flat interest rate, divided into N segments
*/
double Compute Interest( double Rate, int Segments )
{
int a;
double Result = 1.0;
Rate /= (double) Segments;
for( a = 0; a< Segments ; ++a )
Result * =Rate;
return Result;
}
在编写了上述函数之后,你就可以在计算利息的每一处调用这个函数了。这样一来,你不仅能有效地消除每一段复制的代码中的错误,而且大大缩短了程序的长度,简化了程序的结构。这种技术往往还会使程序中的其它错误更容易被发现。
当你习惯了用这种方法把程序分解为可控制的模块后,你就会发现它还有更多的妙用。
程序流应该清晰,避免使用goto语句和其它跳转语句
这条原则在计算机技术领域内已被广泛接受,但在某些圈子中对此还很有争议。然而,人们也一致认为那些通过少数语句使程序流无条件地跳过部分代码的程序调试起来要容易得多,因为这样的程序通常更加清晰易懂。许多程序员不知道如何用结构化的程序结构来代替那些“非结构化的跳转”,下面的一些例子说明了应该如何完成这项工作:
for( a = 0; a<100s ++a)
{
Func1( a );
if (a = = 2 ) continue;
Func2( a );
}
当a等于2时,这段程序就通过continue语句跳过循环中的某余部分。它可以被改写成如下的形式:
for( a = 0; a<100; ++a)
{
Func1 (a);
if (a !=2 )
Func2(a) ;
}
这段程序更易于调试,因为花括号内的代码清楚地显示了应该执行和不应该执行什么。那么,它是怎样使你的代码更易于修改和调试的呢?假设现在要加入一些在每次循环的最后都要被执行的代码,在第一个例子中,如果你注意到了continue语句,你就不得不对这段程序做复杂的修改(不妨试一下,因为这并非是显而易见的!);如果你没有注意到continue语句,那么你恐怕就要犯一个难以发现的错误了。在第二个例子中,要做的修改很简单,你只需把新的代码加到循环体的末尾。
当你使用break语句时,可能会发生另外一种错误。假设你编写了下面这样一段程序:
for (a =0) a<100; ++a)
{
if (Func1 (a) ==2 )
break;
Func2 (a) ;
}
假设函数Funcl()的返回值永远不会等于2,上述循环就会从1进行到100;反之,循环在到达100以前就会结束。如果你要在循环体中加入代码,看到这样的循环体,你很可能就会认为它确实能从0循环到99,而这种假设很可能会使你犯一个危险的错误。另一种危险可能来自对a值的使用,因为当循环结束后,a的值并不一定就是100。
c语言能帮助你解决这样的问题,你可以按如下形式编写这个for循环:
for(a=O;a<100&&Func1(a)!=2;++a)
上述循环清楚地告诉程序员:“从0循环到99,但一旦Func1()等于2就停止循环”。因为整个退出条件非常清楚,所以程序员此后就很难犯前面提到的那些错误了。
函数名和变量名应具有描述性
使用具有描述性的函数和变量名能更清楚地表达代码的意思——并且在某种程度上这本身就是一种注释。以下几个例子就是最好的说明:
y=p+i-c;
和
YearlySum=Principal+Interest-Charges:
哪一个更清楚呢?
p=*(l+o);
和
page=&List[offset];
哪一个更清楚呢?